
Blekinge Institute of Technology
Licentiate Dissertation Series No. 2009:06

School of Engineering

search-based approaches to
software fault prediction
and software testing

Wasif Afzal

s
e

a
r

c
h

-b
a

s
e

d
 a

p
p

r
o

a
c

h
e

s
 t

o

s
o

f
t

w
a

r
e

 fa
u

lt
 p

r
e

d
ic

t
io

n
 a

n
d

 s
o

f
t

w
a

r
e

 t
e

s
t

in
g

W
asif A

fzal
2009:06

Software verification and validation activities are
essential for software quality but also constitute a
large part of software development costs. There-
fore efficient and cost-effective software verifica-
tion and validation activities are both a priority and
a necessity considering the pressure to decrease
time-to-market and intense competition faced by
many, if not all, companies today. It is then perhaps
not unexpected that decisions related to software
quality, when to stop testing, testing schedule and
testing resource allocation needs to be as accu-
rate as possible.

This thesis investigates the application of search-
based techniques within two activities of software
verification and validation: Software fault predic-
tion and software testing for non-functional sys-
tem properties. Software fault prediction mode-
ling can provide support for making important
decisions as outlined above. In this thesis we em-
pirically evaluate symbolic regression using gene-
tic programming (a search-based technique) as a
potential method for software fault predictions.
Using data sets from both industrial and open-

source software, the strengths and weaknesses of
applying symbolic regression in genetic program-
ming are evaluated against competitive techniques.
In addition to software fault prediction this thesis
also consolidates available research into predictive
modeling of other attributes by applying symbo-
lic regression in genetic programming, thus pre-
senting a broader perspective. As an extension to
the application of search-based techniques within
software verification and validation this thesis
further investigates the extent of application of
search-based techniques for testing non-functional
system properties.

Based on the research findings in this thesis it can
be concluded that applying symbolic regression
in genetic programming may be a viable techni-
que for software fault prediction. We additionally
seek literature evidence where other search-
based techniques are applied for testing of non-
functional system properties, hence contributing
towards the growing application of search-based
techniques in diverse activities within software ve-
rification and validation.

abstract

ISSN 1650-2140

ISBN 978-91-7295-163-12009:06

Search-Based Approaches to
Software Fault Prediction

and Software Testing

Wasif Afzal

Search-Based Approaches to
Software Fault Prediction

and Software Testing

Wasif Afzal

Blekinge Institute of Technology Licentiate Dissertation Series
No 2009:06

Department of Systems and Software Engineering
School of Engineering

Blekinge Institute of Technology
SWEDEN

© 2009 Wasif Afzal
Department of Systems and Software Engineering
School of Engineering
Publisher: Blekinge Institute of Technology
Printed by Printfabriken, Karlskrona, Sweden 2009
ISBN 978-91-7295-163-1
Blekinge Institute of Technology Licentiate Dissertation Series
ISSN 1650-2140
urn:nbn:se:bth-00439

In the valley of the blind, the one-eyed man is king.
Gerard Erasmus (circa 1500)

1

This thesis is submitted to the Research Board at Blekinge Institute of Technology, in
partial fulfillment of the requirements for the degree of Licentiate of Engineering.

Contact Information:

Wasif Afzal
Blekinge Institute of Technology
P.O. Box 520
SE-372 25 Ronneby
SWEDEN

Tel: +46 457 385 840
Fax: +46 457 279 14
E-mail: wasif.afzal@bth.se

2

Abstract
Software verification and validation activities are essential for software quality but also
constitute a large part of software development costs. Therefore efficient and cost-
effective software verification and validation activities are both a priority and a neces-
sity considering the pressure to decrease time-to-market and intense competition faced
by many, if not all, companies today. It is then perhaps not unexpected that decisions
related to software quality, when to stop testing, testing schedule and testing resource
allocation needs to be as accurate as possible.

This thesis investigates the application of search-based techniques within two ac-
tivities of software verification and validation: Software fault prediction and software
testing for non-functional system properties. Software fault prediction modeling can
provide support for making important decisions as outlined above. In this thesis we
empirically evaluate symbolic regression using genetic programming (a search-based
technique) as a potential method for software fault predictions. Using data sets from
both industrial and open-source software, the strengths and weaknesses of applying
symbolic regression in genetic programming are evaluated against competitive tech-
niques. In addition to software fault prediction this thesis also consolidates available
research into predictive modeling of other attributes by applying symbolic regression
in genetic programming, thus presenting a broader perspective. As an extension to
the application of search-based techniques within software verification and validation
this thesis further investigates the extent of application of search-based techniques for
testing non-functional system properties.

Based on the research findings in this thesis it can be concluded that applying sym-
bolic regression in genetic programming may be a viable technique for software fault
prediction. We additionally seek literature evidence where other search-based tech-
niques are applied for testing of non-functional system properties, hence contributing
towards the growing application of search-based techniques in diverse activities within
software verification and validation.

3

Acknowledgements
First of all, I am grateful to my advisors, Dr. Richard Torkar and Dr. Robert Feldt, for
their invaluable support throughout the research. Their guidance and ideas have been
instrumental in steering this research; this thesis would not have been a reality with-
out their continued support and encouragement. I am still to learn a lot from them.
Secondly, I am thankful to Prof. Claes Wohlin for allowing me the opportunity to un-
dertake post-graduate studies and to be part of the SERL research group. I am also
thankful to him for reading the thesis chapters and providing crucial feedback.

I am also thankful to our industrial contacts who have been responsive to requests
for data sets. It would not have been possible to complete this thesis without their help.
I also appreciate the feedback of anonymous reviewers on earlier drafts of publications
in this thesis.

My colleagues at the SERL research group have been supportive throughout the
research. I thank them for offering me learning opportunities through interaction and
course work.

It will be unjust not to mention the support I got from the library staff at Infocenter
in Ronneby, especially Kent Pettersson and Eva Norling helped me find research papers
and books on several occasions. Kent Adolfsson assisted me in the economical matters
while May-Louise Andersson, Eleonore Lundberg and Monica H. Nilsson provided me
administrative support whenever it was required.

I will remain indebted to my family for providing me the confidence and comfort
to undertake post-graduate studies overseas. I thank my mother, brother and sisters for
their support and backing. I would like to thank my nephews and nieces for coloring
my life. Lastly, I am grateful to my father who passed away in 2003 but not before he
had influenced my personality to be what I am today.

The research in this thesis was funded by Sparbanksstiftelsen Kronan and the
Knowledge Foundation in Sweden under a research grant for the project “Blekinge
– Engineering Software Qualities (BESQ)”.

4

Overview of Papers
Chapter 2 is based on three papers: “Suitability of genetic programming for software
reliability growth modeling” – published in the proceedings of the 2008 IEEE Inter-
national Symposium on Computer Science and its Applications (CSA’08), “Prediction
of fault count data using genetic programming” – published in the proceedings of the
12th IEEE International Multitopic Conference (INMIC’08) and “A comparative eval-
uation of using genetic programming for predicting fault count data” – published in the
proceedings of the 3rd International Conference on Software Engineering Advances
(ICSEA’08).

Chapters 3 and 4 have been submitted to the Journal of Empirical Software Engi-
neering and the Journal of Systems and Software respectively.

Chapter 5 is an extended version of the paper “A systematic mapping study on
non-functional search-based software testing” – published in the proceedings of the
20th International Conference on Software Engineering and Knowledge Engineering
(SEKE’08). The extended version, entitled “A systematic review of search-based test-
ing for non-functional system properties” was published in the Journal of Information
and Software Technology.

Wasif Afzal is the main author and Dr. Richard Torkar is the co-author of all the
chapters in this thesis. Dr. Robert Feldt is the co-author of Chapters 2, 3 and 5; Dr.
Tony Gorscheck is the additional co-author of Chapter 3.

Papers that were related but not included in the thesis:

(i) W. Afzal, R. Torkar. Lessons from applying experimentation in software engineering prediction
systems. Proceedings of The 2nd International workshop on Software Productivity Analysis and
Cost Estimation (SPACE’08), Collocated with 15th Asia-Pacific Software Engineering Conference
(APSEC’08).

(ii) W. Afzal, R. Torkar. Incorporating metrics in an organizational test strategy. Proceedings of the
International Software Testing Standard Workshop, Collocated with 1st International Conference on
Software Testing, Verification and Validation (ICST’08).

(iii) R. Feldt, R. Torkar, T. Gorschek, W. Afzal. Searching for cognitively diverse tests: Towards universal
test diversity metrics. Proceedings of the 1st International Workshop on Search-based Software
Testing (SBST’08), Collocated with 1st International Conference on Software Testing, Verification
and Validation (ICST’08).

5

6

Contents

1 Introduction 11
1.1 Preamble . 11
1.2 Concepts and Related work . 15

1.2.1 Search-based software engineering (SBSE) 15
1.2.2 Search-based software engineering (SBSE) in this thesis . . . 16
1.2.3 Software fault prediction . 19
1.2.4 Software fault prediction in this thesis 21
1.2.5 Systematic literature reviews 26
1.2.6 Systematic reviews in this thesis 27

1.3 Research questions and contribution 28
1.4 Research methodology . 33

1.4.1 Qualitative research strategies 34
1.4.2 Quantitative research strategies 34
1.4.3 Mixed method research strategies 35
1.4.4 Research methodology in this thesis 36

1.5 Validity evaluation . 36
1.6 Summary . 38

2 Genetic programming for software fault count predictions 39
2.1 Introduction . 39
2.2 Related work . 41
2.3 Background to genetic programming 42
2.4 Study stage 1: GP mechanism . 43
2.5 Study stage 2: Evaluation of the predictive accuracy and goodness of fit 45

2.5.1 Research method . 45
2.5.2 Experimental setup . 48
2.5.3 Results . 48

7

CONTENTS

2.5.4 Summary of results . 50
2.6 Study stage 3: Comparative evaluation with traditional SRGMs 54

2.6.1 Selection of traditional SRGMs 54
2.6.2 Hypothesis . 55
2.6.3 Evaluation measures . 55
2.6.4 Results . 56
2.6.5 Summary of results . 59

2.7 Validity evaluation . 61
2.8 Discussion . 62
2.9 Summary of the chapter . 63

3 Empirical evaluation of cross-release fault count predictions in large and
complex software projects 65
3.1 Introduction . 65
3.2 Related work . 68
3.3 Selection of fault count data sets . 71

3.3.1 Data collection process . 73
3.4 Research questions . 74
3.5 Evaluation measures . 75

3.5.1 Quantitative evaluation . 75
3.5.2 Qualitative evaluation . 77

3.6 Software fault prediction techniques 78
3.6.1 Genetic programming (GP) 78
3.6.2 Artificial neural networks (ANN) 79
3.6.3 Support vector machine (SVM) 80
3.6.4 Linear regression (LR) . 80
3.6.5 Traditional software reliability growth models 81

3.7 Experiment and results . 81
3.7.1 Evaluation of goodness of fit 82
3.7.2 Evaluation of predictive accuracy 84
3.7.3 Evaluation of model bias . 90
3.7.4 Qualitative evaluation of models 94

3.8 Validity evaluation . 96
3.9 Discussion and conclusions . 97

4 Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review 101
4.1 Introduction . 101
4.2 Method . 103

8

CONTENTS

4.2.1 Research question . 103
4.2.2 The search strategy . 103
4.2.3 The study selection procedure 105
4.2.4 Study quality assessment and data extraction 106

4.3 Results . 107
4.3.1 Software quality classification 109
4.3.2 Software cost/effort/size (CES) estimation 112
4.3.3 Software fault prediction and reliability growth 116

4.4 Discussion and areas of future research 120
4.5 Validity threats . 126
4.6 Conclusions . 126

5 A systematic review of search-based testing for non-functional system prop-
erties 129
5.1 Introduction . 129
5.2 Method . 130

5.2.1 Research questions . 131
5.2.2 Generation of search strategy 131
5.2.3 Study selection criteria and procedures for including and ex-

cluding primary studies . 134
5.2.4 Study quality assessment and data extraction 137

5.3 Results and synthesis of findings . 138
5.3.1 Execution time . 138
5.3.2 Quality of Service . 144
5.3.3 Security . 147
5.3.4 Usability . 149
5.3.5 Safety . 153

5.4 Discussion and areas for future research 156
5.5 Validity threats . 166
5.6 Conclusions . 167

6 Summary and conclusions 169
6.1 Summary . 169
6.2 Conclusions . 170
6.3 Future research . 172

A Study quality assessment: Chapter 4 201

B Study quality assessment: Chapter 5 203

9

CONTENTS

C Search strings: Chapter 5 205

10

Chapter 1

Introduction

1.1 Preamble
The IEEE Standard Glossary of Software Engineering Terminology [232] defines soft-
ware engineering as: “(1) The application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software; that is, the ap-
plication of engineering to software. (2) The study of approaches as in (1)”. Within
software development different phases constitutes a software development life cycle,
with the objective of translating end user needs into a software product. During the
course of a software development life cycle, certain surrounding activities [210] oc-
cur, and software verification and validation (V&V) is one example of such an activity.
The collection of software V&V activities is also often termed as Software Quality
Assurance (SQA) activities.

Software V&V consists of two distinct set of activities. Verification consists of a set
of activities that checks the correct implementation of a specific function; while valida-
tion is a name given to a set of activities that checks that the software satisfies customer
requirements. The IEEE Guide for Software Verification and Validation Plans [231]
precisely illustrates this as: “A V&V effort strives to ensure that quality is built into
the software and that the software satisfies user requirements”. Boehm [28] presented
another way to state the distinction between software V&V:

Verification: “Are we building the product right?”
Validation: “Are we building the right product?”

Although one normally do not make a clear-cut distinction between software V&V ac-
tivities, because a degree of overlap is inevitable, we conform to the software V&V

11

Chapter 1. Introduction

activities as given by Rakitin [213] for the purpose of brevity. According to Rak-
itin [213], while measurement is common to both V&V activities, verification activ-
ities additionally include inspection and configuration management; while validation
activities additionally encompass testing and software reliability growth. Figure 1.1
presents a holistic view of software V&V activities as these are represented as occur-
ring throughout the software development life cycle.

Software Development Life

Cycle

Requirements
Design

Implementation

Test

Maintenance

Installation

Operation

S
o

ftw
a

r
e

V
e

r
ifi

c
a

tio
n

&

V
a

lid
a

tio
n

Verification Validation
Inspection Testing

Configuration management Software reliability growth

Measurement Measurement

Figure 1.1: The software V&V activities occurs through out a software development
life cycle.

Another possible way to understand software V&V activities is to categorize them
into static and dynamic techniques complemented with different ways to conduct soft-
ware quality measurements. Static techniques examine software artifacts without ex-
ecuting them (examples include inspections and reviews) while dynamic techniques
(software testing) executes the software to identify quality issues. Software quality
measurement approaches, on the other hand, helps in the management decision mak-
ing process (examples include assistance in deciding when to stop testing [111]).

The overarching purpose of software V&V activities is to improve software prod-
uct quality. While literature offers different definitions of the term ‘software product
quality’, one common and decisive element in determining software product quality is
adherence to user/customer requirements. These requirements are the properties that
must be exhibited by the software to solve some real-world problem [111]. The require-
ments can further be classified into functional and non-functional (quality) require-
ments. While functional requirements are concerned with the functionality/capability
of a software; non-functional requirements act as constraints to the solution that de-
fines the desired quality attributes. Therefore, software product quality refers to the
conformance of both functional and non-functional requirements.

It is quite obvious to reason that efficient and cost-effective software V&V activities
increase our chances of delivering quality software to the end-users. Efficient and cost-

12

Chapter 1. Introduction

effective management of software V&V activities is one of the challenging tasks of
software project management and considerable gains can be made when considering
that software V&V activities constitute a fair percentage of total software development
life cycle costs. According to Boehm and Basili, around 40% [27], while Myers [189]
argues that detection and removal of faults constitutes around 50% of project budgets.

We live today in a competitive global economy where time-to-market is of utmost
importance [213]. At the same time, size and complexity of software developed to-
day, is constantly increasing. Releasing a software product then has to be a trade-off
between the time-to-market, cost-effectiveness and the quality levels built into the soft-
ware. We believe that efficient and cost-effective software V&V activities can help
management make such a trade-off. We argue that trend analysis based on the number
of faults found during software testing is one step towards this goal.

A major part of this thesis investigates the possibility of analyzing software fault
history as a measurement technique to predict future software reliability. We expect
management to, by part through our studies, gain support in decision making, regarding
an assessment of the quality level of the software under test. This can in turn be used for
assessment of testing schedule slippage, decisions related to testing resource allocation
and reaching an agreement on when to stop testing and preparing for shipping the
software.

From a holistic point of view, fault-prediction studies can be categorized as making
use of traditional (statistical regression) and machine learning (ML) approaches. The
use of machine learning approaches to fault prediction modeling is more recent [265].
Machine learning is a sub-area within the broader field of artificial intelligence (AI),
and is concerned with programming computers to optimize a performance criterion
using example data or past experience [18]. Within software engineering predictive
modeling, machine learning has been applied for the tasks of classification and regres-
sion [265]. The main motivation behind using machine learning techniques is to over-
come difficulties in making trustworthy predictions. These difficulties are primarily
concerned with certain characteristics that are common in software engineering data.
Such characteristics include missing data, large number of variables, heteroskedastic-
ity1, complex non-linear relationships, outliers and small size of the data sets [90].
Various machine learning algorithms have been applied for software fault prediction; a
non-exhaustive summary is provided in Section 3.2 of this thesis.

Our focus in this thesis is to make use of evolutionary computation approaches
to machine learning called evolutionary learning (EL) [262]. Evolutionary computa-
tion is a collection of population-based algorithms making use of simulated evolution,
random variation and selection [21]. One major branch of evolutionary computation

1A set of random variables with different variances.

13

Chapter 1. Introduction

is genetic programming [157]. We have performed empirical studies making use of
genetic programming (GP) to predict future software reliability in terms of fault count.

The reasons for carrying out these type of studies were:

1. To make use of advantages offered by genetic programming as a potential pre-
diction tool:

(a) GP models do not depend on assumptions about data distribution and rela-
tionship between independent and dependent variables.

(b) GP models are independent of any assumptions about the stochastic behav-
ior of the software failure process and the nature of software faults.

(c) GP models do not conceive a particular structure for the resulting model.

(d) The model and the associated coefficients can be evolved based on the his-
torical fault data.

2. To evaluate earlier published results using genetic programming for fault predic-
tions.

3. To investigate the application of GP models in the current trend of multi-release
software development projects.

4. To consolidate the existing evidence in support (or against the use) of GP as a
prediction tool.

The above focus on evolutionary computation also grows out of an increasing in-
terest in an emerging field within software engineering called search-based software
engineering (SBSE) [105, 103]. Search-based software engineering concerns solving
software engineering problems using search-based optimization techniques. GP is one
example of search-based optimization techniques. Within SBSE, a wide-range of stud-
ies are focussed on the problem of automated software test data generation. A survey
paper by McMinn [182] reviews the field of search-based software test data generation.
This survey paper, in addition to other types of testing, highlighted the use of search-
based techniques for testing the non-functional property of execution time. McMinn
also suggested possible directions of future research into other non-functional search-
based software testing areas. We, in this thesis, investigated exactly this, in the form
of a systematic review [150], allowing us to answer one of the research questions in
this thesis (Section 1.3). As discussed above that software product quality is confor-
mance to both functional and non-functional requirements, therefore, testing for non-
functional system properties cannot be neglected in the goal towards a quality software

14

Chapter 1. Introduction

product. While there are a plethora of techniques for testing functional requirements,
testing non-functional requirements is usually not as straightforward.

Figure 1.2 presents a snapshot of major concerns addressed in this thesis.

AI ML EL SEV&V
Prediction

& Testng

research focus

(evolutionary learning + prediction + testing)

Figure 1.2: Cross-connecting concerns addressed in this thesis.

1.2 Concepts and Related work
It is clear that software engineering data, like any other data, becomes useful only
when it is turned into information through analysis. This information can be used to
make predictions; thus forming a potential decision support system. Such decisions
can ultimately affect scheduling, cost and quality of the end product. However, it is
worth keeping in mind that the nature of a typical software engineering data is such
that different machine learning techniques [46, 18] might be conducive to play a part
in understanding a rather complex and changing software engineering process.

The Section 1.2 describes the concepts and their use in the thesis. We discuss the
concepts of search-based software engineering, software fault prediction and system-
atic literature reviews.

1.2.1 Search-based software engineering (SBSE)

Search-based software engineering (SBSE) is a name given to a new field concerned
with the application of techniques from metaheuristic search, operations research and
evolutionary computation to solve software engineering problems [105, 102, 103].
These computational techniques are mostly concerned with modeling a problem in

15

Chapter 1. Introduction

terms of an evaluation function and then using a search technique to minimize or maxi-
mize that function [46]. SBSE treats software engineering problems as a search for
solutions that often balances different competing constraints to achieve an optimal
or near-optimal result. The basic motivation is to shift software engineering prob-
lems from human-based search to machine-based search [102]. Thus the human ef-
fort is focussed on guiding the automated search, rather than actually performing
the search [102]. Certain problem characteristics warrant the application of search-
techniques, which includes large number of possible solutions (search space) and no
known optimal solutions [104]. Other desirable problem characteristics amenable to
search-techniques’ application include low computational complexity of fitness evalu-
ations of potential solutions and continuity of the fitness function [104].

There are numerous examples of the applications of SBSE spanning over the
whole software development life cycle, e.g. requirements engineering [22], project
planning [11], software testing [182], software maintenance [29] and quality assess-
ment [30].

1.2.2 Search-based software engineering (SBSE) in this thesis
This thesis addresses research questions that are related to SBSE and have a focus on:
i) A particular problem domain and ii) Application of a specific or different search
technique(s) on that particular domain.

A main part of this thesis includes software engineering predictive modeling as a
problem domain while the technique used in this case is genetic programming. On the
other hand, another problem domain in this thesis is software testing for non-functional
system properties with the scope being broad to cater for different search techniques.
The following Subsection presents an introduction to genetic programming.

Genetic programming

Genetic programming (GP) [157, 229] is an evolutionary computation technique and
is an extension of genetic algorithms [108]. Like other evolutionary methods, GP is
inspired by evolution in nature. It genetically breeds a population of computer pro-
grams [46] in pursuit of solving a problem. An abstract level definition of GP is given
in [208] and reads as follows: “[GP] is a systematic, domain-independent method for
getting computers to solve problems automatically starting from a high-level statement
of what needs to be done.” GP applies iterative, random variation to an existing pool
of computer programs (potential solutions to the problem) to form a new generation
of programs by applying analogs of naturally occurring genetic operations [158]. The
typical process, as given in [158], is depicted in Figure 1.3.

16

Chapter 1. Introduction

Generate population

of random programs

Run programs and

evaluate their fitness

Breed fitter programs

Figure 1.3: A block-diagram depicting GP evolutionary process.

Programs may be expressed in GP as syntax trees, with the nodes indicating the
instructions to execute (called functions), while the tree leaves are called terminals
and may consist of independent variables of the problem and random constants. In
Figure 1.4, variables x, y and constant 3 are the terminals while min, ∗, + and / are the
functions.

min

*

x y

+

y /

3 x

Figure 1.4: Tree structured representation showing min(x∗ y,y+3/x).

To use GP one usually needs to take five preparatory steps [46]:

1. Specifying the set of terminals.

2. Specifying the set of functions.

3. Specifying the fitness measure.

4. Specifying the parameters for controlling the run.

5. Specifying the termination criterion and designating the result of the run.

17

Chapter 1. Introduction

min

*

x y

+

y /

3 x

+

sqrt +

9 x x

min

+*

x y x x

+

sqrt

9

+

y /

3 x

Parent 1

Parent 2

Offspring 1 Offspring 2

Figure 1.5: A crossover example of two parent trees producing two offsprings.

The first two steps define the search space that will be explored by GP. The fitness
measure guides the search in promising areas of the search space and is a way of com-
municating a problem’s requirements to a GP algorithm. The fitness evaluation of a
particular individual is determined by the correctness of the output produced for all of
the fitness cases [21]. The last two steps are administrative in their nature. The control
parameters limit and control how the search is performed like setting the population
size and probabilities of performing the genetic operations, while the termination cri-
terion specifies the ending condition for the GP run and typically includes a maximum
number of generations [46]. Genetic operators of mutation, crossover and reproduc-
tion are mainly responsible for introducing variation in successive generations. The
crossover operator recombines randomly chosen parts from two selected programs and
creates new program(s) for the new population (Figure 1.5). The mutation operator
selects a point in a parent tree and generates a new random sub-tree to replace the se-
lected sub-tree, while the reproduction operator simply replicates a selected individual
to a new population.

The evolution of models using GP is an example of a symbolic regression prob-
lem. Symbolic regression represents one of the earliest applications of GP [157] and
is an error-driven evolution as it aims to find a function, in symbolic form, that fits
(or approximately fits) data from an unknown curve [157]. In simpler terms, symbolic
regression finds a function whose output matches some target values [208]. Through-
out the thesis, whenever we refer to genetic programming for software engineering
predictive modeling, we consider the symbolic regression application of it.

The next Subsection 1.2.3 presents an introduction to software fault prediction and

18

Chapter 1. Introduction

discusses two classifications of quality evaluation models. Since many quality evalu-
ation models exist in literature, these classifications help us relating them to the fault
prediction studies in this thesis.

1.2.3 Software fault prediction

Errors, faults, failures and defects are inter-related terminologies and often have con-
siderable disagreement in their definitions [81]. However, making a distinction be-
tween them is important and therefore for this purpose, we follow the IEEE Standard
Glossary of Software Engineering Terminology [232]. According to this, an error is a
human mistake, which produces an incorrect result. The manifestation of an error re-
sults in a software fault which, in turn, results into a software failure which, translates
into an inability of the system or component to perform its required functions within
specified requirements. A defect is considered to be the same as a fault [81] although
it is a term more common in hardware and systems engineering [232]. In this thesis,
the term fault is associated with mistakes at the coding level. These mistakes are found
during testing at unit and system levels. Although the anomalies reported during sys-
tem testing can be termed as failures, we remain persistent with using the term fault
since it is expected that all the reported anomalies are tracked down to the coding level.
In other words the faults we refer to are pre-release faults, an approach similar to the
one taken by Fenton and Ohlsson [82].

Software fault prediction models can be seen as belonging to a family of quality-
evaluation models. As discussed in Section 1.1, these models may provide objective
assessments and problem-area identification [238], thus enabling dual improvements
of both product and process. Presence of software faults is usually taken to be an
important factor in software quality, a factor that shows generally an absence of qual-
ity [106]. A fault prediction model uses previous software quality data in the form of
software metrics to predict the number of faults in a module or release of a software
system [144]. There are different types of models proposed in software verification
and validation literature, all of them with the objective of accurately quantifying soft-
ware quality. Different classifications of these models exists and we now discuss two
of these classifications, one by Tian [238] and the other by Fenton and Neil [81].

Tian’s classification of quality-evaluation models

This section serves as a summary of the classification approach given by Tian [238].
This approach divides the quality-evaluation models into two types: generalized mod-
els and product-specific models.

19

Chapter 1. Introduction

Generalized models are not based on project-specific data; rather they take the
form of industrial averages. These can further be categorized into three subtypes of
an overall model, a segmented model and a dynamic model:

• An overall model. Providing a single estimate of overall product quality, e.g. a
single defect density estimate [125].

• A segmented model. Providing quality estimates for different industrial seg-
ments, e.g. defect density estimate per market segment.

• A dynamic model. Providing quality estimates over time or development phases,
e.g. the Putnam model [212] which generalizes empirical effort and defect pro-
files over time into a Rayleigh curve2.

Product-specific models are based on product-specific data. This type of models
can further be divided into three types:

• Semi-customized models: Providing quality extrapolations using general char-
acteristics and historical information about the product, process or environment,
e.g. a model based on fault-distribution profile over development phases.

• Observation-based models: Providing quality estimates using current project es-
timations, e.g. various software reliability growth models [171].

• Measurement-driven predictive models: Providing quality estimates using mea-
surements from design and testing processes, e.g. [250].

Fenton and Neil’s classification of quality-evaluation models

Fenton and Neil [81] views the development of quality-evaluation models as belonging
to four classes:

• Prediction using size and complexity metrics.

• Prediction using testing metrics.

• Prediction using process quality data.

• Multivariate approaches.

2Traditionally, a Rayleigh curve indicates the relationship between effort and time-to-market.

20

Chapter 1. Introduction

Prediction using size and complexity metrics represents majority of the fault pre-
diction studies. Different size metrics have been used to predict the number of faults,
e.g. Akiyama [12] and Lipow [165] used lines of code. There are also studies making
use of McCabe’s cyclomatic complexity [181], e.g. as in [153]. Then there are studies
making use of metrics available earlier in the life cycle, e.g. Ohlsson and Alberg [197]
used design metrics to identify fault-prone modules.

Prediction using testing metrics involves predicting residual faults by using faults
found in earlier inspection and testing phases, e.g. [43]. Test coverage metrics have
also been used to obtain promising results for fault prediction, e.g. [250].

Prediction using process quality data relates quality to the underlying process used
for developing the product, e.g. faults relating to different Capability Maturity Model
(CMM) levels [116].

Multivariate approaches to prediction use a small representative set of metrics to
form multilinear regression models. Studies report advantages of using such an ap-
proach over univariate fault models, e.g. [142, 186, 187].

1.2.4 Software fault prediction in this thesis

In relation to the classification schemes presented in Section 1.2.3, the software fault
prediction studies in this thesis falls in the categories of observation-based models (with
respect to Tian’s classification) and predictions using testing metrics (with respect to
Fenton and Neil’s classification). This is depicted in Figure 1.6.

As discussed in Section 1.1, at a higher level the fault prediction studies can be
categorized as making use of statistical regression (traditional) and machine learn-
ing (recent) approaches. There are numerous studies making use of machine learn-
ing techniques for software fault prediction. Artificial neural networks represents
one of the earliest machine learning techniques used for software reliability growth
modeling and software fault prediction. Karunanithi et al. published several stud-
ies [126, 127, 128, 129, 130] using neural network architectures for software relia-
bility growth modeling. Other examples of studies reporting encouraging results in-
clude [5, 17, 70, 98, 99, 107, 134, 135, 136, 148, 228, 238, 239, 240, 241]. Apart
from artificial neural networks, some authors have proposed using fuzzy models, as
in [49, 50, 230, 249], and support vector machines, as in [242], to characterize soft-
ware reliability. There are also studies that use a combination of techniques, e.g. [242],
where genetic algorithms are used to determine an optimal neural network architecture
and [193], where principal component analysis is used to enhance the performance
of neural networks. The use of genetic programming for software fault prediction is
reviewed in Chapter 4 of this thesis.

21

Chapter 1. Introduction

Generalized quality-evaluation models

Overall

models

Segmented

models

Dynamic

models

Product-specific quality-evaluation models

Semicustomized

models

Observation-

based

models

Measurement-

driven predictive

models

Customize

Generalize

Prediction using size

and complexity

metrics

Multivariate

approaches

Prediction using

testing metrics

Prediction using

process quality data

Scope of fault prediction

studies in this thesis

Tian's classification Fenton & Neil's classification

Figure 1.6: Relating fault prediction studies in this thesis to the two classification ap-
proaches.

In relation to fault prediction studies in this thesis, it is useful to discuss some
important constituent design elements. This concerns fault data sets, GP design and
statistical hypothesis testing.

Software fault data sets

The fault prediction studies in this thesis make use of fault data sets for two purposes:

1. To train the models using different techniques (the corresponding data set is
called training set).

2. To test the trained models for evaluation purposes (the corresponding data set is
called testing set).

The fault data sets used in this thesis resembles a time-series and represents weekly/
monthly faults gathered during the testing of various industrial and open-source projects.
The data sets are impartially split into disjoint training and testing sets, with first 2/3
of the fault data set is used as training set while the later 1/3 of the data used as testing
set. Further details about the fault data sets accompany the study details in Chapters 2

22

Chapter 1. Introduction

 Week Fault Count

1 9

2 9

3 24

4 24

5 27

6 27

7 39

8 45

9 54

10 54

11 54

12 57

13 57

14 57

15 57

16 66

17 66

18 69

19 75

20 81

21 90

22 99

23 102

24 105

25 108

26 120

27 120

28 123

Training set

Testing set

Figure 1.7: An example data set split into training and testing sets.

and 3 of this thesis. Figure 1.7 represents one example data set split into training and
testing sets.

Genetic programming design

For studies in this thesis, we have one independent variable x (week/month number)
making up the terminal set. It is also common to complement the terminal set with
randomly generated constants within a suitable range; however the choice of these
constants is problem-dependent. For the studies in this thesis, the terminal set is taken
to only contain the independent variable, i.e. T={x}.

The choice of function sets is also problem-dependent; however, ordinary arith-
metic functions are normally used for numeric regression problems [208]. The studies
in this thesis use different function sets for different data sets, one example being,
F = {+,−,∗,sin,cos, log}.

The quality of solutions is measured using an evaluation measure. We use a natural
evaluation measure for symbolic regression problems which is the calculation of the
difference between the obtained and expected results in all fitness cases, ∑

n
i=1 | ei−e

′
i |

where ei is the actual fault count data, e
′
i is the estimated value of the fault count data

and n is the size of the data set used to train the GP models.
The last two steps of the GP design are administrative and concerns setting the

parameters for a GP run. This includes selecting population size, setting number of
generations, tree-initialization method, selection method and any restrictions on the
size of program trees. The selection of these parameters is, yet again, problem de-

23

Chapter 1. Introduction

Table 1.1: Example control parameters used for the GP system.
Control Parameter Value
Population size 30
Number of generations 200
Termination condition 200 generations
Function set {+,−,∗,sin,cos, log}
Terminal set {x}
Tree initialization ramped half-and-half 3

Initial maximum number of nodes 28
Maximum number of nodes after genetic operations 512
Genetic operators crossover 4, mutation 5, reproduction 6

Selection method lexictour 7

Elitism replace 8

1Balanced and unbalanced trees of different depths.
2Branch swapping by randomly selecting nodes of the two parent trees.
3A random node from the parent tree is substituted with a new random tree.
4Copy of trees to the next generation without any operation.
5Selecting a random number of individuals from the population and choosing the best of them,
if two individuals are equally fit, the one having the less number of nodes was chosen as the best.
6Children replace the parent population having received higher priority of survival,
even if they are worse than their parents.

pendent and Chapters 2 and 3 in this thesis present the parameter settings for the GP
algorithm in this case. However, for the sake of completeness Table 1.1 shows one
example of control parameter settings for a GP algorithm.

Evaluation measures and statistical hypothesis testing

Statistical hypothesis testing is used to test a formally stated null hypothesis and is a
key component of the analysis and interpretation phase of experimentation in software
engineering [258]. Earlier studies on predictive accuracy of competing models did not
test for statistical significance and, hence, drew conclusions without reporting signif-
icance levels. This is, however, not so common anymore as more and more studies
report statistical tests of significance3. Chapters 2 and 3 in this thesis make use of
statistical hypothesis testing to draw conclusions.

Statistical tests of significance are important since it is not reliable to draw con-
clusions merely on observed differences in means or medians because the differences

3Simply relying on statistical calculations is not always reliable either, as was clearly demonstrated by
Anscombe in [20] where he showed the necessity of actually looking at plotted data.

24

Chapter 1. Introduction

could have been caused by chance alone [190]. The use of statistical tests of signifi-
cance comes with its own share of challenges about which tests are suitable for a given
problem. A study by Demšar [66] recommends non-parametric (distribution free) tests
for statistical comparisons of classifiers; while elsewhere in [34] parametric techniques
are seen as robust to limited violations in assumptions and as more powerful (in terms
of sensitivity to detect significant outcomes) than non-parametric.

The strategy used in this thesis is to first test the data to see if it fulfills the as-
sumption(s) of a parametric test. If there are no extravagant violations in assumptions,
parametric tests are preferred; otherwise non-parametric tests are used. We are how-
ever well aware of the fact that the issue of parametric vs. non-parametric methods is
a contentious issue in some research communities. Suffice it to say, if a parametric
method has its assumptions fulfilled it will be somewhat more efficient and some non-
parametric methods simply cannot be significant on the 5% level if the sample size is
too small, e.g. the Wilcoxon signed-rank test [256].

Prior to applying statistical testing, suitable accuracy indicators are required. How-
ever, there is no consensus with regards as to which accuracy indicator is the most
suitable for the problem at hand. Commonly used indicators suffer from different lim-
itations [85, 223]. One intuitive way out of this dilemma is to employ more than one
accuracy indicator, so as to better reflect on a model’s predictive performance in light
of different limitations of each accuracy indicator. This way the results can be better as-
sessed with respect to each accuracy indicator and we can better reflect on a particular
model’s reliability and validity.

However, reporting several measures that are all based on a basic measure, like
mean relative error (MRE), would not be useful because all such measures would suf-
fer from common disadvantages of being unstable [85]. In [195], measures for the
following characteristics are proposed: Goodness of fit (Kolmogorov-Smirnov test),
Model bias (U-plot), Model bias trend (Y-plot) and Short-term predictability (Prequen-
tial likelihood). Although providing a thorough evaluation of a model’s predictions,
this set of measures lacks a suitable one for variable-term predictability. Variable-term
predictions are not concerned with one-step-ahead predictions but with predictions in
variable time ahead. In [87, 177], average relative error is used as a measure of variable-
term predictability.

As an example of applying multiple measures, the study in Chapter 2 of this thesis
use measures of prequential likelihood, the Braun statistic and adjusted mean square
error for evaluating model validity. Additionally we examine the distribution of resid-
uals from each model to measure model bias. Lastly, the Kolmogorov-Smirnov test is
applied for evaluating goodness of fit. More recently, analyzing distribution of residu-
als is proposed as an alternative measure [149, 223]. It has the convenience of applying
significance tests and visualizing differences in absolute residuals of competing models

25

Chapter 1. Introduction

using box plots.
We see examples of studies in which the authors use a two-prong evaluation strat-

egy for comparing various modeling techniques. They include both quantitative eval-
uation and subjective qualitative criteria based evaluation because they consider using
only empirical evaluation as an insufficient way to judge a model’s output accuracy.
Qualitative criterion-based evaluation judges each method based on conceptual require-
ments [90]. One or more of these requirements might influence model selection. The
study in Chapter 3 presents such qualitative criteria based evaluation, in addition to
quantitative evaluation.

The next Subsection 1.2.5 describes the concept of systematic literature reviews
and how they are applicable in this thesis.

1.2.5 Systematic literature reviews
A systematic review evaluates and interprets all available research relevant to a particu-
lar research question [150]. The aim of the systematic review is therefore to consolidate
all the evidence available in the form of primary studies. A systematic review is at the
heart of a paradigm called evidence-based software engineering [77, 119, 151] which
is concerned with objective evaluation and synthesis of best quality primary studies
relevant to a research question. A systematic review differs from a traditional review
in following ways [244]:

• The systematic review methodology is made explicit and open to scrutiny.

• The systematic review seeks to identify all the available evidence related to the
research question so it represents the totality of evidence.

• The systematic reviews are less prone to selection, publication and other biases.

The guidelines for performing systematic literature reviews in software engineer-
ing [150] divides the stages in a systematic review into three phases:

1. Planning the review.

2. Conducting the review.

3. Reporting the review.

The key stages within the three phases are depicted in Figure 1.8 and summarized
in the following paragraph:

1. Identification of the need for a review—the reasons for conducting the review.

26

Chapter 1. Introduction

Phase 1: Planning the review

Identify research questions

Develop a review protocol

Evaluate the review protocol

Phase 2: Conducting the review

Search strategy

Study selection criteria

Study quality assessment

Data extraction

Synthesize data

Phase 3: Reporting the review

Select the dissemination forum

Report write-up

Report evaluation

Figure 1.8: The systematic review stages.

2. Research questions—the topic of interest to be investigated e.g. assessing the
effect of a software engineering technology.

3. Search strategy for primary studies—the search terms, search query, electronic
resources to search, manual search and contacting relevant researchers.

4. Study selection criteria—determination of quality of primary studies e.g. to
guide the interpretation of findings.

5. Data extraction strategy—designing the data extraction form to collect informa-
tion required for answering the review questions and to address the study quality
assessment.

6. Synthesis of the extracted data—performing statistical combination of results
(meta-analysis) or producing a descriptive review.

1.2.6 Systematic reviews in this thesis
This thesis contains two systematic reviews making up Chapters 4 and 5. The sys-
tematic review in Chapter 4 consolidates the application of symbolic regression using

27

Chapter 1. Introduction

GP for predictive studies in software engineering. There were two major reasons for
carrying out this study:

1. To be able to draw (if possible) general conclusions about the extent and ef-
fectiveness of application of symbolic regression using GP for predictions and
estimations in software engineering.

2. To summarize the benefits and limitations of applying symbolic regression using
GP as a prediction and estimation tool.

The systematic review in Chapter 5 examines the existing work in search-based
testing of non-functional system properties. The focus of this systematic review is on
non-functional testing, since it was evident from an earlier survey paper on search-
based software test data generation by McMinn [182] that search-based non-functional
software testing is a field having potential but lacking empirical results. McMinn [182]
also included suggestions in his paper about the possibility of non-functional properties
being tested using search-based techniques. Ever since the publication of McMinn’s
survey paper, it has been important and interesting to know the extent of which search-
techniques has been applied to non-functional testing. The systematic review in Chap-
ter 5 investigated the literature into non-functional properties being tested using search-
based techniques (answering research question 4, Section 1.3).

Finally, the motivations for carrying out this study were as follows:

1. To be able to identify existing non-functional properties being tested using search
techniques.

2. To identify any constraints and limitations in the application of these search tech-
niques.

3. To identify the range of fitness functions used in the application of these search
techniques and, in cases where possible, to present an analysis of these fitness
functions.

1.3 Research questions and contribution
The specific purpose and goals of research in general are very often highlighted in
the form of specific research questions [63]. These research questions relate to one
or more main research question(s) that clarifies the central direction behind the entire
investigation [63].

28

Chapter 1. Introduction

The purpose of this thesis is to determine the applicability of search-based tech-
niques in two activities within software verification and validation: Software predictive
modeling and software testing. The main research question of the thesis is thus based
on this purpose and is formulated as:

Main Research Question: What is the applicability of search-based techniques for
software verification and validation in the context of software predictive modeling and
software testing?

This main research question highlights the two investigative components of the
thesis within software verification and validation, i.e., software predictive modeling
and software testing, the common denominator being the application of search-based
techniques. The main research question is further divided into two sub-questions ad-
dressing the two components. These two sub-questions are formulated as below:

Research sub-question 1: What is the trade-off in using search-based techniques
for software engineering predictive modeling with a focus on software fault prediction?

Research sub-question 2: What is the current state of research considering testing
of non-functional system properties using search-based techniques?

The above two research sub-questions are answered by posing specific research
questions which are addressed in one or more chapters forthcoming in the thesis.

There are two specific research questions answering research sub-question 1, RQ1.1.
and RQ1.2. The first specific research question RQ1.1. is formulated below:

RQ1.1. What is the quantitative and qualitative performance of genetic program-
ming in modeling fault count data?

Related concepts: Search-based software engineering (SBSE) (Section 1.2.1), genetic programming (GP)
(Section 1.2.2), software fault prediction (Section 1.2.3).
Relevant chapters: Chapters 2 and 3.

Chapter 2 serves as a stepping-stone for the research into search-based software
fault prediction. Chapter 2 constitutes a sequential multi-step value-addition. Specifi-
cally, the first step discusses the mechanism enabling genetic programming to progres-
sively search for better solutions and potentially be an effective prediction tool. The
second step explores the use of genetic programming for software fault count predic-

29

Chapter 1. Introduction

tions by evaluating against five different measures. This step did not include any com-
parisons with other models, which were added as a third step in which the predictive
capabilities of the GP algorithm were compared against three traditional software reli-
ability growth models. Thus the overall contributions of the chapter are: (i) Exploring
the GP mechanism that might be suitable for modeling (ii) Empirically investigating
the use of GP as a potential prediction tool in software V&V (iii) Comparative eval-
uation of using GP with traditional software reliability growth models (iv) Evaluating
earlier published results using GP as a prediction tool.

The early positive results of using GP for fault predictions in Chapter 2 warranted
further investigation into this area which, resulted in the write-up of Chapter 3. Chap-
ter 3 investigates cross-release prediction of fault data from large and complex in-
dustrial and open source software. The comparison groups, in addition to using sym-
bolic regression in genetic programming, include both traditional and machine learning
models, while the evaluation is done both quantitatively and qualitatively. The overall
contribution of the chapter is therefore quantitative and qualitative assessment of the
generalizability and real-world applicability of different models for cross-release fault
predictions using extensive data sets covering both open source and industrial software
projects.

The second specific research question (RQ1.2.) answering research sub-question 1
takes a step back from software fault prediction and presents a broader perspective on
the application of search-based techniques. This broader perspective is in terms of ad-
dressing not only software fault prediction but also prediction of other attributes within
software engineering:

RQ1.2. Is there evidence that symbolic regression using genetic programming is
an effective method for prediction and estimation, in comparison with regression, ma-
chine learning and other models?

Related concepts: Search-based software engineering (SBSE) (Section 1.2.1), genetic programming (GP)
(Section 1.2.2), software fault prediction (Section 1.2.3), systematic literature reviews (Section 1.2.5)
Relevant chapter: Chapter 4.

RQ1.2. is answered using a systematic literature review investigating the extent
of application of symbolic regression in genetic programming within software engi-
neering predictive modeling (Chapter 4). The purpose of carrying out this review is
discussed in Section 1.2.6. Besides being a systematic review answering the posed
research question, other contributions of the chapter include:

• Presenting an opportunity to assess different attributes that can be measured us-

30

Chapter 1. Introduction

ing GP and its efficacy.

• An understanding of different GP variations used by the review studies to predict
and estimate in a better way.

Figure 1.9 shows the relation between different specific research questions con-
nected to the research sub-question 1.

Main research

question

Research sub-question 1

Search-based predictive modeling

with focus on fault prediction

RQ1.1.What is the quantitative and qualitative performance of

genetic programming in modeling fault count data?

RQ1.2.

Is there evidence that symbolic regression using genetic

 programming is an effective method for prediction and

estimation, in comparison with regression, machine

 learning and other models?

Conclusions

Figure 1.9: Relationship of specific research questions with the research sub-question
1 and the main research question.

The research sub-question 2 is answered by posing the following specific research
question addressed in Chapter 5 of this thesis.

RQ2.1. In which non-functional testing areas have metaheuristic search techniques
been applied?

Related concepts: Search-based software engineering (SBSE) (Section 1.2.1), systematic literature reviews
(Section 1.2.5)
Relevant chapter: Chapter 5.

RQ2.1. is further divided into the following research sub-questions:

31

Chapter 1. Introduction

RQ2.1.1. What are the different metaheuristic search techniques used for testing
each non-functional property?

RQ2.1.2. What are the different fitness functions used for testing each non-
functional property?

RQ2.1.3. What are the current challenges or limitations in the application of
metaheuristic search techniques for testing each non-functional
property?

RQ2.1. (Chapter 5) is answered through a systematic literature review of applica-
tion of search-based techniques for non-functional testing. Besides the purpose of this
systematic review being discussed in Section 1.2.6, the contribution of the chapter is an
exploration of non-functional properties tested using search-techniques, identification
of constraints and limitations encountered and an analysis of different fitness functions
used to test individual non-functional properties.

The relationship between the specific research question RQ2.1. and the associated
sub-questions is depicted in Figure 1.10.

In which non-functional testing areas have

metaheuristic search techniques been applied?
RQ2.1.

RQ2.1.1.

RQ2.1.2.

RQ2.1.3.

What are the different metaheuristic search techniques

used for testing each non-functional property?

What are the different fitness functions used

for testing each non-functional property?

What are the current challenges or limitations in

the application of metaheuristic search techniques

for testing each non-functional property?

Research sub-question 2

Search-based software testing for

non-functional properties

Main research

question

Conclusions

Figure 1.10: Relationship of specific research questions with the research sub-question
2 and the main research question.

32

Chapter 1. Introduction

The two research sub-questions therefore have a focus on search-based software
predictive modeling and search-based software testing. Figure 1.11 presents a high-
level view on the relationship between the main research question, the research sub-
questions, the specific research questions and the related concepts. Figure 1.11 shows
that the main research question has two major concerns i.e. application of search-
based techniques within software verification and validation. We have a focus on two
activities within software verification and validation: Software predictive modeling and
software testing. Our research sub-questions are formulated based on these two activ-
ities. The research sub-questions are answered by three specific research questions:
RQ1.1., RQ1.2 and RQ2.1. The specific research questions are subjects of subsequent
Chapters 2, 3, 4 and 5 of the thesis, allowing us to draw conclusions regarding the main
research question.

Main research question

Application of search-

based techniques

Software verification

and validation

Research sub-questions

Software engineering

predictive modeling

Software testing

Specific research

questions

RQ1.1. RQ1.2. RQ 2.1.

Conclusions

Figure 1.11: A high-level view on the relationship between the different research ques-
tions and the concepts.

1.4 Research methodology

Research approaches can usually be classified into quantitative, qualitative and mixed
methods [63]. A quantitative approach to research is mainly concerned with investi-
gating cause and effect, quantifying a relationship, comparing two or more groups, use
of measurement and observation and hypothesis testing [63]. A qualitative approach

33

Chapter 1. Introduction

to research, on the other hand, is based on theory building relying on human perspec-
tives. This approach accepts that there are different ways of interpretation [258]. The
mixed methods approach involves using both quantitative and qualitative approaches
in a single study.

The below text takes a tour of different strategies associated with quantitative, qual-
itative and mixed method approaches [63]. In the end, the relevant research methods
for this thesis are discussed.

1.4.1 Qualitative research strategies
Ethnography, grounded theory, case study, phenomenological research and narrative
research are examples of some qualitative research strategies [63].

Ethnography studies people in their contexts and natural settings. The researcher
usually spends longer periods of time in the research setting by collecting observational
data [63]. Grounded theory is evolved as an abstract theory of the phenomenon under
interest based on the views of the study participants. The data collection is continuous
and information is refined as progress is made [63]. A case study involves in-depth
investigation of a single case, e.g. an event or a process. The case study has time and
work limits within which different data collection procedures are applied [63]. Phe-
nomenological research is grounded in understanding the human experiences concern-
ing the phenomenon [63]. Like in ethnography, phenomenological research involves
prolonged engagement with the subjects. Narrative research is akin to retelling stories
about other individuals’ lives and relating with researcher’s life in some manner [63].

1.4.2 Quantitative research strategies
Quantitative research strategies can be divided into two quantitative strategies of in-
quiry [63]: Experiments and surveys.

An experiment, or “[. . .] a formal, rigorous and controlled investigation” [258],
has as a main idea to distinguish between a control situation and the situation under
investigation. Experiments can be true experiments and quasi-experiments. Within
quasi-experiment, there can also be a single-subject design.

In a true experiment, the subjects are randomly assigned to different treatment con-
ditions. This ensures that each subject has an equal opportunity of being selected
from the population; thus the sample is representative of the population [63]. Quasi-
experiments involve designating subjects based on some non-random criteria. This
sample is a convenience sample, e.g. because the investigator must use naturally formed
groups. The single-subject designs are repeated or continuos studies of a single process
or individual. Surveys are conducted to generalize from a sample to a population by

34

Chapter 1. Introduction

conducting cross-sectional and longitudinal studies using questionnaires or structured
interviews for data collection [63].

Robson, in his book Real World research [218], identifies another quantitative re-
search strategy named non-experimental fixed designs. These designs follow the same
general approach as used in experimental designs but without active manipulation of
the variables. According to Robson, there are three major types of non-experimental
fixed designs: Relational (correlational) designs, comparative designs and longitudinal
designs. First, relational (correlational) designs analyze the relationships between two
or more variables and can further be divided into cross-sectional designs and predic-
tion studies. Cross-sectional designs are normally used in surveys and include taking
measures over a short-period of time, while prediction studies are used to investigate if
one or more predictor variables can be used to predict one or more criterion variables.
Since prediction studies collects data at different points in time, the study extends over
time to test these predictions. Second, comparative designs involve analyzing the dif-
ferences between the groups; while, finally, longitudinal designs analyze trends over
an extended period of time by using repeated measures on one or more variables.

1.4.3 Mixed method research strategies
The mixed method research strategies can use sequential, concurrent or transforma-
tive procedures [63]. The sequential procedure begins with a qualitative method and
follows it up with quantitative strategies. This can conversely start with a quantita-
tive method and later on complemented with qualitative exploration [63]. Concurrent
procedures involve integrating both quantitative and qualitative data at the same time;
while transformative procedures include either a sequential or a concurrent approach
containing both quantitative and qualitative data, providing a framework for topics of
interest [63].

With respect to specific research strategies, surveys and case studies can be both
quantitative and qualitative [258]. The difference is dependent on the data collection
mechanisms and how the data analysis is done. If data is collected in such a manner
that statistical methods are applicable, then a case study or a survey can be quantitative.

We consider systematic literature reviews (Section 1.2.5) as a form of survey. A
systematic literature review can also be quantitative or qualitative depending on the
data synthesis [150]. Using statistical techniques for quantitative synthesis in a sys-
tematic review is called meta-analysis [150]. However, software engineering system-
atic literature reviews tend to be qualitative (i.e. descriptive) in nature [32]. One of the
reason for this is that the experimental procedures used by the primary studies in a sys-
tematic literature review differs, making it virtually impossible to undertake a formal
meta-analysis of the results [152].

35

Chapter 1. Introduction

1.4.4 Research methodology in this thesis

The chapters in this thesis are based on both quantitative and qualitative research
methodologies. Chapters 2 and 3 of this thesis fall within the category of predic-
tion studies (Section 1.4.2) and thus belonging to the high-level category of non-
experimental fixed designs. Specifically, the studies constituting Chapters 2 and 3 make
use of a predictor variable (week/month number) to predict the criterion variable (fault
counts). Also these studies use quantitative data collected over time which is used both
for training the models and testing the predictions (Section 1.2.4). Chapter 3 is addi-
tionally complemented with a qualitative assessment of models so it is justifiable to
place it under a mixed methods approach using sequential procedure. Chapters 4 and 5
are systematic reviews and since they include descriptive data synthesis, these are the
candidates for qualitative studies. Table 1.2 presents the research methodologies used
in this thesis in tabular form.

Table 1.2: Research methodologies used in this thesis.
Chapter Utilized research methodology

2 Quantitative → Non-experimental fixed designs → Relational design → Predictive studies
3 Mixed method → Sequential procedure
4 Qualitative → Survey → Systematic review
5 Qualitative → Survey → Systematic review

1.5 Validity evaluation

Experimental results can be said to have sufficient validity if they are valid for the
population under interest [258]. This validity is compromised due to threats against
four types of validity i.e. conclusion, internal, construct and external validity [258].

Conclusion validity is related to the strength of the relationship between the treat-
ment and the outcome [258]. In our studies in Chapters 2 and 3, we have used statistical
hypothesis testing at commonly used significance levels of 0.01 and 0.05 to identify
any significant relationships between the observed and the predicted data. Generally,
we were conscious of the assumptions of the statistical tests and used the type of tests
(parametric or non-parametric) accordingly. The selection of evaluation measures is
also another threat to conclusion validity because there is still a lack of clear consen-
sus on the most suitable evaluation measures to use. This threat is minimized in two
ways; first objective measures are applied [258] and secondly more than one measure
is applied to cross-check the results if possible.

36

Chapter 1. Introduction

The conclusion validity threats in case of the systematic reviews in Chapters 4 and
5 are different from standard validity threats being flexible design types rather than
the fixed ones in case of experiments. One conclusion validity threat in case of these
studies is bias in applying quality assessment and data extraction. This is minimized
by basically following the guidelines for conducting systematic reviews [150] which
makes it explicit how quality assessment and data extraction are carried out. Specifi-
cally for checking the consistency of data extraction, a small sample of primary studies
was used to extract data for the second time.

Internal validity is related to causality i.e. the relationship between the treatment
and the outcome should be a causal one [258]. The studies in Chapters 2 and 3 use
different ways to minimize the threats against internal validity. First, the splitting of
data sets into training and testing sets were always done using the rule that first 2/3 of
the data set is used for training while the rest 1/3 of the data set is used for testing pur-
poses. There were two reasons for persisting with this choice. First of all, this choice
of splitting is commonly used in many machine-learning studies [257]. Secondly, since
the fault count histories are time-series data, it is logical to choose a split that preserves
the chronological time series occurrences of faults. Another possible threat to internal
validity was minimized by not pre-processing the data before applying any technique,
except that the data were aggregated on weekly/monthly basis due to the availability of
data sets in this format. This aggregation of data may have consequences since it does
not capture the effective work hours during each week/month. This situation could have
been improved by collecting data from an ongoing project in an online context, rather
than using a complete historical set upfront. This is intended to be part of our future
studies.

For the systematic review studies in Chapters 4 and 5, one threat to internal validity
arises from not including research that remained unpublished due to undesirable re-
sults or proprietary literature that is not made available. Although it is difficult to find
such grey literature, some more effort in this regard would have improved the internal
validity of the results.

Construct validity is concerned with generalizing the experimental results to the
theory behind the experiment [258]. In our studies in Chapters 2 and 3, those evaluation
measures were used that relate to the measurement of a specific property, or to put it
in other words, reflects the construct under study [258] e.g. the Kolmogorov-Smirnov
test is used for measurement of goodness of fit test which is a commonly used test for
this measure. Moreover, the number of data sets reflected a reasonable representation
of treatments in our opinion with three industrial data sets used in Chapter 2 and a total
of seven data sets (industrial and open-source) used in Chapter 3.

For the systematic reviews in Chapters 4 and 5, a threat to construct validity could
be that we missed relevant studies. This threat however was minimized by using a

37

Chapter 1. Introduction

thorough, well-defined and constantly refined search strategy.
External validity is concerned with the generalization of the results outside the

scope of the study [258]. While Chapter 2 involves data sets from projects undertaken
by one organization, Chapter 3 includes data sets from diverse projects from different
software organizations and open-source projects, hence helping to improve the gener-
alizability of results achieved.

For the systematic reviews in Chapters 4 and 5, the external validity can be related
to the degree to which the primary studies are representative of the overall goal of the
review. This is covered by the systematic review protocol, which helped us to achieve
a representative set of studies to a greater extent.

1.6 Summary
In this chapter, we presented a synopsis of the research area and what we believe to be
the contribution of the research. We additionally presented the concepts that will be
used in later chapters of this thesis and outlined the research methodology used along
with the validity evaluation. The next Chapter 2 presents findings and conclusions of
using genetic programming as a potential prediction tool in software V&V.

38

Chapter 2

Genetic programming for
software fault count predictions

2.1 Introduction

Software has become a key element in the daily life of individuals and societies as a
whole. We are increasingly dependent on software and because of this ever-increasing
dependency; software failures can lead to hazardous circumstances. Ensuring that the
software is of high quality is thus a high priority. A key element of software quality
is software reliability, defined as the ability of a system or component to perform its
required functions under stated conditions for a specific period of time [232]. If the
software frequently fails to perform according to user-specified behavior, other soft-
ware quality factors matters less [188]. It is, therefore, imperative that the reliability of
the software is determined before making it operational.

Deciding upon when to release the software is also important because releasing
software that contains faults will result in high failure costs whereas, on the other hand,
prolonged debugging and testing increases development costs. Reliability growth mod-
eling is an important criterion, which helps in making an informed decision about when
to release the software. A software reliability growth model (SRGM) describes the
mathematical relationship of finding and removing faults to improve software reliabil-
ity. An SRGM performs curve fitting of observed failure data by a pre-specified model
formula, where the parameters of the model are found by statistical techniques like e.g.
the maximum likelihood method [192]. The model then estimates reliability or predicts
future reliability by different forms of extrapolation [172]. After the first software reli-

39

Chapter 2. Genetic programming for software fault count predictions

ability growth model was proposed by Jelinski and Moranda in 1972 [115], there have
been numerous reliability growth models following it. These models come under dif-
ferent classes [171], e.g., exponential failure time class of models, Weibull and Gamma
failure time class of models, infinite failure category models and Bayesian models. The
existence of a large number of models requires a user to select and apply an appropriate
model. For practitioners, this may be an unmanageable selection problem and there is
a risk that the selected model is unsuitable to the particulars of the project in question.

Some models are complex with many parameters. Without extensive mathematical
background, practitioners cannot determine when it is applicable and when the model
diverges from reality. Even if the dynamics of the testing process are well known, there
is no guarantee that the model whose assumptions appear to best suit these dynamics
will be most appropriate [195]. Moreover, these parametric software reliability growth
models are often characterized by a number of assumptions, e.g. that once a failure oc-
curs, the fault that caused the failure is immediately removed and that the fault removal
process will not introduce new faults. These assumptions are often unrealistic in real-
world situations (see e.g. [260]), hence, causing problems in the long-term applicability
and validity of these models. Under these constraints, what becomes significantly in-
teresting is to have modeling mechanisms that can exclude the pre-suppositions about
the model and are based entirely on the fault data. In this respect, genetic programming
(GP) can be used as an effective tool because, being as a non-parametric method, GP
does not conceive a particular structure for the resulting model and GP also does not
make any assumptions about the distribution of the data.

This chapter presents a multi-stage exploration of using GP for the purpose of pre-
dicting software reliability. Stage one discusses the mechanisms enabling GP to po-
tentially be an effective modeling technique. Stage two presents an experiment where
we apply GP to evolve a model based on weekly fault count data. The contribution
of this stage is exploring the use of GP as a potential method for software fault count
predictions. We use five different measures to evaluate the adaptability and predictive
ability of the GP evolved model on three sets of fault data that corresponds to three
projects carried out by a large telecommunication company. The results of the exper-
iment indicate that software reliability growth modeling is a suitable problem domain
for GP as the GP evolved model gives statistically significant results for goodness of
fit and predictive accuracy on each of the data sets. Stage three presents the results of
the comparison between models evolved using GP and three other traditional SRGMs
based on the same data sets as in stage two. Stage three compares the models using
measures of model validity, goodness of fit and residual analysis. The comparative
results indicate that in terms of model validity, two out of three measures favor GP
evolved models. The GP evolved models also represented comparatively better good-
ness of fit, while residual analysis showed that the predictions from the GP evolved

40

Chapter 2. Genetic programming for software fault count predictions

model are comparatively less biased.
The remainder of this chapter is organized as follows. Section 2.2 and Section 2.3

present related work and a background to genetic programming, respectively. Sec-
tion 2.4 discusses stage one of the study. The second study stage is discussed in Sec-
tion 2.5 and consists of a discussion on the research method, experimental setup, results
and summary of results. The third study stage is discussed in Section 2.6, consisting of
a discussion about selection of traditional SRGMs, hypotheses, evaluation measures,
results and a summary of results. The validity evaluation of the complete study appears
in Section 2.7 while the chapter ends with a discussion and conclusions in Section 2.8
and Section 2.9, respectively.

2.2 Related work
Within the realm of machine learning algorithms, there has been work exploring the
use of artificial neural networks for software reliability growth modeling (e.g. [228]),
but our focus here is on the research done using GP for software reliability growth
modeling.

Studies reporting the use of GP for software reliability modeling are few and recent.
Costa et al. [61] presented the results of two experiments exploring GP models based
on time and test coverage. The authors compared the results with other traditional and
non-parametric artificial neural network (ANN) models. For the first experiment, the
authors used 16 data sets containing time-between-failure (TBF) data from projects
related to different applications. The models were evaluated using five different mea-
sures, four of these measures represented different variants of differences between ob-
served and estimated values. The results from the first experiment, which explored GP
models based on time, showed that GP adjusts better to the reliability growth curve.
Also GP and ANN models converged better than traditional reliability growth models.
GP models also showed lowest average error in 13 out of 16 data sets. For the second
experiment, which was based on test coverage data, a single data set was used. This
time the Kolmogorov-Smirnov test was also used for model evaluation. The results
from the second experiment showed that all measurements were consistently better for
GP and ANN models. The authors later extended GP with boosting techniques for
reliability growth modeling [200] and reported improved results.

A similar study by Zhang and Chen [266] used GP to establish a software reliability
model based on mean time between failures (MTBF) time series. The study used a
single data series and used six different criteria for evaluating the GP evolved model.
The results of the study also confirmed that in comparison with the ANN model and
traditional models, the model evolved by GP had higher prediction precision and better

41

Chapter 2. Genetic programming for software fault count predictions

applicability.
There are several ways in which the present work differs from the aforementioned

studies. Firstly, none of the previous studies used data sets consisting of weekly fault
count data. In this study, our aim is to use the weekly fault count data as a means to
evolve the reliability growth model using GP. Secondly, we have avoided performing
any pre-processing of data to avoid chances of incorporating bias. Thirdly, in our study,
we remain consistent throughout with using 2/3 of the data to build the model and use
the rest 1/3 of the data for model evaluation for all of our data sets. This splitting
procedure was found not to be consistent in earlier studies. Lastly, we do not change
the evaluation measures for all the data sets, in an attempt to provide a fair evaluation.
This is again something that is lacking from earlier studies.

2.3 Background to genetic programming

The evolution of software reliability growth models using GP is an example of a sym-
bolic regression problem. Symbolic regression is an error-driven evolution as it aims
to find a function, in symbolic form, that fits (or approximately fits) data from an un-
known curve [157]. In simpler terms, symbolic regression finds a function whose out-
put matches some target values. GP is well suited for symbolic regression problems,
as it does not make any assumptions about the structure of the function.

GP is an evolutionary computation technique (first results reported by Smith [229]
in 1980) and is an extension of genetic algorithms. As compared with genetic al-
gorithms, the population structures (individuals) in GP are not fixed length character
strings, but programs that, when executed, are the candidate solutions to the problem.
GP is a systematic, domain-independent method for getting computers to solve prob-
lems automatically starting from a high-level statement of what needs to be done [208].
Programs are expressed in GP as syntax trees, with the nodes indicating the instructions
to execute and are called functions (e.g. min, ∗, +, /), while the tree leaves are called
terminals which may consist of independent variables of the problem and random con-
stants (e.g. x, y, 3). The fitness evaluation of a particular individual is determined by the
correctness of the logical output produced for all of the fitness cases [21]. The control
parameters limit and control how the search is performed like setting the population
size and probabilities of performing the genetic operations. The termination criterion
specifies the ending condition for the GP run and typically includes a maximum num-
ber of generations [46]. GP iteratively transforms a population of computer programs
into a new generation of programs using various genetic operators. Typical operators
include crossover, mutation and reproduction.

42

Chapter 2. Genetic programming for software fault count predictions

2.4 Study stage 1: GP mechanism

The suitability of GP for modeling software reliability growth is based on the identifi-
cation of building blocks and progressively improving overall fitness.

According to Koza [157], the GP population contains building blocks, which could
be any GP tree or sub-tree in the population. According to the building block hypothe-
sis, good building blocks improve the fitness of individuals that include them and these
individuals have greater chance to be selected for reproduction. Therefore, good build-
ing blocks get combined to form better individuals [23]. This hypothesis appears suited
to adaptive model-building system that can be used for predicting software reliability
growth.

The evolution of better individuals using GP is shown in Figure 2.1.

+

+

+

+ x

* sin

log -

x x x

-

x x

-

log x log sin

x x

(a)

+

+ -

- x log log

x sin log sin

x x -

sin cos

- cos

x x x

(b)

+

+ -

x x sin
 -

sin log
log

x
x x

(d)

+

+ -

x log sin

x x

log

+

x x

(c)

Figure 2.1: Combination of trees containing building blocks.

The fitness of a GP solution is the sum of absolute differences between the obtained
and expected results in all fitness cases. Suppose that during the fourth generation of a
GP run, two solutions have evolved (see Figure 2.1a and 2.1b in Figure 2.1) containing
different building blocks for an optimum solution. For tree 1 (Figure 2.1a), the sum
of absolute differences between the obtained and expected results in all fitness cases
was 31.34, while for tree 2 (Figure 2.1b), the fitness measure was 28.9. By combining

43

Chapter 2. Genetic programming for software fault count predictions

these two trees, two new trees could emerge (Figure 2.1c and Figure 2.1d). The first
tree (Figure 2.1c) has a better fitness of 27.8 than any of its parents, while the second
tree (Figure 2.1d) produced a higher fitness of 39.

In order to evolve a general function based on the fitness cases, the search space
of solutions can get complex. This increase in complexity helps the GP programs to
be able to comply with all the fitness cases [208]. Evolutionary algorithms have been
found to be robust for complex search spaces. Genetic programming can potentially be
a valid technique to evolve software reliability growth model because the suitability of
genetic programming has already been proven for symbolic regression and curve fitting
problems. Being a stochastic search technique, the different runs of GP would result
in different trajectories [208]. Figure 2.2 shows how the GP algorithm is searching the
program space of solutions to track the model to approximate.

Figure 2.2: Several approximations to the original fault count data in different genera-
tions.

Figure 2.3 shows the Pareto front when modeling software reliability growth for
one of the data sets. A Pareto front consists of a set of Pareto optimal solutions. A
Pareto optimal solution is a non-dominated solution since it is not dominated by any
other feasible solution in the entire search space [184]. The Pareto front in Figure 2.3
shows the set of solutions for which no other solution was found which both had a
smaller tree and better fitness [227]. The Figure 2.3 also shows the best fitness found

44

Chapter 2. Genetic programming for software fault count predictions

for each tree size. It is clear from Figure 2.3 that the fitness of different solutions
fluctuates as the number of nodes increases during the course of generations.

Figure 2.3: Visualization of Pareto front for one set of industrial fault count data.

2.5 Study stage 2: Evaluation of the predictive accu-
racy and goodness of fit

In this stage, we present the details of an experiment where we use GP as a potential
method for software fault count predictions.

2.5.1 Research method
The discussion regarding the research method includes a description of the data sets
used, the formulated hypotheses and a description of the evaluation measures.

Fault count data sets

The data sets used in this study are based on the weekly fault count data collected
during the testing of three large-scale software projects at a large telecom company.

45

Chapter 2. Genetic programming for software fault count predictions

The projects are targeted towards releases of three mature systems that have been on
the market for several years. These projects followed an iterative development process
meaning that within each iteration, a new system version, containing new functional-
ity and fixes of previously discovered faults, was delivered to test. These iterations
occurred on a weekly basis or even more frequently, while testing of new releases
proceeded continuously. In this scenario, it becomes important for project managers
to estimate the current reliability and to predict the reliability ahead of time, so as to
measure the quality impact with continuous addition of new functionality and fixes of
previously discovered faults. The three projects are similar in size, i.e. they have ap-
proximately half a million lines of code. There are, however, minor differences with
respect to the projects duration. The first project lasted 26 weeks, whereas the second
and third projects lasted 33 and 30 weeks respectively.

The independent variable in our case was the week number while the corresponding
dependent variable was the count of faults. We used 2/3 of the data in each data set for
building the model and 1/3 of the data for evaluating the model according to the five
different measures (Subsection 2.5.1). This implies that we are able to make predictions
on several weeks constituting 1/3 of the data.

Hypothesis

The purpose of this experiment is to evaluate the predictive accuracy and goodness of
fit of GP in modeling software reliability using weekly fault count data collected in an
industrial context. In order to formalize the purpose of the experiment, we define the
following hypotheses:

H0−acc: GP model does not produce significantly accurate predictions. H1−acc:
GP model produces significantly accurate predictions. H0−gof: GP model does not fit
significantly to a set of observations. H1−gof: GP model fits significantly to a set of
observations.

In order to test the above hypotheses, we use five measures for evaluating the good-
ness of fit and predictive accuracy as detailed in the next section.

Evaluation measures

It is usually recommended to use more than one measure to determine model applica-
bility, as in [195], because reliance on a single measure can lead to making incorrect
choices. The deviation between observed and the fitted values was, in our case, mea-
sured using a goodness-of-fit test. We selected two measures for determining the good-
ness of fit; the two-sample two-sided Kolmogorov-Smirnov (K-S) test and Spearman’s
rank correlation coefficient. For measuring predictive accuracy, we used prediction at

46

Chapter 2. Genetic programming for software fault count predictions

level l, mean magnitude of relative error (MMRE) and a measure of prediction stabil-
ity. What follows is a brief description of each of these measures and how will they be
used later in the study.

Kolmogorov-Smirnov The K-S test is a commonly used statistical test for measuring
goodness of fit [234, 180]. The K-S test is a distribution-free test for measuring general
differences in two populations.

The null hypothesis of interest here is that the two samples, F(t) and G(t) have the
same probability distribution and represents the same population.

H0 : [F(t) = G(t), for every t] (2.1)

We have used the significance level α = 0.05 and if the K-S statistic J is greater than
or equal to the critical value Jα, the null hypothesis is rejected in favor of the alternate
hypothesis; otherwise we conclude that the two samples have the same distribution.
For detailed description of the test, see [109].

Spearman’s rank correlation coefficient Spearman’s rank correlation coefficient ρ

is the non-parametric counterpart of the parametric linear correlation coefficient, r.
We use hypothesis testing to determine the strength of relationship between ob-

served and estimated model values. If the absolute value of the computed value of ρ

exceeds the critical values of ρ for α = 0.05, we conclude that there is a significant
relationship between the observed and estimated model values. Otherwise, there is not
sufficient evidence to support the conclusion of a significant relationship between the
two distributions. More details on Spearman rank correlation coefficient can be found
in [122].

Prediction at level l Prediction at level l, pred(l), represents the count of the number
of predictions within l% of the actuals. We have used the standard criterion for consid-
ering a model as acceptable which is pred(0.25)≥ 0.75 which means that at least 75%
of the estimates are within the range of 25% of the actual values [71].

Mean magnitude of relative error Mean magnitude of relative error (MMRE) is the
most commonly used accuracy statistic.

Conte et al. [58] consider MMRE≤ 0.25 as acceptable for effort prediction models;
we use the same measure for our study.

47

Chapter 2. Genetic programming for software fault count predictions

Measure of prediction stability The predictions of a model should not vary signif-
icantly and should remain stable to denote the maturity of the model. We use here a
good rule of thumb given in [259] for prediction stability which says that a prediction
is stable if the prediction in week i is within 10% of the prediction in week i−1.

2.5.2 Experimental setup

In this study we used MATLAB version 7.0 [179] and GPLAB version 3.0 [227] (a GP
toolbox for MATLAB).

Control parameter selection for GP

GPLAB allows for different choices of tuning control parameters. We were able
to adjust the control parameters after a certain amount of experimentation. We exper-
imented with different function sets and terminal sets by fixing the rest of the control
parameters like population size, number of generations and sampling strategy. Initially
we experimented with a minimal set of functions by keeping the terminal set contain-
ing the independent variable only. We incrementally increased the function set with
additional functions and later on also complemented the terminal set with a random
constant. For each data set, the best model having the best fitness was chosen from all
the runs of the GP system with different variations of function and terminal sets. The
function set for project 1 and project 3 data sets was the same, while a slightly differ-
ent function set for project 2 gave the best fitness. The GP programs were evaluated
according to the sum of absolute differences between the obtained and expected results
in all fitness cases,

n

∑
i=1

| ei− e
′
i | (2.2)

where ei is the actual fault count data, e
′
i is the estimated value of the fault count

data and n is the size of the data set used to train the GP models. The control parameters
that were chosen for the GP system are shown in Table 2.1.

2.5.3 Results

In this section, we describe the results of the evaluation measurements to assess the
adaptability and predictive accuracy of the GP evolved model.

48

Chapter 2. Genetic programming for software fault count predictions

Table 2.1: Main control parameters used for the GP system.
Control Parameter Value
Population size 30
Number of generations 200
Termination condition 200 generations
Function set (for project 1
& 3)

{+,−,∗,sin,cos, log}

Function set (for project
2)

{+,−,∗,/,
sin,cos, log}

Terminal set {x}
Tree initialization ramped half-and-half
Initial maximum number
of nodes

28

Maximum number of
nodes after genetic
operations

512

Genetic operators crossover, mutation,
reproduction

Selection method lexictour
Elitism replace

Adaptability of the model

Table 2.2 shows the statistic J for the K-S test performed on the validation fault count
data (1/3 of the original data set) and the estimated fault count data provided by the
GP evolved model for each of the data sets. The critical values Jα for α = 0.05 are also
given. We selected the significance level (α) of 0.05 as it is common in practice [121].
We see that in each data set, J < Jα; this suggests that the estimated fault count data,
as provided by the GP model, fits quite well to the set of observations in all three data
sets.

Table 2.2: Results of applying two-sample two-sided Kolmogorov-Smirnov test.
J Jα=0.05 Sample size J < Jα

Project 1 0.40 0.70 10
√

Project 2 0.27 0.64 11
√

Project 3 0.10 0.70 10
√

We additionally calculated the Spearman’s rank correlation coefficient ρ for de-
termining the relationship between actual and estimated model values (Table 2.3). At
significance level α = 0.05, computed values of ρ exceeds the critical values rα=0.05 for
every data set. This indicates that there is a strong relationship between actual values
and estimated model values.

Based upon the results of applying Kolmogorov-Smirnov and Spearman’s rank cor-
relation coefficient, we are able to reject the null hypothesis, H0−gof in support of the

49

Chapter 2. Genetic programming for software fault count predictions

Table 2.3: Results of applying Spearman’s correlation coefficient test.
ρ rα=0.05 Sample size ρ >

rα=0.05
Project 1 0.99 0.65 10

√

Project 2 0.93 0.62 11
√

Project 3 1.00 0.65 10
√

alternative hypothesis, H1−gof.

Measuring predictive accuracy

Table 2.4 presents the results of measuring pred(0.25) for the three data sets where ei

denotes the actual fault count data and e
′
i is the estimated value of the fault count data.

In all the data sets, the measurement pred(0.25) ≥ 0.75 holds true. The bold values
in Table 2.4 illustrate the cases when the model underestimates the actual fault count
data.

We also calculated the MMRE for each of the data sets. The MMRE values for the
three data sets were 0.0992, 0.06558 and 0.0166, respectively. Each of these values
satisfy the criterion of MMRE ≤ 0.25, therefore we have confidence that we have a
good set of predictions. For evaluating the prediction stability, we calculated whether
the prediction in week i is within 10% of the prediction in week i− 1. The results
(Table 2.5) indicate that the predictions are indeed stable.

The results of applying pred(l), MMRE and the measure of prediction stability
show that the GP model is able to produce significantly accurate predictions. We can,
thus reject the null hypothesis, H0−acc in favor of the alternative, H1−acc.

Figure 2.4 shows the comparison of actual and predicted fault count data for the
three projects. The actual and predicted fault count data is multiplied by a constant
factor due to proprietary concerns. The difference between the actual and predicted
fault count is the least for data from project 3, which also has the best MMRE value
of 0.0166. These charts show that the GP evolved curve is able to learn the pattern in
failure count data and adapts reasonably well.

2.5.4 Summary of results

The hypothesis to be tested was that GP could be a suitable approach for evolving an
SRGM based on fault count data. The results of applying the evaluation criteria, as de-
scribed in Section 2.5.1, confirmed that GP represents a suitable approach for modeling
software reliability growth based on fault count data, both in terms of goodness of fit

50

Chapter 2. Genetic programming for software fault count predictions

Table 2.4: Testing for pred(0.25)≥ 0.75.
Week i 25% o f ei e

′
i e

′
i within range

o f 25% o f ei?
Project 1

19 25±6.25 25
√

20 27±6.75 26.23
√

21 30±7.5 27.53
√

22 33±8.25 28.83
√

23 34±8.5 30.10
√

24 35±8.75 31.28
√

25 36±9 32.38
√

26 40±10 33.44
√

27 40±10 34.51
√

28 41±10.25 35.58
√

Project 2
23 69±17.25 75.82

√

24 70±17.5 77.30
√

25 74±18.5 74.69
√

26 78±19.5 76.40
√

27 79±19.75 84.14
√

28 83±20.75 88.64
√

29 85±21.25 94.28
√

30 93±23.25 96.48
√

31 102±25.5 93.36
√

32 109±27.25 102.56
√

33 110±27.5 102.91
√

Project 3
21 153±38.25 148.54

√

22 162±40.5 159.07
√

23 173±43.25 167.06
√

24 180±45 174.67
√

25 184±46 181.04
√

26 190±47.5 189.07
√

27 196±49 196.18
√

28 204±51 203.80
√

29 208±52 207.65
√

30 210±52.5 216.32
√

51

Chapter 2. Genetic programming for software fault count predictions

Table 2.5: Testing for prediction stability.
Week i Prediction

in week i
10% o f the prediction

in week i−1
Prediction
stability

Project 1
19 25 − −
20 26.23 25±2.5

√

21 27.53 26.23±2.62
√

22 28.83 27.53±2.75
√

23 30.10 28.83±2.88
√

24 31.28 30.10±3.01
√

25 32.37 31.28±3.12
√

26 33.44 32.37±3.23
√

27 34.50 33.44±3.34
√

28 35.57 34.50±3.45
√

Project 2
23 75.81 − −
24 77.30 75.81±7.58

√

25 74.69 77.30±7.73
√

26 76.39 74.69±7.46
√

27 84.14 76.39±7.63
√

28 88.64 84.14±8.41
√

29 94.28 88.64±8.86
√

30 96.48 94.28±9.42
√

31 93.35 96.48±9.64
√

32 102.56 93.35±9.33
√

33 102.91 102.56±10.25
√

Project 3
21 148.53 − −
22 159.06 148.53±14.85

√

23 167.06 159.06±15.90
√

24 174.66 167.06±16.70
√

25 181.04 174.66±17.46
√

26 189.07 181.04±18.10
√

27 196.18 189.07±18.90
√

28 203.80 196.18±19.61
√

29 207.65 203.80±20.38
√

30 216.32 207.65±20.76
√

52

Chapter 2. Genetic programming for software fault count predictions

(a) Project 1—Predicted and actual fault count data.

(b) Project 2—Predicted and actual fault count data.

(c) Project 3—Predicted and actual fault count data.

Figure 2.4: Actual and predicted fault count data for three projects.

53

Chapter 2. Genetic programming for software fault count predictions

and predictive accuracy. In terms of goodness of fit, the K-S test statistic for all three
data sets showed that at significance level of 0.05, the GP model fits well to the set of
observations. We also calculated the Spearman’s rank correlation coefficient to deter-
mine the strength of the relationship between actual values and and estimated model
values. The results showed that at significance level of 0.05, there exists a strong rela-
tionship between the two distributions. The results obtained are also promising in terms
of predictive accuracy. The custom measures of MMRE≤ 0.25 and pred(0.25)≥ 0.75,
as indicative of a good prediction system, holds true in all the three data sets. However,
we noted a considerable variation in MMRE values for the three validation data sets.
This indicates the sensitivity of GP to changes in the training set and is indicative of the
adaptive nature of GP algorithm to deal with heterogeneous data. To have a degree of
confidence about the accuracy of future estimates, we resorted to a good rule of thumb
for evaluating predictive stability (Section 2.5.1) which also gave results in support of
GP.

2.6 Study stage 3: Comparative evaluation with tradi-
tional SRGMs

In this stage, we present the results of comparison between models evolved using GP
and three other traditional SRGMs based on the same data as in stage 2. We discuss
the selection of traditional SRGMs, hypotheses, the evaluation measures and the re-
sults. We do not discuss the experimental set up as it was the same as for stage 2
(Section 2.5.2).

2.6.1 Selection of traditional SRGMs

Since we are interested in comparing predictions of weekly fault count data, there-
fore we selected three traditional SRGMs that represent the fault count family of mod-
els [88]. These three models are Goel-Okumoto non-homogeneous Poisson process
model (GO-NHPP) [89], Brooks and Motley’s Poisson model (BM) [40] and Yamada’s
S-shaped growth model (YAM) [261]. We selected them because these models present
a fair representation of fault count family of models and represent different forms of
growth curves. In particular, GO-NHPP and BM are concave (or exponential) while
YAM is S-shaped. Also we had limitations in terms of information requirements of
certain models, so they were not selected for comparison, like Shooman exponential
model’s hazard function requires knowing the parameters of the total number of in-
structions in the program and debugging time since the start of system integration [88].

54

Chapter 2. Genetic programming for software fault count predictions

2.6.2 Hypothesis
In order to formalize the purpose of this experiment, we define the following hypothe-
ses:

H0−val: The predictions of the GP evolved model are not significantly more valid
as compared with traditional models.

H1−val: The predictions of the GP evolved model are significantly more valid as
compared with traditional models.

H0−gof: The GP evolved model does not give significantly higher goodness of fit as
compared with traditional models.

H1−gof: The GP evolved model gives significantly higher goodness of fit as com-
pared with traditional models.

H0−res: There is no significant difference between the residuals of the GP evolved
model as compared with traditional models.

H1−res: There is a significant difference between the residuals of the GP evolved
model as compared with traditional models.

In order then to test the above hypotheses, we use different evaluation measures as
detailed in the next section.

2.6.3 Evaluation measures
It is usually recommended to use more than one measure to determine model applica-
bility (see e.g. [195]), because reliance on a single measure can lead to making incorrect
choices. We used measures of model validity, model goodness of fit and distribution of
residuals to compare the GP evolved model with traditional reliability growth models.

Model validity is measured in terms of prequential likelihood ratio (PLR), the Braun
statistic and the adjusted mean square error (AMSE). The PLR of two prediction sys-
tems, A and B, is the running product of ratio of their successive on-step ahead predic-
tions f̂ A

j (t j) and f̂ B
j (t j) respectively [39]:

PLRAB
i =

j=i

∏
j=s

f̂ A
j (t j)

f̂ B
j (t j)

In our case, we select the actual time distribution of weekly fault count data as a
reference and conduct pair-wise comparisons of all other models’ predictions against it.
Then the model with the relatively smallest prequential likelihood ratio can be expected
to provide the most trustworthy predictions. For further details on PLR, see [3, 39]. We
complement the measure of prequential likelihood ratio with two measures of variabil-
ity, namely the Braun statistic and AMSE. The Braun statistic can be used to measure
the accuracy of fault count predictions and is give by the following formula [39]:

55

Chapter 2. Genetic programming for software fault count predictions

Braun statistic{Ê[Nk];k = s, . . . ,r}=

r

∑
k=s

(nk− Ê[Nk])2xk

r

∑
k=s

(nk− n̄)2xk

Where nk is the actual fault count within successive time intervals, xk,k = s, . . . ,r.
Ê[Nk] represents the predicted fault count data and n̄ represents the mean of the actual
fault count data. AMSE is a simple measure based on the mean square error which
takes into account the mean of the data sets and is given by the following formula [45]:

AMSE =
i=n

∑
i=1

(Ei− Êi)2

(Ēi)∗ ¯̂Ei)2

where Ei is the actual fault count data and Êi is the predicted fault count data.
To measure a particular model’s bias, we examine the distribution of residuals to

compare models as suggested in [149, 205]. The model’s goodness of fit in our case
was measured using the Kolmogorov-Smirnov (K-S) test [109]. For the K-S test, we
use α = 0.05 and if the K-S statistic J is greater or equal than the critical value Jα, we
infer that the two samples did not have the same probability distribution and hence do
not represent significant goodness of fit.

2.6.4 Results
Figure 2.5 shows the PLR analysis for the three data sets. The log(PLR) of actual time
distribution of weekly fault count data is chosen as the the reference; and it is indicated
as a straight line in the plots of Figure 2.5. It can be seen that the curve for the PLR
of the GP model with the actual fault count data (GP:Actual) is closer to the straight
line as compared with the same curves for the traditional models; confirming that GP
predictions are better modeling reality as compared with traditional reliability growth
models.

The variability measures of Braun statistic and AMSE obtained for each data set
of all models were compared using matched paired two-sided t-test at significance
level, α = 0.1. We compared the variability measures of the GP model with each
of the traditional models. The null hypothesis was formulated as that there was no
difference between the variability statistics of GP and that of the particular traditional
model under comparison. The alternate hypothesis to test was then that there existed
such a difference. Using normal quartile plot of the samples’ variability differences
to assess any radical departures from the normal distribution showed that they had

56

Chapter 2. Genetic programming for software fault count predictions

-1

 0

 1

 2

 3

 4

 18 20 22 24 26 28

log
(P

LR
)

Weeks

YAM:Actual
GO-NHPP:Actual

BM:Actual
GP:Actual

(a) Log(PLR) plots for Project 1.

-1

 0

 1

 2

 3

 4

 22 24 26 28 30 32 34

log
(P

LR
)

Weeks

YAM:Actual
GO-NHPP:Actual

BM:Actual
GP:Actual

(b) Log(PLR) plots for Project 2.

-1

 0

 1

 2

 3

 4

 20 22 24 26 28 30

log
(P

LR
)

Weeks

YAM:Actual
GO-NHPP:Actual

BM:Actual
GP:Actual

(c) Log(PLR) plots for Project 3.

Figure 2.5: Log(PLR) plots for three projects.

57

Chapter 2. Genetic programming for software fault count predictions

Table 2.6: Statistical results for Braun statistic and AMSE.
Comparative
models

t-statistic

Braun statistic, tα=±2.42
GP:BM −3.97
GP:YAM −4.80
GP:GO-NHPP −1.64

AMSE statistic, tα=±2.42
GP:BM −1.23
GP:YAM −1.39
GP:GO-NHPP −1.03

approximately normal distribution. The results of applying the matched paired two
sided t-test are shown in Table 2.6.

The critical values of t for α=0.1 and degrees of freedom n−1 is tα = ±2.92. If the
calculated t-statistic lied in the critical region, we were able to reject the null hypothesis
of no difference between the samples.

We can observe from Table 2.6 that there is a statistical difference between GP and
two of the traditional models (BM and YAM) for the Braun statistic. However, for the
AMSE statistic, there is no statistical difference between GP and traditional models.
This shows that the GP model, while optimizes the Braun statistic, degrades AMSE.
This result strengthens the viewpoint of Mair et al. [175] that using a fitness function
for GP that is not specifically tied to a single measure but takes into account multiple
objectives may give overall better results for the GP model. Based on the results of
applying PLR, Braun statistic and AMSE, we are not able to reject the null hypothesis,
H0−val in support of the alternative hypothesis, H1−val.

Table 2.7 shows the statistic J for the two sample K-S test performed on the vali-
dation fault count data (1/3 of the original data set) and the predictions by the GP and
traditional reliability growth models. For project 1, we see that JGP < Jα, suggesting
that the predicted fault count data, as provided by the GP model, fits quite well to the
set of observations. On the other hand, the J statistic for all other traditional models are
either equal to or greater than Jα. For project 2, the GP model along with GO-NHPP
model have K-S statistic J less than Jα; and for project 3, the GP model along with BM
and GO-NHPP provide K-S statistic J less than Jα.

While we see the traditional models giving statistically significant goodness of fit
for project 2 and 3 on three occasions, neither of them gave statistics that were lower
than the corresponding K-S statistic for the GP model. This is, however, not enough to

58

Chapter 2. Genetic programming for software fault count predictions

Table 2.7: Results of applying K-S test.
JGP JBM JYAM JGO−NHPP

Proj. 1, Jα=0.70 0.40 0.70 1.00 0.8
Proj. 2, Jα=0.64 0.27 0.73 0.82 0.54
Proj. 3, Jα=0.70 0.10 0.30 0.70 0.20

Table 2.8: t-test results for residuals.
tGP:BM tGP:YAM tGP:GO−NHPP

Proj. 1, tα=±2.42 −32.18 −6.42 −6.59
Proj. 2, tα=±2.23 −7.76 −7.11 −7.53
Proj. 3, tα=±2.26 −23.43 −7.92 −4.56

reject the null hypothesis, H0−gof so we are inconclusive regarding the significance of
the goodness of fit of competing models.

Figure 2.6 shows the box plots of the residuals for all the models for the three
projects. For project 1 (Figure 2.6a), all the box plots show the tendency of under-
estimating; with the length of the box and tails of the GP model and BM model being
smaller, indicating that the prediction bias is not severe. The tendency of the GP model
in case of project 2 (Figure 2.6b) is to overestimate but the bias is smaller as compared
to other models. In case of project 3 (Figure 2.6c), all box plots represent a tendency
to under-estimate while the GP model presents relatively less bias with residuals both
above and below 0.

Since the box plots in Figure 2.6 are not significantly skewed, we applied matched
paired t-tests of the residuals for each data set to compare the GP model with each of the
traditional models. The results are presented in Table 2.8 and show that the residuals
from the GP model are significantly different and less variable from the residuals for
traditional models for each data set at α=0.05. Therefore, we are able to reject the null
hypothesis, H0−res in support of the alternative hypothesis, H1−res.

2.6.5 Summary of results
Stage 3 of the study presented the results of comparative evaluation of fault count data
predictions from models evolved by genetic programming and traditional reliability
growth models. The results have been evaluated in terms of model validity, goodness
of fit and distribution of residuals. For evaluating model validity, the results of using
prequential likelihood ratio show favorability concerning the GP model. However, the

59

Chapter 2. Genetic programming for software fault count predictions

-10

 0

 10

 20

 30

 40

BM YAM GO-NHPP GP

Re
sid

ua
l v

alu
es

(a) Box plots of residuals for Project 1.

-10

 0

 10

 20

 30

 40

BM YAM GO-NHPP GP

Re
sid

ua
l v

alu
es

(b) Box plots of residuals for Project 2.

-10

 0

 10

 20

 30

 40

BM YAM GO-NHPP GP

Re
sid

ua
l v

alu
es

(c) Box plots of residuals for Project 3.

Figure 2.6: Charts showing box plots of residuals for three projects.

60

Chapter 2. Genetic programming for software fault count predictions

results of AMSE and Braun statistic did not show a statistically significant difference
between the GP model and traditional software reliability growth models for all the
projects. The goodness of fit of GP models was not found to be significantly higher
than all the models for the three data sets; so we remain inconclusive regarding the
significance of goodness of fit. The visual inspection of the box plots of residuals
and matched paired t-tests showed the GP model predictions to be less biased than
traditional models. The evaluation results show that prediction of fault count data using
genetic programming is a promising approach.

2.7 Validity evaluation
There can be different threats to the validity of experimental results in stage 2 and 3 of
this study.

Conclusion validity refers to the statistically significant relationship between the
treatment and the outcome [258]. One of the threats to conclusion validity is the use
of MMRE in stage 2 of the study which has been criticized in [85] for being unreli-
able. We however used an additional measure (Spearman’s rank correlation coefficient)
for measuring the strength of relationship to minimize this threat. A similar threat is
that we might have missed applying a more suitable evaluation measure. However,
to the authors’ knowledge, the evaluation measures used in the study reflect the ones
commonly used for evaluating prediction models.

Internal validity refers to a causal relationship between the treatment (independent
variable) and outcome (dependent variable) [258]. Threats to internal validity are re-
duced in several ways. First, the splitting of data sets into training and testing sets
were always done using the rule that first 2/3 of the data set is used for training, while
the rest 1/3 of the data set is used for testing purposes. There were two reasons for
persisting with this choice. First of all, this choice of splitting is commonly used in
many machine-learning studies [257]. Secondly, since the fault count histories are
time-series data, it is logical to choose a split that preserves the chronological time se-
ries occurrences of faults. Another possible threat to internal validity was minimized
by not pre-processing the data before applying any technique, except that the data were
aggregated on weekly/monthly basis due to the availability of data sets in this format.

Construct validity is concerned with the relationship between theory and observa-
tion [258]. The different evaluation measures used in stage 2 and stage 3 of this study
reflect the construct under study, e.g. Kolmogorov-Smirnov test is used for measure-
ment of goodness of fit which is a commonly used test for this measure. Other measures
used in this study also relate to the measurement of a specific property.

External validity is concerned with generalization of results outside the scope of

61

Chapter 2. Genetic programming for software fault count predictions

the study. The experiments in stage 2 and stage 3 of this study are conducted on three
different data sets taken from an industrial setting. However, these projects are carried
out by one organization following similar development methods. The generalizability
of the research can be improved by experimenting with data sets taken from diverse
projects employing different development methodologies.

2.8 Discussion

This chapter presented a multi-stage exploration of using GP for the purpose of soft-
ware fault prediction. Stage one discussed the mechanisms enabling GP to potentially
be an effective modeling technique. Stage two presented an experiment where we ap-
plied GP to evolve models based on weekly fault count data. Stage three presented
the results of comparing models evolved using GP with three other traditional SRGMs
based on the same data sets as in stage two.

In our case, we had one independent and one dependent variable. Hence, the GP
algorithm generated good models efficiently within the termination criterion of reason-
able number of generations. However, it is common that efficiency and effectiveness
of GP drops if the data tables contain hundreds of variables as the GP algorithm then
can take a considerable amount of time in isolating the key features [208].

While measures of goodness of fit and predictive accuracy are important, we agree
with Mair et al. [175] that these measures are not enough for a practical utility of a pre-
diction system. Therefore, the explanatory value (transparency of solution) and ease
of configuration are also important aspects that require discussion. Since the output of
a GP system is an algebraic expression, it has the potential of generating transparent
solutions; however, the solutions can become complex as the number of nodes in the
GP solution increases. There is a trade-off in having more accurate predictions and less
simplicity of the algebraic expressions but we believe that this trade-off is manageable
as achieving accurate models within acceptable thresholds is possible. In terms of ease
of configuration, we found that configuring GP control parameters requires consider-
able effort. Different facets need to be determined, e.g. evaluation function, genetic
operators and probabilities, population size and termination criterion to name a few.
The parameter tuning problem is time consuming because the control parameters are
not independent but interact in complex ways and trying all possible combinations of
all parameters is practically infeasible [208].

62

Chapter 2. Genetic programming for software fault count predictions

2.9 Summary of the chapter
The overall contribution of this chapter is exploring the GP mechanism that might be
suitable for modeling, empirically investigating the use of GP as a potential prediction
tool in software V&V while, at the same time, performing a comparative evaluation of
GP with traditional software reliability growth models. Stage two of this study evalu-
ated the GP evolved models in terms of goodness of fit and predictive accuracy. For
evaluating goodness of fit, the K-S statistic and Spearman’s rank correlation coeffi-
cient gives statistically significant results in favor of adaptability of GP evolved model.
The resulting statistics for evaluating predictive accuracy are also encouraging with
pred(0.25), MMRE and measure of prediction stability offering results in favor of sta-
tistically significant prediction accuracy. In stage three of the study, the results have
been evaluated in terms of model validity, goodness of fit and distribution of residuals.
For evaluating model validity, although the results of using prequential likelihood ratio
show favorability of the GP model, the same is not the case with the Braun statistic and
AMSE. The GP model was also found to have either an equivalent or better goodness
of fit as compared to traditional models, but not statistically significant in every case.
The visual inspection of the box plots of residuals and matched paired t-tests showed
the GP model predictions to be less biased than traditional models.

These early results of using a search-based technique for software fault prediction
are carried forward in the next Chapter 3, which investigates cross-release prediction
of fault-count data from large and complex industrial and open source software.

63

Chapter 2. Genetic programming for software fault count predictions

64

Chapter 3

Empirical evaluation of
cross-release fault count
predictions in large and
complex software projects

3.1 Introduction

Software is playing an increasingly important role in society and software develop-
ment organizations are striving for cost-effective development and time-to-market to
remain competitive. At the same time, the time to develop software and the size and
complexity of software is increasing, so there are many challenges in delivering quality
software on time and within stipulated cost. One influential factor in software quality
are the number of faults incurred during the development life cycle which can have
direct impact on costs. Software verification and validation activities constitutes a fair
percentage of the total software life cycle cost; some say around 40% [27] and, hence,
efficient resource allocation for quality assurance activities is required. Thus, fault pre-
diction models have attracted considerable interest (as shown in Section 3.2), both in
research and in practice. From a research point of view, new methods of fault predic-
tion are regularly being proposed, and their predictability assessed, at varying levels
of detail. The practical aspect of such models has strong implications on the quality
of the software project since the information gained from such models can e.g. be an

65

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

important decision making tool for project managers.
The number of faults in a software module, or in a particular release of a software,

represents quantitative measures of software quality. A fault prediction model uses
historic software quality data in the form of metrics (including software fault data) to
predict the number of software faults in a module or a release [144]. Fault predictions
for a software release are fundamental to the efforts of quantifying software quality.
A fault prediction model helps a software development team in prioritizing the effort
spent on a software project. If the predictions forecasts a high number of faults in the
coming release of a project, management has the option of investing required levels of
effort to circumvent possible project failures.

This chapter presents both quantitative and qualitative evaluations for cross-release
predictions of fault count data gathered from both open source and industrial software
projects. Fault counts denotes the cumulative faults aggregated on a weekly or monthly
basis. We quantitatively compare the results from traditional and machine learning ap-
proaches to fault count predictions and also assess various qualitative criteria for better
trade-off analysis. The main purpose is to increase empirical knowledge concerning
innovative ways of predicting fault count data and to apply the resulting models in a
manner, which is suited to multi-release software development projects.

Linear regression is a typical method used for software fault predictions, however
this may not be the best approach. This argument is supported by the fact that soft-
ware engineering data come with certain characteristics that creates difficulties in mak-
ing accurate software prediction models. These characteristics include missing data,
large number of variables, strong co-linearity between the variables, heteroscedastic-
ity1, complex non-linear relationships, outliers and small size [90]. Therefore, it is
not surprising that we possess an incomplete understanding of the phenomenon under
study since it is very difficult to make valid assumptions about the form of the functional
relationship between the variables [33]. This argument strengthens earlier established
results that show program metrics begin insufficient for accurate prediction of faults.
Moreover, the acceptability of models has seen little success due to lack of meaningful
explanation of the relationship among different variables and the lack of generalizabil-
ity of model results [90]. Applications of computational and artificial intelligence have
attempted to deal with some of these challenges, see e.g. [265], mainly because of their
inherent intelligent modeling mechanisms to deal with data. There are several reasons
for using these techniques for fault prediction modeling:

1. They do not depend on assumptions about data distribution and relationship be-
tween independent and dependent variables.

1A sequence of random variables with different variances.

66

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

2. They are independent of any assumptions about the stochastic behavior of soft-
ware failure process and the nature of software faults [235].

3. They do not conceive a particular structure for the resulting model.

4. The model and the associated coefficients can be evolved based on the fault data
collected during the initial test phase.

While the use of artificial intelligence and machine learning is applied with some
success in software reliability growth modeling and software fault predictions, only a
small number of these studies make use of data from large industrial software projects,
see e.g. [240]. Performing large empirical studies is hard due to difficulties in getting
necessary data from large software projects, but if we want to generalize the use of
some technique or method, larger type software need to be investigated to gain better
understanding. Moreover, due to the novelty of applying artificial intelligence and
machine learning approaches, researchers many times focus more on introducing new
approaches, validated on a smaller scale, than validating existing approaches on a larger
scale. In this chapter we try to focus on the latter.

Another dimension that lacks researchers’ attention is cross-release prediction of
faults. With the growing adoption of agile software development methodologies, pre-
diction of faults in subsequent releases of software will be an important decision tool.
With short-timed releases, the software development team might not be inclined to-
wards gathering many different program metrics in a current release of a project. There-
fore, machine learning techniques can make use of less and commonly used historical
data to become a useful alternative in predicting the number of faults across different
releases of a software project.

The goals of this study differ in some important ways from related prior studies
(covered in Section 3.2). Our main focus is on evaluating a variety of techniques for
cross-release prediction of fault counts, on data sets from large real world projects; to
our knowledge this is novel. We evaluate the created models on fault data from several
large and real world software projects, some from open-source and some from industry
(see Section 3.3).

Our study is also unique in comparing multiple different fault count modeling tech-
niques, both traditional and several machine learning approaches. The traditional ap-
proaches we have selected are three software reliability growth models (SRGMs) that
represent the fault count family of models [88]. These three models are Goel-Okumoto
non-homogeneous Poisson process model (GO) [89], Brooks and Motley’s Poisson
model (BMP) [40] and Yamada’s S-Shaped growth model (YAM) [261]. We selected
them because these models provide a fair representation of the fault count family of
models (representing different forms of growth curves). In particular, GO and BMP

67

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

are concave (or exponential) while YAM is S-shaped. We also include a simple and
standard least-squares linear regression as a baseline.

The machine learning approaches we compare with are genetic programming (GP),
artificial neural networks (ANN) and support vector machine regression (SVM). We
selected these because they are very different/disparate and have seen much interest
in the machine learning (ML) communities of late, see e.g. [242, 148, 139] for some
examples.

Our main goal is to answer the question:
Is there a comparatively better approach for cross-release prediction of fault counts

on fault data from large and real world software projects?
To answer it we have identified a number of more detailed research questions listed

in Section 3.4. By applying the model creation approaches described above and by
answering the research questions the chapter makes the following contributions:

1. Quantitative and qualitative assessment of the generalizability and real-world
applicability of different modeling techniques by the use of extensive data sets
covering both open source and industrial software projects.

2. Comparative evaluations with both traditional and machine learning models for
cross-release prediction of fault count data.

The remainder of this chapter is organized as follows. In Section 3.2, we present
the background for this study. Section 3.3 elaborates on the data collection procedure.
Section 3.4 describes the research questions, while Section 3.6 provides a brief intro-
duction to the techniques used in the study. Section 3.5 describes the different evalu-
ation measures used in the study while Section 3.7 covers the application of different
techniques and the corresponding evaluation. The validity evaluation is presented in
Section 3.8, while discussion and conclusions are presented in Section 3.9.

3.2 Related work
The research into software quality modeling based on software metrics is used to pre-
dict the response variable which can either be the class of a module (e.g. fault-prone
and not fault-prone) or a quality factor (e.g. number of faults) for a module [147].
There have been a number of software fault prediction and reliability growth mod-
eling techniques proposed in software engineering literature. The applicable meth-
ods include statistical methods (random-time approach, stochastic approach), machine
learning methods and mixed algorithms [53]. Despite the presence of large number of
models, there is no agreement within the research community about the best model.

68

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

One of the reasons for this situation is that models exhibit different predictive accura-
cies across different data sets. Therefore, the quest for a consistently accurate predictor
model is continuing. The result is that the prediction problem is seen as being largely
unsolvable and NP-hard [53, 224]. Due to a large number of studies covering software
quality modeling (for both classifying fault-proneness and predicting software faults),
the below references are more representative than exhaustive.

Gao and Khoshgoftaar [87] empirically evaluated eight statistical count models for
software quality prediction. They showed that with a very large number of zero re-
sponse variables, the zero inflated and hurdle-count models are more appropriate. The
study by Yu et al. [263] used number of faults detected in earlier phases of the develop-
ment process to predict the number of faults later in the process. They compared linear
regression with a revised form of, an earlier proposed, Remus-Zilles model. They
found a strong relationship between the number of faults during earlier phases of de-
velopment and those found later, especially with their revised model. Khoshgoftaar et
al. [143] showed that the typically used least squares linear regression and least abso-
lute value linear regression do not predict software quality well when the data does not
satisfy the normality assumption and thus two alternative parameter estimation proce-
dures (relative least square and minimum relative error) were found more suitable in
this case. In [187], the discriminant analysis technique is used to classify the programs
into either fault-prone and not fault-prone based upon the uncorrelated measures of
program complexity. Their technique was able to yield less Type II errors (mistak-
enly classifying a fault-prone module as fault-prone) on data sets from two commercial
systems.

In [35], optimized set reduction classifications (that generates logical expressions
representing patterns in the data) which were found to be more accurate than multi-
variate logistic regression and classification trees in modeling high-risk software com-
ponents. The less optimistic results of using logistic regression are not in agreement
with Khoshgoftaar’s study [137] which supports using logistic regression for software
quality classification. Also the study by Denaro et al. [67] used logistic regression to
successfully classify faults across homogeneous applications. Basili et al. [26] veri-
fied that most of Chidamber and Kemerers object-oriented metrics are useful quality
indicators for fault-prone classes. Ohlsson et al. [198] investigated the use of metrics
for release n to identify the most fault-prone modules in release n+1. Later, in [199],
principal component analysis and discriminant analysis was used to rank the software
modules in several groups according to fault-proneness.

Using the classification and regression trees (CART) algorithm, and by balancing
the cost of misclassification, Khoshgoftaar et al. [138] showed that the classification-
tree models based on several product, process and execution measurements were useful
in quality classification for successive software releases. Briand et al. [38] proposed

69

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

multivariate adaptive regression splines (MARS) to classify object-oriented (OO) classes
as either fault-prone or not fault-prone. MARS outclassed logistic regression with an
added advantage that the functional form of MARS is not known a priori. In [183],
the authors show that static code attributes like McCabe’s and Halstead’s are valid at-
tributes for fault prediction. It was further shown that naive Bayes outperformed the
decision tree learning methods.

As discussed briefly in Section 3.1, the use of regression analysis might not be the
best approach for software fault prediction. Therefore, we find numerous studies mak-
ing use of machine intelligence techniques for software fault prediction. Applications
of artificial neural networks to fault predictions and reliability growth modeling mark
the beginning of several studies using machine learning for approximations and pre-
dictions. Neural networks have been found to be a powerful alternative when noise in
the input-generating process complicates the analysis, a large number of attributes de-
scribe the inputs, conditions in the input-generating process change, available models
account for some but not all of the data, the input-generating distribution is unknown
and probably non-Gaussian, it is expensive to estimate statistical parameters, and non-
linear relationship are suspected [47]. These characteristics are also common to data
collected from a typical software development process. Karunanithi et al. published
several studies [126, 127, 128, 129, 130] using neural network architectures for soft-
ware reliability growth modeling. Other examples of studies reporting encouraging
results include [5, 17, 70, 98, 99, 107, 134, 135, 136, 148, 228, 238, 239, 240, 241].
While, finally, Cai et al. [48] observed that the prediction results of ANNs show a pos-
itive overall pattern in terms of probability distribution but were found to be poor at
quantitatively estimating the number of software faults.

A study by Gray et al. [90] showed that neural network models show more pre-
dictive accuracy as compared with regression based methods. The study also used a
criteria-based evaluation on conceptual requirements and concluded that not all mod-
eling techniques suit all types of problems. CART-LAD (least absolute deviation) per-
formed the best in a study by Khoshgoftaar et al. [147] for fault prediction in a large
telecommunications system in comparison with CART-LS (least squares), S-plus, re-
gression tree algorithm, multiple linear regression, artificial neural networks and case-
based reasoning.

Gyimothy et al. [100] used OO metrics for predicting the number of faults in classes
using logical and linear regression, decision tree and neural network methods. They
found that the results from these methods were nearly similar. A recent study by Less-
man et al. [163] also concluded that, with respect to classification, there were no signif-
icant differences among the top-17 of the classifiers used for comparison in the study.

Apart from artificial neural networks, some authors have proposed using fuzzy
models, as in [49, 50, 230, 249], and support vector machines, as in [242], to char-

70

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

acterize software reliability.
In the later years, interest has shifted to evolutionary computation approaches for

software reliability growth modeling. Genetic programming has been used for soft-
ware reliability growth modeling in several studies [61, 200, 59, 266, 8, 6, 7]. The
comparisons with traditional software reliability growth models indicate that genetic
programming may have an edge with respect to predictive accuracy and also does not
need assumptions that are common in the traditional models. There are also several
studies where genetic programming has been successfully used for software quality
classification [139, 140].

There are also studies that use a combination of techniques, e.g. [242], where ge-
netic algorithms are used to determine an optimal neural network architecture and
in [193], where principal component analysis is used to enhance the performance of
neural networks.

As mentioned in Section 3.1, very few studies have looked at cross-release pre-
dictions of fault data on a large scale. Ostrand and Weyuker [201] presented a case
study using 13 releases of a large industrial inventory tracking system. Among several
goals of that study, one was to investigate the fault persistence in the files between re-
leases. The study concluded with moderate evidence supporting that files containing
high number of faults in one release remain ‘high fault files’ in later releases. The
authors later extend their study in [202] by including four further releases. They in-
vestigated which files in the next release of the system were most likely to contain the
largest number of faults. A negative binomial regression model was used to make ac-
curate predictions about expected number of faults in each file of the next release of a
system.

3.3 Selection of fault count data sets

We use fault count data from two different types of software projects: Open source
software and industrial software. For all of these projects we have data for multiple
releases of the same software system. Between releases there can be both changes and
improvements to existing functionality as well as additions of new features. The soft-
ware projects together represent many man years of development and span a multitude
of different software applications targeting e.g. home users, small-business users and
industrial, embedded systems.

The included open source systems are: Apache Tomcat2, OpenBSD3 and Mozilla

2http://tomcat.apache.org/
3http://www.openbsd.org

71

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

Firefox4. Apache Tomcat is a servlet container implementing the Java servlet and the
JavaServer Pages. Members of the Apache Software Foundation (ASF), and others,
contribute in developing Apache Tomcat. OpenBSD is a UNIX-like operating system
developed at the University of California, Berkley. OpenBSD supports a variety of
hardware platforms and includes several extra security options like built-in cryptogra-
phy. Mozilla Firefox is an open-source web-browser from the Mozilla Corporation,
supporting a variety of operating systems.

In the following, the fault count data from these open source software projects are
referred to as OSStom, OSSbsd and OSSmoz, respectively.

The industrial fault count data sets come from three large companies specializing in
different domains. The first industrial data set (IND01) is from an European company
in the space industry. The multi-release software is for an on-board computer used
in a satellite system. It consists of about 70,000 lines of manually written C code
for drivers and other low-level functions and about 230,000 lines of C code generated
automatically from Simulink models. The total number of person hours used to develop
the software is on the order of 30,000. About 20% of this was spent in system testing
and 40% in unit testing. The faults in the data set is only from system testing, the unit
testing faults are not logged but are corrected before the final builds.

The second and third fault count data sets (IND02, IND03) are taken from a power
and automation company specializing in power products, power systems, automation
products, process automation and robotics. IND02 comes from one of their robotic
controller software that makes use of advanced motion technology to program robot
systems. This software makes use of a state-of-the-art self-optimizing motion technol-
ogy, security and error handling mechanism and advanced user-authorization system.
IND03 consists of fault count data from robotic packaging software. This software
comes with an advanced vision technique and integrated conveyor tracking capability;
while being open to communicate with any external sensor. The total number of person
hours used to develop the two projects is on the order of 2,000.

The last data set, IND04, comes from a large mobile hydraulics company special-
izing in engineered hydraulic, electric and electronic systems. The fault count data set
comes from one of their products, a graphical user interface integrated development
environment, which is a part of a family of products providing complete vehicle con-
trol solutions. The software allows graphical development of machine management
applications and user-specific service and diagnostic tools. The software consists of
about 350,000 lines of hand written Delphi/Pascal code (90%) and C code (10%). To-
tal development time is about 96,000 person hours, 30% of this has been on system
tests.

4http://www.mozilla.com/

72

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

3.3.1 Data collection process
The fault count data from the three open source projects: Apache Tomcat (OSStom),
OpenBSD (OSSbsd) and Mozilla Firefox (OSSmoz), come from web-based bug re-
porting systems.

As an example, Figure 3.1 shows a bug report for Mozilla Firefox.

Figure 3.1: A sample bug report.

For OSStom and OSSmoz, we recorded the data from the ‘Reported’ and ‘Version’
fields as shown in the Figure 3.1. For OSSbsd, the data was recorded from the ‘En-
vironment’ and ‘Arrival-Date’ fields of the bug reports. We include all user-submitted
bug reports in our data collection because the core development team examines each
bug report and decides upon a course to follow [164]. The severity of the user sub-
mitted faults was not considered as all submitted bug reports were treated equally. A
reason for treating all user submitted bug reports as equal was to eliminate inaccuracy
and subjective bias in assigning severity ratings.

Concerning the industrial software, we were assisted by our industrial partners in
provision of the fault count data sets IND01–04. Table 3.1 show more details regarding
the data collected from the open source and industry software projects, respectively.
The data sets were impartially split into training and test sets. In line with the goals
of the study (i.e. cross-release prediction), we used a finite number of fault count data
from multiple releases as a training set. The resulting models were evaluated on a

73

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

Table 3.1: Data collection from open source and industrial software projects, time span
mentioned in () in the second column is same for the releases preceding.

Software Data collected from releases and time span Training and test sets Length of
training set

Length of
testing set

OSStom 6.0.10, 6.0.11, 6.0.13 (Mar.–Aug. 2007),
6.0.14 (Aug.–Dec. 2007)

Train on 6.0.10, 6.0.11,
6.0.13

24 20

Test on 6.0.14
OSSbsd 4.0, 4.1 (Jan.–Jul. 2007), 4.2 (Oct.–Dec.

2007)
Train on 4.0, 4.1 28 12

Test on 4.2
OSSmoz 1.0, 1.5 (Jul.–Dec. 2005), 2.0 (Jan.–Jun.

2006)
Train on 1.0, 1.5 72 24

Test on 2.0
IND01 4.3.0, 4.3.1, 4.4.0, 4.4.1, 4.5.0 (Oct. 2006–

Feb. 2007), 4.5.1 (Mar.–Apr. 2007)
Train on 4.3.0, 4.3.1, 4.4.0,
4.4.1, 4.5.0

20 8

Test on 4.5.1
IND02 5.07, 5.09 (Feb. 2006–Apr. 2007), 5.10

(Feb.–Dec. 2007)
Train on 5.07, 5.09 38 11

Test on 5.10
IND03 5.09, 5.10 (Sept. 2005–Dec. 2007) Train on 5.09 19 11

Test on 5.10
IND04 3.0, 3.1 (Jan. 2007–Mar. 2008), 3.2 (Sept.–

Dec. 2008)
Train on 3.0, 3.1 60 16

Test on 3.2

test set, comprising of fault count data from subsequent releases of respective software
projects. The length of the test sets also determined the prediction strength x time
units into future, where x equals the length of the test set and is different for different
data sets. We used the cumulative weekly count of faults for all the data sets, except
for IND02 and IND03 for which the monthly cumulative counts were used due to the
availability of the fault data in monthly format.

3.4 Research questions

Before presenting the empirical study in detail, we pose the specific research questions
to be answered. Informally, we want to evaluate if there can be a better approach for
cross-release prediction of fault count data in general when comparing traditional and
machine learning approaches. We quantify this evaluation in terms of goodness of fit,
predictive accuracy, model bias and qualitative criteria:

RQ 1: What is the goodness of fit (gof) of traditional and machine learning models for
cross-release fault count predictions?

74

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

RQ 2: What are the levels of predictive accuracy of traditional and machine learning
models for cross-release fault count predictions?

RQ 3: What is the prediction bias of traditional and machine learning models for cross-
release fault count predictions?

RQ 4: How do the prediction techniques compare qualitatively in terms of generality,
transparency, configurability and complexity?

3.5 Evaluation measures
Selecting appropriate evaluation measures for comparing the predictability of compet-
ing models is not trivial. A number of different accuracy indicators have been used for
comparative analysis of models, see e.g. [223]. Since a comparison of different mea-
sures is out of scope for this chapter, we used multiple evaluation measures to increase
confidence in model predictions; a recommended approach since we would have a hard
time relying on a single evaluation measure [195].

However, quantitative evaluations of predictive accuracy and bias are not the only
important aspects for real world use of the modeling techniques. Hence, we also com-
pare them on a set of qualitative aspects. Below we describe both of these types of
evaluation.

3.5.1 Quantitative evaluation
On the quantitative front, we test the models’ results for goodness of fit, predictive ac-
curacy and model bias. A goodness of fit test measures the difference between the ob-
served and the fitted values after a model is fitted to the training data. We are interested
here to test whether the two samples (actual fault count data from the testing set and
the predicted fault count data from each technique) belong to identical distributions.
Therefore, the Kolmogorov-Smirnov (K-S) test is applied which is a commonly used
statistical test for measuring goodness of fit [234, 180]. The K-S test is distribution free,
which suited the samples as they failed the normality tests. Since goodness of fit tests
do not measure predictive accuracy per se, we use prequential likelihood ratio (PLR),
absolute average error (AAE) and absolute relative error (ARE) and prediction at level
l, pred(l), as the measures for evaluating predictive accuracy. Specifically, PLR pro-
vides a measure for short-term predictability (or next-step predictability) while AAE
and ARE provides measures for variable-term predictability [146, 177]. We further
test a particular model’s bias which gives an indication of whether the model is prone
to overestimation or underestimation [177]. To measure a particular model’s bias, we

75

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

examine the distribution of residuals to compare models as suggested in [149, 205].
We also formally test for significant differences between competing prediction systems
as recommended in e.g. [223]. In the following we describe the evaluation measures in
more detail.

Kolmogorov-Smirnov (K-S) test. The K-S test is a distribution-free test for measur-
ing general differences in two populations. The statistic J for the two-sample two-sided
K-S test is given by,

J =
mn
d

max
−∞<t<+∞

{| Fm(t)−Gn(t) |} (3.1)

where Fm(t) and Gn(t) are the empirical distribution functions for the two samples
respectively, m and n are the two sample sizes and d is the greatest common divisor
of m and n. In our case, the two samples were, (i) the training part of the actual fault
count data and (ii) the actual predictions from the technique under test. For a detailed
description of the test, see [109].

Prequential likelihood ratio (PLR). PLR is used to investigate the relative plausi-
bility of the predictions from two models [3]. The prequential likelihood (PL) is the
measure of closeness of a model’s probability density function to the true probability
density function. It is defined as the running product of one-step ahead predictions
f̂i(ti) of next fault count intervals Tj+1,Tj+2, . . . ,Tj+n,

PLn =
j+n

∏
i= j+1

f̂i(ti) (3.2)

The PLR of two prediction systems, A and B, is then the running product of the
ratio of their successive one-step ahead predictions f̂ A

j (t j) and f̂ B
j (t j) respectively [39]:

PLRAB
i =

j=i

∏
j=s

f̂ A
j (t j)

f̂ B
j (t j)

(3.3)

In our case, we select the actual time distribution of fault count data as a reference
and conduct pair-wise comparisons of all other models’ predictions against it. Then
the model with the relatively smallest prequential likelihood ratio can be expected to
provide the most trust worthy predictions. For further details on PLR, see [39].

76

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

Absolute average error (AAE) and relative error (ARE). The AAE is given by,

AAE =
1
n

n

∑
i=1
|yi− ŷi| (3.4)

where ŷi is the predicted value against the original yi, n is the total number of points
in the test data set.

The ARE is given by,

ARE =
1
n

n

∑
i=1

|yi− ŷi|
|yi|

(3.5)

where ŷi is the predicted value against the original yi, n is the total number of points in
the test data set.

Prediction at level l. Prediction at level l, pred(l), represents a measure of the num-
ber of predictions within l% of the actuals. We have used the standard criterion for
considering a model as acceptable which is pred(0.25) ≥ 0.75 which means that at
least 75% of the estimates are within the range of 25% of the actual values [71].

Distribution of residuals. To measure a particular model bias, we examine the dis-
tribution of residuals to compare models [149, 223]. It has the convenience of applying
significance tests and visualizing differences in absolute residuals of competing models
using box plots.

3.5.2 Qualitative evaluation
In addition to the quantitative evaluation factors there are other qualitative criteria,
which needs to be accounted for when assessing the usefulness of a particular mod-
eling technique. Qualitative criterion-based evaluation evaluates each method based
on conceptual requirements [90]. One or more of these requirements might influence
model selection. We use the following qualitative criteria [90, 175, 173, 45], which we
believe are important factors influencing model selection:

1. Configurability (ease of configuration), i.e. how easy is it to configure the tech-
nique used for modeling?

2. Transparency of the solution (explanatory value regarding output), i.e. do the
models explain the output?

77

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

3. Generality (applicability in varying operational environments), i.e. what is the
extent of generality of model results for diverse data sets?

4. Complexity, i.e. how complex are the resulting models?

3.6 Software fault prediction techniques
This section describes the techniques used in this study for software fault prediction.
The techniques include genetic programming (GP), artificial neural networks (ANN),
support vector machine regression (SVM), Goel-Okumoto non-homogeneous Poisson
process model (GO), Yamada’s S-shaped growth model (YAM) and Brooks and Mot-
ley’s Poisson model (BMP). We have used GPLAB version 3 [227] (for running GP),
Weka software version 3.4.13 [257] (for running ANN, SVM and LR) and SMERFS3
version 2 [79] (for running GO, YAM and BMP).

3.6.1 Genetic programming (GP)
GP is an evolutionary computation technique and is an extension of genetic algo-
rithms [157]. The population structures (individuals) in GP are not fixed length charac-
ter strings but programs that, when executed, are the candidate solutions to the problem.
For the symbolic regression application of GP, programs are expressed as syntax trees,
with the nodes indicating the instructions to execute and are called functions (e.g. min,
∗, +, /), while the tree leaves are called terminals which may consist of independent
variables of the problem and random constants (e.g. x, y, 3). The worth of an individual
GP program in solving the problem is assessed using a fitness evaluation. The fitness
evaluation of a particular individual in this case is determined by the correctness of
the output produced for all of the fitness cases [21]. The control parameters limit and
control how the search is performed like setting the population size and probabilities of
performing the genetic operations. The termination criterion specifies the ending con-
dition for the GP run and typically includes a maximum number of generations [46].
GP iteratively transforms a population of computer programs into a new generation of
programs using various genetic operators. Typical operators include crossover, muta-
tion and reproduction. Crossover takes place between two parent trees with swapping
branches at randomly chosen nodes, while in tree mutation a random node within the
parent tree is substituted with a new random tree created with the available terminals
and functions. Reproduction causes a proportion of trees to be copied to the next gen-
eration without any genetic operation [227].

Initially we experimented with a minimal set of functions and the terminal set con-
taining the independent variable only. We incrementally increased the function set with

78

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

additional functions and later on also complemented the terminal set with a random
constant. For each data set, the best model having the best fitness was chosen from all
the runs of the GP system with different variations of function and terminal sets. The
GP programs were evaluated according to the sum of absolute differences between the
obtained and expected results in all fitness cases, ∑

n
i=1 | ei− e

′
i |, where ei is the actual

fault count data, e
′
i is the estimated value of the fault count data and n is the size of the

data set used to train the GP models. The control parameters that were chosen for the
GP system are shown in Table 3.2. The selection method used is lexictour in which
the best individuals are selected from a random number of individuals. If two individ-
uals are equally fit, the tree with fewer nodes is chosen as the best [227]. For a new
population, the parents and offsprings are prioritized for survival according to elitism.
The elitism level specifies the members of the new population, to be selected from the
current population and the newly generated individuals. The elitism level used in this
study is replace in which children replace the parent population having received higher
priority of survival, even if they are worse than their parents [227].

Table 3.2: GP control parameters.
Control parameter Value
Population size 200
Number of generations 450
Termination condition 450 generations
Function set (for OSStom, OSSbsd, IND01 & IND02) {+,−,∗,sin,cos,log,sqrt}
Function set (for OSSmoz, IND03, IND04) {+,−,∗,/,sin,cos,log}
Terminal set {x}
Tree initialization (for OSStom, OSSbsd, OSSmoz, IND03,
IND04)

Ramped half-and-half method

Tree initialization (for IND01, IND02) Full method
Genetic operators Crossover, mutation, reproduc-

tion
Selection method Lexictour
Elitism Replace

3.6.2 Artificial neural networks (ANN)
The development of artificial neural networks is inspired by the interconnections of
biological neurons [219]. These neurons, also called nodes or units, are connected by
direct links. These links are associated with numeric weights which shows both the
strength and sign of the connection [219]. Each neuron computes the weighted sum
of its input, applies an activation (step or transfer) function to this sum and generates

79

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

output, which is passed on to other neurons.
A neural network structure can be feed-forward (acyclic) network and recurrent

(cyclic) network. Feed-forward neural networks do not contain any cycles and a net-
work’s output is only dependent on the current input instance [257]. Recurrent neural
networks feeds its output back into it’s own inputs, supporting short-term memory.
Feed-forward neural network are more common and may consist of three layers: In-
put, hidden and output. The feed-forward neural network having one or more hidden
layers is called multilayer feed-forward neural network. Back-propagation is the com-
mon method used for learning the multilayer feed-forward neural network whereby
the error from the output layer back-propagates to the hidden layer. The ANN models
for this study were obtained using multilayer feed-forward neural networks containing
one input layer, one hidden layer and one output layer. The default parameter values
for multilayer perceptron implemented in Weka software version 3.4.13 were used for
training. The output layer had one node with linear transfer function and the two nodes
in the hidden layer had sigmoid transfer function.

3.6.3 Support vector machine (SVM)

Support vector regression uses a support vector machine algorithm for numeric pre-
diction. Support vector machine algorithms classify data points by finding an optimal
linear separator which possess the largest margin between it and the one set of data
points on one side and the other set of examples on the other. The largest separator
is found by solving a quadratic programming optimization problem. The data points
closest to the separator are called support vectors [219]. For regression, the basic idea
is to discard the deviations up to a user specified parameter ∈ [257]. Apart from spec-
ifying ∈, the upper limit C on the absolute value of the weights associated with each
data point has to be enforced (known as capacity control). The default parameter values
for support vector regression implemented in Weka software version 3.4.13 were used
for training. More details on support vector regression can be found in [97].

3.6.4 Linear regression (LR)

The linear regression used in the study performs a standard least-squares linear regres-
sion [122]. Simple linear regression helps to find a relationship between the indepen-
dent (x) and dependent (y) variables. It also allows for prediction of dependent variable
values given values of the independent variable.

80

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

3.6.5 Traditional software reliability growth models
As discussed in Section 3.1, we use three traditional software reliability growth models
for comparisons. Below is a brief summary of these models while further details,
regarding e.g. the models’ assumptions, can be found in [89, 261, 40].

The Goel-Okumoto non-homogeneous Poisson process model (GO) [89] is given
by,

m(t) = a[1− e−bt] (3.6)

while Yamada’s S-shaped growth model (YAM) [261] is also a non-homogeneous
Poisson process model given by,

m(t) = a(1− (1+bt)e−bt) (3.7)

where in both above equations a is the expected total number of faults before test-
ing, b is the failure detection rate and m(t) is the expected number of faults detected
by time t, also called as the mean value function. In the above two models, the failure
arrival process is viewed as a stochastic non-homogeneous Poisson process (NHPP),
with the number of failures X(t) for a given time interval (0, t) given by the probability
P[X(t) = n] as [237]:

P[X(t) = n] =
[m(t)]ne−m(t)

n!
(3.8)

Brooks and Motley’s model come in two variations, depending upon the assump-
tion of either a Poisson or a binomial distribution of failure observations. We make use
of the Poisson model (BMP) [40]. The BMP model, with a Poisson distribution of fail-
ure observations ni over all possible X for i-th period, of length ti, gives the probability
P[X = ni] of number of failures for a given time interval,

P[X = ni] =

{
(Niφi)ni e−Niφi

ni!
φi = 1− (1−φ)ti

(3.9)

where Ni is the estimated number of defects at the beginning of i-th period and φ is
Poisson constant.

3.7 Experiment and results
We have collected data from a total of seven multi-release open source and industrial
software projects for the purpose of cross-release prediction of fault count data. The

81

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

data sets have been impartially split into training and test sets. The training set is used
to build the models while the independent test set is used to evaluate the models’ per-
formance. The performance is assessed both quantitatively (goodness of fit, predictive
accuracy, model bias) and qualitatively (ease of configuration, solution transparency,
generality and complexity). The independent variable in our case is the week num-
ber while the corresponding dependent variable is the count of faults. Week number
is taken as the independent variable because it is controllable and potentially have an
effect on the dependent variable, i.e. the count of faults, in which the effect of the treat-
ment is measured. The design type of our experiment is one factor with more than two
treatments [31]. The factor is the prediction of fault count data while the treatments
are the application of GP, traditional approaches and the machine learning approaches.
In this section, we further present the results of goodness of fit, predictive accuracy,
model bias and qualitative evaluation for different techniques applied to the different
data sets in the study.

3.7.1 Evaluation of goodness of fit
We make use of K-S test statistic to test whether the two samples (in this case, the
predicted and actual fault count data from the test set part of the data set for each tech-
nique) have the same probability distribution and hence represents the same population.
The null hypothesis here is that the predicted and the actual fault count data have the
same probability distribution [109] i.e.,

H0 : [F(t) = G(t), for every t] (3.10)

At significance level α = 0.05, if the K-S statistic J is greater than or equal to
the critical value Jα, the null hypothesis (Eq. 3.10) is rejected in favor of the alternate
hypothesis, i.e. that the two samples do not have the same probability distribution.

Table 3.3 shows the results of applying K-S test statistic for each technique for
every data set. The (–) in the Table 3.3 indicates that the algorithm was not able to
converge for the particular data set. The instances where the K-S statistic J is less than
the critical value Jα are shown in bold in Table 3.3. It is evident from Table 3.3 that GP
was able to show statistically significant goodness of fit for the maximum number of
data sets (i.e. five). The other close competitors were ANN (4), LR (4), YAM (4) and
BMP (4). This indicates that, at significance level α = 0.05, GP is better in terms of
having statistically significant goodness of fit on more data sets than other, competing,
techniques.

Table 3.4 summarizes the K-S test statistic for all the techniques. Since some tech-
niques did not converge for some data sets, the number of data sets applicable for

82

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

Table 3.3: Results of applying Kolmogorov-Smirnov test. The bold values indicate
J<Jα, (–) indicates lack of model convergence, Jα is the critical J value at α=0.05

Sample size JGP JANN JSV M JLR JGO JYAM JBMP Jα=0.05
OSStom 20 0.20 0.95 0.30 0.25 – 0.25 0.25 0.43
OSSbsd 12 0.17 0.50 0.75 0.50 0.42 0.58 0.50 0.68
OSSmoz 24 0.46 0.37 1.00 1.00 – 0.17 0.46 0.39
IND01 8 0.37 0.87 1.00 1.00 – 0.75 0.62 0.75
IND02 11 0.27 0.45 0.27 0.27 0.27 0.54 0.27 0.64
IND03 11 0.54 0.54 – 0.54 – – 0.82 0.64
IND04 16 0.50 1.00 1.00 1.00 – 1.00 1.00 0.48

techniques is different. GP, ANN, LR and BMP were able to converge for all seven
data sets. However, the same did not happen with other techniques, as can be seen
from the second column of Table 3.4. We can observe that in comparison with ANN,
LR and BMP, with seven data sets each, GP appears to be a better technique (showing
a comparatively closer fit to the set of observations) when ranked based on mean and
median.

Table 3.4: Summary statistics for K-S test showing the mean, median, min and max
corresponding to the respective number of data sets.

K-S test statistic
Technique No. of data sets Mean Median Min Max

GP 7 0.36 0.37 0.17 0.54
BMP 7 0.56 0.50 0.25 1.00
LR 7 0.65 0.54 0.25 1.00

ANN 7 0.67 0.54 0.37 1.00
YAM 6 0.55 0.56 0.17 1.00
SVM 6 0.72 0.87 0.27 1.00
GO 2 0.34 0.34 0.27 0.42

We conclude that the goodness of fit of GP models for cross-release predictions is
promising in comparison with traditional and machine learning models as they were
able to show better goodness of fit for majority of the data sets, both in terms of K-S
test statistic and ranking based on mean and median, on more data sets.

83

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

3.7.2 Evaluation of predictive accuracy
Table 3.5 shows the final log result of the running product of the ratio of the successive
one-step ahead predictions of actual fault count data and other techniques’ prediction.
Since the actual time distribution of weekly/monthly fault count data is chosen as the
reference, the PLR values closer to 0 are better. We can observe, from Table 3.5, that
the log(PLR) values are closest to 0 on four occasions for GP while thrice for LR. The
‘winner’ from each data set is shown in bold in Table 3.5. This shows that for most
data sets (four out of seven), the probability density function of the GP model is closer
to the true probability density function.

Table 3.5: log(PLR) values for one-step-ahead predictions. The values shown are
the final log result of the running product of ratio of the successive on-step ahead
predictions of actual fault count and other models’ predictions. Values closer to 0
are better.

Sample size GP ANN SVM LR GO YAM BMP
OSStom 20 2.66 8.77 0.81 0.38 – −2.00 −1.20
OSSbsd 12 −0.10 −0.30 −2.80 −1.60 −1.31 −1.69 1.03
OSSmoz 24 11.28 −3.14 12.45 7.78 – −0.19 −2.20
IND01 8 −0.29 −2.17 44.28 4.67 – 2.11 0.97
IND02 11 0.15 0.74 0.39 0.07 −0.55 −0.88 0.56
IND03 11 7.21 7.21 – 7.21 – – −8.62
IND04 16 0.56 1.14 −6.63 −6.75 – −7.58 −7.17

Figure 3.7.2 depicts the PLR analysis for all the data sets which shows the pair-
wise comparisons of each technique with the actual weekly/monthly fault count data
which has been chosen as the reference model (indicated as a dotted straight line in
the plots of Figure 3.7.2). We see that for OSStom (Figure 3.2a), the prediction curves
for LR and SVM are closer to the reference in comparison with other curves. For
OSSbsd (Figure 3.2b), the prediction curve for GP follows the reference more closely
than other curves. The same behavior is also evident for IND01, IND03 and IND04
(Figures 3.2d, 3.2e and 3.2g). However, for OSSmoz (Figure 3.2c), YAM is better at
following the reference compared to any other curve, while for IND03 (Figure 3.2f),
the curves for GP, ANN and LR are much closer to the log(PLR) of actual fault count
data. Overall, GP was able to show more consistent predictive accuracy, across four of
the seven data sets.

84

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

-2

 0

 2

 4

 6

 8

 10

 24 26 28 30 32 34 36 38 40 42 44

lo
g
(P

L
R

)

Weeks

GP:Actual
ANN:Actual
SVM:Actual

LR:Actual
YAM:Actual
BMP:Actual

(a) OSStom.

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 36 38 40 42 44 46 48

lo
g
(P

L
R

)

Weeks

GP:Actual
ANN:Actual
SVM:Actual

LR:Actual
GO:Actual

YAM:Actual
BMP:Actual

(b) OSSbsd.

-4

-2

 0

 2

 4

 6

 8

 10

 12

 14

 70 75 80 85 90 95 100

lo
g
(P

L
R

)

Weeks

GP:Actual
ANN:Actual
SVM:Actual

LR:Actual
YAM:Actual
BMP:Actual

(c) OSSmoz.

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 21 22 23 24 25 26 27 28

lo
g
(P

L
R

)

Weeks

GP:Actual
ANN:Actual
SVM:Actual

LR:Actual
YAM:Actual
BMP:Actual

(d) IND01.

Figure 3.2: log(PLR) plots for the data sets OSStom, OSSbsd, OSSmoz, IND01,
IND02, IND03 and IND04. Continuing on to the next page.

85

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 38 40 42 44 46 48 50

lo
g
(P

L
R

)

Weeks

GP:Actual
ANN:Actual
SVM:Actual

LR:Actual
GO:Actual

YAM:Actual
BMP:Actual

(e) IND02.

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 20 22 24 26 28 30

lo
g
(P

L
R

)

Weeks

GP:Actual
ANN:Actual

LR:Actual
BMP:Actual

(f) IND03.

-8

-6

-4

-2

 0

 2

 80 82 84 86 88 90 92 94 96

lo
g
(P

L
R

)

Weeks

GP:Actual
ANN:Actual
SVM:Actual

LR:Actual
YAM:Actual
BMP:Actual

(g) IND04.

Figure 3.2: Continuing from the previous page; log(PLR) plots for the data sets OS-
Stom, OSSbsd, OSSmoz, IND01, IND02, IND03 and IND04.

86

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

Table 3.6 shows the computed values of AAE for all the data sets. The lowest AAE
values from each data set are shown in bold. GP gave the lowest AAE values for the
maximum number of data sets (data sets OSStom, OSSbsd, IND01, IND03 and IND04)
followed by LR, which remained successful in case of data sets IND02 and IND03.

Table 3.6: AAE values for different techniques for all data sets. The bold values in-
dicate the lowest AAE values from each data set. (–) indicates lack of model conver-
gence.

Sample size GP ANN SVM LR GO YAM BMP
OSStom 20 6.35 35.38 7.55 6.91 – 8.36 6.35
OSSbsd 12 3.78 14.08 44.01 23.72 18.93 24.79 19.44
OSSmoz 24 64.71 45.18 114.69 78.61 – 9.77 26.12
IND01 8 2.90 8.49 27.64 12.29 – 6.51 3.47
IND02 11 5.07 12.05 7.57 4.58 7.80 12.60 8.25
IND03 11 1.36 1.36 – 1.36 – – 1.90
IND04 16 1.18 2.31 17.08 17.46 – 20.12 18.80

Since the AAE samples from different methods did not satisfy the normality as-
sumption, we used the non-parametric Wilcoxon rank sum test to test the null hypothe-
sis that data from two samples have equal means. We tested the following pairs of AAE
samples: GP vs. ANN, GP vs. SVM, GP vs. LR and GP vs. YAM. The corresponding
p-values for these tests came out to be 0.27, 0.02, 0.13 and 0.03 respectively. At signif-
icance level of 0.05, the results indicate that the null hypothesis can be rejected for GP
vs. SVM and GP vs. YAM, while, on the other hand, there is no statistically significant
difference between the AAE means of GP, ANN and LR at the 0.05 significance level.

Apart from statistical testing, Table 3.7 presents the summary statistics of AAE for
all the techniques. We can observe that having a ranking based on median, GP has the
lowest value in comparison with ANN, LR and BMP having seven data sets each. For
a ranking based on mean, GP appears to be very close to the best mean AAE value for
BMP which is 12.05.

Table 3.8 shows the computed values of ARE for all the data sets. It is evident
from the table that GP resulted in the lowest ARE values for most of the data sets (five
out of seven). The other closest technique was LR that was able to produce lowest
ARE values for two data sets. This shows that GP is generally a better approach for
variable-term predictability.

As with AAE, ARE samples from different methods also did not satisfy the nor-
mality assumption. We used the non-parametric Wilcoxon rank sum test for testing the
following pairs of ARE samples: GP vs. ANN, GP vs. SVM, GP vs. LR and GP vs.

87

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

Table 3.7: Summary statistics for AAE showing the mean, median, min and max cor-
responding to the respective number of data sets.

AAE statistic
Technique No. of data sets Mean Median Min Max

BMP 7 12.05 8.25 1.90 26.12
GP 7 12.19 3.78 1.18 64.71

ANN 7 16.98 12.05 1.36 45.18
LR 7 20.70 12.29 1.36 78.61

YAM 6 13.69 11.18 6.51 24.79
SVM 6 36.42 22.36 7.55 114.69
GO 2 13.36 13.36 7.80 18.93

Table 3.8: ARE values for different techniques for all data sets. Bold values indicate
the lowest ARE values from each data set. (–) indicates lack of model convergence.

Sample size GP ANN SVM LR GO YAM BMP
OSStom 20 0.06 0.33 0.07 0.07 – 0.11 0.08
OSSbsd 12 0.02 0.08 0.26 0.14 0.12 0.15 0.12
OSSmoz 24 0.22 0.15 0.40 0.28 – 0.03 0.10
IND01 8 0.10 0.31 1.00 0.44 – 0.23 0.11
IND02 11 0.03 0.07 0.04 0.02 0.05 0.08 0.05
IND03 11 0.37 0.37 – 0.37 – – 1.49
IND04 16 0.03 0.07 0.51 0.52 – 0.61 0.57

88

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

YAM. The corresponding p-values for these tests came out to be 0.18, 0.07, 0.15 and
0.29 respectively. This shows that, for significance level of 0.05, there is no statistical
difference between the ARE means of GP, ANN, SVM, LR and YAM.

Apart from statistical testing, we can observe from Table 3.9 that having a ranking
based on both mean and median; GP has the lowest value in comparison with ANN,
LR and BMP having seven data sets each.

Table 3.9: Summary statistics for ARE showing the mean, median, min and max cor-
responding to the respective number of data sets.

ARE statistic
Technique No. of data sets Mean Median Min Max

GP 7 0.12 0.06 0.02 0.37
ANN 7 0.20 0.15 0.07 0.37
LR 7 0.26 0.28 0.02 0.52

BMP 7 0.26 0.11 0.05 0.80
YAM 6 0.20 0.13 0.03 0.61
SVM 6 0.37 0.33 0.04 0.96
GO 2 0.08 0.08 0.05 0.12

We further applied the measure of pred(l) to judge on the predictive ability of the
prediction systems. The result of applying pred(l) is shown in Table 3.10.

Table 3.10: Pred(0.25) calculation for different techniques for all data sets. (–) shows
lack of model convergence.

Sample size GP (%) ANN (%) SVM (%) LR (%) GO (%) YAM (%) BMP (%)
OSStom 20 100 30 100 100 – 99 100
OSSbsd 12 100 100 50 100 100 100 100
OSSmoz 24 41.67 100 0 16.67 – 100 100
IND01 8 100 37.5 100 0 – 37.5 100
IND02 11 100 45.45 100 100 100 100 100
IND03 11 45.45 45.45 – 44.45 – – 18.18
IND04 16 100 100 0 0 – 0 0

The standard criterion of pred(0.25)≥ 75 for stable model predictions was met by
different techniques for different data sets, but GP and BMP were able to meet this
criterion on most data sets i.e. five. The application of these two techniques on the five
data sets resulted in having 100% of the estimates within the range of 25% of the actual
values.

We conclude that while the statistical tests for AAE and ARE do not give us a clear

89

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

indication of a particular technique being (statistically) significantly better compared
to other techniques, the summary statistics (Tables 3.7 and 3.9) together with the eval-
uation of pred(0.25) and PLR show that the use of GP for cross-release prediction of
fault count data is in many ways better in comparison with other techniques.

3.7.3 Evaluation of model bias
We examined the bias in predictions by making use of box plots of model residuals.
The box plots of residuals for all the data sets are shown in Figure 3.7.3. For OSS-
bsd (Figure 3.3b) and IND04 (Figure 3.3g), the box plot of GP show two important
characteristics:

1. Smaller or equivalent length of the box plot as compared with other box plots.

2. Presence of majority of the residuals close to 0 as compared with other box plots.

For IND03 (Figure 3.3f), the length of the box plot and its proximity close to 0
appear to be similar for GP, ANN and LR. For OSStom (Figure 3.3a), SVM and LR
are better placed than the rest of the techniques while for OSSmoz (Figure 3.3c), YAM
appears to be having a smaller box plot positioned in the proximity of 0. For IND01,
although the length of the box plot seems to be small for ANN, it still appears below
the 0-mark indicating that the predictions from ANN are overestimating the actual fault
count data. The GP box plot, however, appears to be better positioned in this respect.
The same is the case with IND02 (Figure 3.3e) where GP and LR show a good trade-off
between length and actual position of the box plot.

Since the box plots of the residuals were skewed, we resorted to using the non-
parametric Kruskal-Wallis test to examine if there is a statistical difference between
the residuals for all the data sets and to confirm the trend observed from the box plots.
The results of the application of the Kruskal-Wallis test appear in Table 3.11. For each
of the data sets, the Kruskal-Wallis statistic h is greater than the critical value χ2

0.05.
Therefore, we had sufficient evidence to reject the null hypothesis that the residuals for
different techniques within a project were similar.

90

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

GP ANN SVM LR YAM BMP

0
20

40
60

(a) Residuals for OSStom.

GP ANN SVM LR GO YAM BMP

-4
0

-2
0

0
20

(b) Residuals for OSSbsd.

GP ANN SVM LR YAM BMP

-5
0

0
50

10
0

15
0

(c) Residuals for OSSmoz.

GP ANN SVM LR YAM BMP

-1
0

0
10

20
30

(d) Residuals for IND01.

Figure 3.3: Charts showing box plots of residuals for the seven data sets. Continuing
on to the next page.

91

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

GP ANN SVM LR GO YAM BMP

-2
0

-1
0

0
10

20

(e) Residuals for IND02.

GP ANN LR BMP

-3
-2

-1
0

1
2

3
4

(f) Residuals for IND03.

GP ANN SVM LR YAM BMP

-2
0

-1
5

-1
0

-5
0

5

(g) Residuals for IND04.

Figure 3.3: Continuing from the previous page; Charts showing box plots of residuals
for the seven data sets.

92

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

Table 3.11: Kruskal-Wallis statistic h for different data sets for testing difference in
residuals. ν is the degrees of freedom.

Data sets Kruskal-Wallis statistic, h
OSStom, χ2

0.05=11.07, ν = 5 83.49
OSSbsd, χ2

0.05=12.60, ν = 6 58.51

OSSmoz, χ2
0.05=11.07, ν = 5 122.95

IND01, χ2
0.05=11.07, ν = 5 43.76

IND02, χ2
0.05=12.60, ν = 6 42.9

IND03, χ2
0.05=7.81, ν = 3 21.45

IND04, χ2
0.05=11.07, ν = 5 75.57

In order to further investigate if the residuals obtained from GP are different from
those of other techniques, we used the Wilcoxon rank sum test. The p-values obtained
are shown in Table 3.12. The table shows that, except for four cases, the p-values were
found to be less than 0.05 thus rejecting the null hypothesis that the samples are drawn
from identical continuous distributions. The four cases where the null hypothesis was
not rejected coincide with data sets OSSbsd and IND02, where the comparisons of
the residuals of GP were not found to be different from those of ANN, SVM and LR.
(These cases are shown in bold in Table 3.12.)

We conclude that in terms of model bias, the examination of residuals show the
greater consistency of GP, as compared with other traditional and machine learning
models (in having predictions that result in smaller box plots that are positioned near
the 0-mark). Further, application of the Wilcoxon rank sum test shows that except for

Table 3.12: p-values after applying the Wilcoxon rank sum test on residuals (values
rounded to two decimal places). Values in bold indicate p > 0.05.

PGP:ANN PGP:SV M PGP:LR PGP:GO PGP:YAM PGP:BMP

OSStom, α = 0.05 0.00 0.00 0.01 – 0.00 0.00
OSSbsd, α = 0.05 0.79 0.00 0.00 0.00 0.00 0.00
OSSmoz, α = 0.05 0.00 0.02 0.00 – 0.00 0.00
IND01, α = 0.05 0.00 0.00 0.00 – 0.00 0.02
IND02, α = 0.05 0.09 0.32 0.95 0.00 0.00 0.00
IND03, α = 0.05 – – – – – 0.00
IND04, α = 0.05 0.02 0.00 0.00 – 0.00 0.00

93

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

four combinations (GP:ANN-OSSbsd, GP:SVM-IND02, GP:LR-IND02, GP:ANN-
IND02), there is sufficient evidence to show that the residuals from GP are different
from those of other competing techniques.

3.7.4 Qualitative evaluation of models
The selection of a particular model for fault count predictions is influenced not only by
the quantitative factors (e.g. goodness of fit, predictive accuracy and bias) but also by
certain conceptual requirements, which we term as qualitative measures. We believe
that it is important to take into account these qualitative measures (in addition to quan-
titative ones) to reach an informed decision about a suitable technique or combination
of techniques to use for fault count predictions.

Ease of configuration. The parametric models including BMP, GO, YAM and lin-
ear regression require an estimation of certain parameters. The number of these pa-
rameters and the ease with which these parameters can be measured affects measure-
ment cost [173]. With automated reliability measurement using tools such as CASRE
(Computer-Aided Software Reliability Estimation) and SMERFS (Statistical Model-
ing and Estimation of Reliability Functions for Systems) [79, 194], the estimation of
parameters may have eased but such tools are limited by the number of supported mod-
els and numerical approximation methods. Linear regression, in comparison, is much
simpler to use having several tools available for automation.

For the machine learning methods used in this study, the ease of configuration con-
cerns setting algorithmic control parameters. For ANN, some initial experimentation
is required to reach a suitable configuration of number of layers and associated number
of neurons. For GP, there are several parameters that control the adaptive evaluation
of fitter solutions, such as selection of function and terminal sets and probabilities of
genetic operators. For SVM, one needs to take care of capacity control and the loss
function. But once these algorithmic control parameters are set, an approximation is
found by these methods during training. However, there seems to be no clear differen-
tiation among different techniques with respect to ease of configuration. This is in our
opinion a general problem and indicates a need for further research.

Transparency of the solution. The resulting equations for traditional models are par-
tially transparent, however, GP is capable of producing transparent solutions because
the resulting model is an algebraic expression (which is not the case with ANN and
SVM). Thus, transparency of solutions is one distinct advantage of using GP. Trans-
parency of the solutions can be important for the purpose of verification as well as

94

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

theory building and gaining an understanding of the process being modeled [90]. In
our case, with one independent variable (week number) and one dependent variable
(count of faults), typical GP solutions are of the form below:

times(minus(sin(minus(cos(x),x)),minus(log(cos(log(sin(log(x))))),sin(x))), log(x))
(3.11)

where x is the independent variable and minus, times, sin, cos, log represents the
function set (as outlined in Table 3.2).

Generality. The extent of generality of model results for diverse data sets is better
for machine learning and evolutionary methods than the traditional methods. This is
because of the fact that machine learning and evolutionary models do not depend on
prior assumptions about data distribution and form of relationship between independent
and dependent variables. The model and the associated coefficients are evolved based
on the fault data collected during the initial test phase. In this sense, the applicability
of the models derived from machine learning and evolutionary methods for different
development and operational environments and life-cycle phases, appear to be better
suited than traditional modeling techniques.

Complexity. The complexity criterion is especially important to discuss with respect
to GP since GP has the potential of evolving transparent solutions. However the so-
lutions can become complex as the number of nodes in the GP solution increases (as
in Eq.3.11), a phenomenon known as bloating. Although there are different ways to
control this (see e.g. [170]), in the context of canonical GP, this is still an important
consideration. For ANN the complexity can be connected to the potential complex and
inefficient structures, which can evolve in an attempt to discover difficult data patterns.
For SVM and traditional software reliability growth models, being essentially black-
box, the complexity is difficult to discuss. However, for linear regression, where the
reasoning process is partially visible, the complexity is apparently minimal.

There can be another way to evaluate complexity in terms of suitability of a tech-
nique to incorporate complex models. This can be connected back to the theory of
whether the modeling technique determines its own structure or requires the engineer
to provide the structure of the relationship between independent and dependent vari-
ables [90]. The machine learning and evolutionary models certainly scores high in this
respect in comparison with traditional methods.

95

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

3.8 Validity evaluation

There can be different threats to the validity of the empirical results [258]. In this
section we cover, conclusion, internal, construct and external validity threats.

Conclusion validity, refers to the statistically significant relationship between the
treatment and outcome. We have used non-parametric statistics in this study, particu-
larly Kolmogorov-Smirnov goodness of fit test, Kruskal-Wallis statistic and Wilcoxon
rank sum test. Although the power of parametric tests is known to be higher than for
non-parametric tests, we were uncertain about the corresponding parametric alterna-
tives meeting the tests’ assumptions. Secondly, we used a significance level of 0.05,
which is a commonly used significance level for hypothesis testing [121]; however,
facing some criticism lately [112]. Therefore, it can be considered as a limitation of
our study and a potential threat to conclusion validity. One potential threat to conclu-
sion validity could have been that the fitness evaluation used for GP (Subsection 3.6.1)
is similar to the quantitative evaluation measures for comparing different techniques
(Subsection 3.5.1). This is, however, not the case with this study since the GP fitness
function differs from the quantitative evaluation measures and also we have used a vari-
ety of different quantitative evaluation measures not necessarily based on minimization
of standard error. A potential threat to conclusion validity is that the fault count data
sets did not consider the severity level of faults, rather treated all faults equally. This is
a limitation of our study and we acknowledge that by considering severity levels, the
conclusion validity of the study would have improved; but at the same time we are also
apprehensive that subjective bias might result in wrong assignment of severity levels.
Another potential threat to conclusion validity is the different lengths of training and
test data sets, depending upon the fault counts from respective. We plan to investigate
this in the future.

Internal validity, refers to a causal relationship between treatment (independent
variable) and outcome (dependent variable). It concerns all the factors that are re-
quired for a well-designed study. As for the selection of different data sets, we opted
for having data sets from varying domains. Moreover, for each data set, we used a con-
sistent scheme of impartially splitting the data set into testing and training sets for all
the techniques. A possible threat to internal validity is that we cannot publicize our in-
dustrial data sets due to proprietary concerns; therefore other researchers cannot make
use of these data sets. However, we encourage other researchers to emulate our results
using other publicly available data sets. The best we could do is to clearly state our
research design and apply recommended approaches like statistical hypothesis testing

96

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

to minimize the chances of unknown bias. Additionally, we have data included in this
study that is freely available since it was collected from open source software.

Also, another threat is that the different techniques were applied over different data
sets in approximate standard parameter settings. For the GP algorithm there are no
standard setting for the function and terminal sets so we had to test a few different
ones, while keeping other parameters constant, until some search success was seen.
Even though this is standard practice when using GP systems, a potential threat is that
it could bias the results.

The used data sets were grouped on a weekly or monthly basis. While some studies
(e.g. [259]) have indicated that the grouping of data is not a threat, it is possible that
more detailed and frequent date and time resolution, and thus prediction intervals, could
affect the applicability of different modeling techniques. For example, linear regression
models might have a relative advantage concerning data that is more regular, with less
frequent changes. However, it is hard to predict such effects and without further study
we can not determine if it is really a threat.

Construct validity, is concerned with the relationship between theory and applica-
tion. We attempted to present both quantitative and qualitative evaluation factors in
the study for defining the different constructs. There is a threat that we might have
missed one or more evaluation criteria, however the evaluation measures used in the
study reflect the ones commonly used for evaluating prediction models.

External validity, is concerned with generalization of results outside the scope of
the study. We used data sets from both open source and industrial software projects,
which we believe adds to the generalizability of the study. Also the data sets cannot
be regarded as toy problems as each one of them represented real-life fault data from
multiple software releases. One threat to external validity is the selection of machine
learning algorithms for comparison. Being a large field of research, new data mining
algorithms are continuously being proposed. We used a small subset of the machine
learning algorithms but we are confident that our subset is a fairly representative one,
being based on techniques which have different modeling mechanism and are currently
being actively researched.

3.9 Discussion and conclusions
In this chapter, we compared cross-release predictions of fault count data from models
constructed using common machine learning and traditional techniques. The compar-
isons were based on measures of goodness of fit, predictive accuracy and model bias.

97

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

We also presented an analysis of some of the conceptual requirements for a success-
ful model (including ease of configuration, transparency of solution, generality and
complexity). These conceptual requirements are important when considering the ap-
plicability of a prediction system [175] and should be taken into account along with the
quantitative performance.

The quantitative results of comparing different techniques have shown some indi-
cation that GP can be one of the competitive techniques for software fault prediction.
In terms of conceptual requirements, though ease of configuration might not be the
favorable aspect of GP models, the transparency of solution and generality are factors
that add further value to the quantitative potential of GP-evolved models.

The fact that no prior assumptions have to be made in terms of actual model form
is a distinct advantage of machine learning approaches over linear regression and tra-
ditional models. The traditional techniques need to satisfy the underlying assumptions,
which means that there is no assurance that these techniques would converge to a so-
lution. This does not happen with GP and ANN machine learning techniques. This
shows that the machine learning techniques tend to be more flexible than its traditional
counterparts. This flexibility also contributes to the greater generalizability of machine
learning models in a greater variety of software projects. GP offers flexibility by ad-
justing a variety of functions to the data points; thereby both structure and complexity
of the model evolve during subsequent generations.

Considering the different trade-offs among competing models, it appears crucial to
define the success criterion for an empirical modeling effort. Such a definition of suc-
cess would help exploit the unique capabilities of different modeling techniques. For
instance, if success is defined in terms of having only accurate predictions without the
need of examining the relationship among variables in the form of a function, then arti-
ficial neural networks (ANN) might be a worthy candidate for selection (being known
as universal approximators), provided that the requisite levels of model accuracy are
satisfied. But selecting ANN as a modeling technique would mean that we have to be
aware of its potential drawbacks:

1. Less flexible as the neural nets cannot be manipulated once the learning phase
finishes [74]. This means that neural networks require frequent re-training once
specific process conditions change and hence adds to the maintenance overhead.

2. Black-box approach, thus disadvantageous for experts who want to have an un-
derstanding and potential manipulation of variable interactions.

3. Possibility of having inefficient and non-parsimonious5 structures.
5The parsimonious factor takes into account that the model with the smallest number of parameters is

usually the best.

98

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

4. Potentially poor generalizability outside the range of the training data [155]

In contrast, GP possesses certain unique characteristics considering the above is-
sues. Symbolic regression using GP is flexible because of its ability to adjust a variety
of functions to the data points and the models returned by symbolic regression are open
for interpretation. This also helps to identify significant variables, which in the longer
run could be used in subsequent modeling to increase the efficiency of the modeling ef-
fort [156]. Hence, this might also be useful for an easy integration in existing industrial
work processes whereby only those variables could be used.

A brief summary of the relative performance of different techniques is presented in
Table 3.13.

Table 3.13: Summary of the relative strengths of the methods on different criteria;
techniques are ranked according to the relative performance for maximum number of
times on all the data sets.

GP ANN SVM LR GO YAM BMP
Goodness of fit + + - - 0 - - -
Accuracy + + - - - 0 - - - -
Bias + + + - 0 - - - - -
Ease of configuration 0 0 0 + 0 0 0
Transparency of solution + - - 0 0 0 0
Generality + + + - - - -
Complexity 0 0 0 + 0 0 0
Key:
+ + very good, + good, 0 average, - bad, - - very bad

The performance indicators in Table 3.13 are given as to summarize the detailed
evaluation done in the study based on several measures (Section 3.5). The indicators
(+ +, +, 0, -, - -) for the quantitative measures of goodness of fit, accuracy and model
bias represent the relative performance of different techniques for largest number of
times on different data sets, e.g. GP is ranked (+ +) on accuracy because of perform-
ing comparatively better on accuracy measures for greater number of data sets. The
indicators for the qualitative measures represent the relative merits of the techniques as
discussed in Subsection 3.7.4. Table 3.13 shows that GP has the advantage of having
better goodness of fit and accuracy as compared to other techniques, even though no
special adaptions were made to the canonical GP algorithm taking into account the time
series nature of the data (GP and ANN are expected to perform better for time series
prediction if there is a possibility to save state information between different steps of
prediction which can be used to identify trends in the input data; however, we wanted
to compare the performance for standard algorithms and any enhancements to these

99

Chapter 3. Empirical evaluation of cross-release fault count predictions in large and
complex software projects

techniques is not addressed in this study). Table 3.13 shows that the GP models also
exhibit less model bias. On the other hand, the ease of configuration and complex-
ity are not necessarily stronger points for GP models. It is interesting to observe that
ANN does not perform as well as expected in terms of goodness of fit and accuracy.
Linear regression was able to show normal predictions in terms of goodness of fit and
accuracy but scores higher on ease of configuration (however lacking generality due to
the need of satisfying underlying assumptions). SVM and the traditional models (GO,
YAM, BMP) appear to have similar advantages and disadvantages, with YAM showing
a slightly improved quantitative performance, while SVM possesses better generality
across different data sets.

The most encouraging result of this study shows the feasibility of using GP as a pre-
diction tool across different releases of software. This indicates that the development
team can use GP to make important decisions related to the quality of their deliverables.
GP models also showed a decent ability to adapt to different time spans of releases (on
the basis of the different lengths of the testing sets for different data sets); which is also
a positive indicator. The study shows that GP is least affected by moderate differences
in the release durations and can predict decently with variable time units into future.
Additionally, having evaluated the performance on diverse data sets from different ap-
plication domains, further points out the flexibility of GP, i.e. suiting a variety of data
sets.

In short, the use of GP can lead to improved predictions with the additional ca-
pabilities of solution transparency and generality across varying operational environ-
ments. Secondly the GP technique used in this chapter followed a standard/canonical
approach. Several adaptations to the GP algorithm (e.g. Pareto GP and grammar-guided
GP) can potentially lead to further improved GP search process. We intend to inves-
tigate this in the future. Another future work involves evaluating the use of GP in an
on-going project in an industrial context and compare the relative short-term and long-
term predictive strength of the GP-evolved models for different lengths of training data.

The next Chapter 4 is a systematic literature review investigating the extent of appli-
cation of symbolic regression using genetic programming within software engineering
predictive modeling.

100

Chapter 4

Genetic programming versus
other techniques for software
engineering predictive
modeling: A systematic review

4.1 Introduction

Genetic programming (GP) [157] is an evolutionary computation technique. It is a sys-
tematic, domain-independent method for getting computers to solve problems automat-
ically starting from a high-level statement of what needs to be done [208]. Symbolic
regression is one of the many application areas of GP, which finds a function with the
outputs having desired outcomes. It has the advantage of being independent of mak-
ing any assumptions about the function structure. Another potential advantage is that
models built using symbolic regression application of GP can also help in identifying
the significant variables which might be used in subsequent modeling attempts [156].

This paper reviews the available literature on the application of symbolic regres-
sion using GP for predictions and estimations within software engineering. The per-
formance of symbolic regression using GP is assessed in terms of its comparison with
competing models, which might include common machine learning models, statistical
models and models based on expert opinion. There are two reasons for carrying out
this study:

101

Chapter 4. Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review

1. To be able to draw (if possible) general conclusions about the extent of applica-
tion of symbolic regression using GP for predictions and estimations in software
engineering.

2. To summarize the benefits and limitations of using symbolic regression as a pre-
diction and estimation tool.

The authors are not aware of any study having goals similar to ours. Prediction and
estimation in software engineering has been applied to measure different attributes. A
non-exhaustive list includes prediction and estimation of software quality, e.g. [160],
software size, e.g. [169], software development cost/effort, e.g. [120], maintenance
task effort, e.g. [117], correction cost, e.g. [65], software fault, e.g. [236], and software
release timing, e.g. [70]. A bulk of the literature contributes to software cost/effort and
software fault prediction. A systematic review of software fault prediction studies is
given by Catal and Diri [52], while a systematic review of software development cost
estimation studies is provided by [120]. The current study differs from these systematic
reviews in several ways. Firstly, the studies of [52] and [120] are more concerned with
classification of primary studies and capturing different trends. This is not the primary
purpose of this study, which is more concerned with investigating the comparative
efficacy of using symbolic regression across software engineering predictive studies.
Secondly, [52] and [120] review the subject area irrespective of the applied method,
resulting in being more broad in their coverage of the specific area. This is not the
case with this study as it is narrowly focused in terms of the applied technique and
open in terms of capturing prediction and estimation of different attributes (as will be
evident from the addressed research question in Section 4.2.1). Thirdly, one additional
concern, which makes this study different from studies of [52] and [120], is that it
also assesses the evidence of comparative analysis of symbolic regression with other
competing models.

A paper by by Crespo et al.[62] which presents a classification of software devel-
opment effort estimation into artificial intelligence (AI) methods of neural networks,
case-based reasoning, regression trees, fuzzy logic, dynamical agents and genetic pro-
gramming. While the authors were able to present a classification scheme, it is not
complete in terms of its coverage of studies within each AI method.

One other motivation of us carrying out this systematic review is the general grow-
ing interest in search-based approaches to solve software engineering problems [105].
In this regards, it is interesting to investigate the extent of application of genetic pro-
gramming (a search-technique) within software engineering predictive modeling. This
presents an opportunity to assess different attributes, which can be measured using
GP. It also allows us to gain an understanding of different GP variations used by these
studies to predict and estimate in a better way.

102

Chapter 4. Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review

In rest of the text below, wherever we refer to GP, we mean the symbolic regression
application of it.

This paper is organized as follows: Section 4.2 describes the research method in-
cluding the research question, the search strategy, the study selection procedure, the
study quality assessment and the data extraction. Results are presented in Section 4.3,
while Section 4.4 discusses the results and future work. Validity threats and conclu-
sions appear in Section 4.5 and Section 4.6, respectively.

4.2 Method
This section describes our review protocol, which is a multi-step process following the
guidelines outlined in [150].

4.2.1 Research question
We formulated the following research question for this study:

RQ Is there evidence that symbolic regression using genetic programming is an ef-
fective method for prediction and estimation, in comparison with regression, ma-
chine learning and other models?

The research questions can conveniently be structured in the form of PICOC (Pop-
ulation, Intervention, Comparison, Outcome, Context) criteria [204]. The population
is this study is the domain of software projects. Intervention includes models evolved
using symbolic regression application of GP. The comparison intervention includes
the models built using regression, machine learning and other methods. The outcome
of our interest represents the comparative effectiveness of prediction/estimation using
symbolic regression and machine learning/regression/other models. We do not pose
any restrictions in terms of context and experimental design.

4.2.2 The search strategy
Balancing comprehensiveness and precision in the search strategy is both an important
and difficult task. We used the following approach for minimizing the threat of missing
relevant studies:

1. Breaking down the research question into PICOC criteria. This is done to man-
age the complexity of a search string that can get sophisticated in pursuit of
comprehensiveness.

103

Chapter 4. Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review

2. Identification of alternate words and synonyms for each of PICOC criterion.
First, since it is common that terminologies differ in referring to the same con-
cept, derivation of alternate words and synonyms helps ensuring completeness
of search. The genetic programming bibliography maintained by Langdon et al.
[159] and Alander’s bibliography of genetic programming [13] turned out to be
valuable sources for deriving the alternate words and synonyms. Secondly our
experience of conducting studies in a similar domain was also helpful [10].

3. Use of Boolean OR to join alternate words and synonyms.

4. Use of Boolean AND to join major terms.

We came up with the following search terms (divided according to the PICOC
criteria given in Section 4.2.1):

• Population. software, application, product, web, Internet, World-Wide Web,
project, development.

• Intervention. symbolic regression, genetic programming.

• Comparison intervention. regression, machine learning, machine-learning,
model, modeling, modelling, system identification, time series, time-series.

• Outcomes. prediction, assessment, estimation, forecasting.

Hence, leading to the following search string: (software OR application OR prod-
uct OR Web OR Internet OR “World-Wide Web” OR project OR development) AND
(“symbolic regression” OR “genetic programming”) AND (regression OR “machine
learning” OR machine-learning OR model OR modeling OR modelling OR “system
identification” OR “time series” OR time-series) AND (prediction OR assessment OR
estimation or forecasting).

The search string was applied to the following digital libraries, while searching
within all the available fields:

• INSPEC

• EI Compendex

• ScienceDirect

• IEEEXplore

• ISI Web of Science (WoS)

104

Chapter 4. Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review

• ACM Digital Library

In order to ensure the completeness of the search strategy, we compared the results
with a small core set of primary studies we found relevant, i.e. [72, 45, 59]. All of the
known papers were found using multiple digital libraries.

We additionally scanned the online GP bibliography maintained by Langdon et al.
[159] by using the search-term symbolic regression. We also searched an online data
base of software cost and effort estimation called BESTweb [118], using the search-
term genetic programming.

The initial automatic search of publication sources was complemented with manual
search of selected journals (J) and conference proceedings (C). These journals and
conference proceedings were selected due to their relevance within the subject area and
included: Genetic Programming and Evolvable Machines (J), European Conference on
Genetic Programming (C), Genetic and Evolutionary Computation Conference (C),
Empirical Software Engineering (J), Information and Software Technology (J), Journal
of Systems and Software (J), IEEE Transactions on Software Engineering (J) and IEEE
Transactions on Evolutionary Computation (J). We then also scanned the reference lists
of all the studies gathered as a result of the above search strategy to further ensure a
more complete set of primary studies.

The time span of the search had a range of 1995–2008. The selection of 1995 as
the starting year was motivated by the fact that we did not find any relevant study prior
to 1995 from our search of relevant GP bibliographies [159, 13]. In addition, we also
did not find any relevant study published before 1995 as a result of scanning of the
reference lists of studies found by searching the electronic databases.

4.2.3 The study selection procedure
The purpose of the study selection procedure is to identify primary studies that are
directly related to answering the research question [150]. We excluded studies that:

1. Do not relate to software engineering or software development, e.g. [16].

2. Do not relate to prediction/estimation of software cost/effort/size, faults, quality,
maintenance, correction cost and release timing, e.g.[4].

3. Report performance of a particular technique/algorithmic improvement without
being applied to software engineering, e.g. [19].

4. Do not relate to symbolic regression (or any of its variants) using genetic pro-
gramming, e.g. [226].

105

Chapter 4. Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review

5. Do not include a comparison group, e.g. [139].

6. Use genetic programming only for feature selection prior to using some other
technique, e.g. [214].

7. Represent similar studies, i.e., when a conference paper precedes a journal paper.
As an example, we include the journal article by Costa et al. [59] but exclude two
of theirs conference papers [61, 200].

Table 4.1 presents the count of papers and the distribution before and after duplicate
removal as a result of the automatic search in the digital libraries.

Table 4.1: Count of papers before and after duplicate removal for the digital search
in different publication sources. The numbers within parenthesis indicates the counts
after duplicate removal

Source Count
EI Compendex & Inspec 578 (390)
ScienceDirect 496 (494)
IEEE Xplore 55 (55)
ISI Web of Science 176 (176)
ACM Digital Library 1081 (1081)
Langdon et al. GP bibliography [159] 342 (342)
BESTweb [118] 4 (4)
Total 2732 (2542)

The exclusion was done using a multi-step approach. First, references were ex-
cluded based on title and abstract which were clearly not relevant to our research ques-
tion. The remaining references were subject to a detailed exclusion criteria (see above)
and, finally, consensus was reached among the authors in including 24 references as
primary studies for this review.

4.2.4 Study quality assessment and data extraction
The study quality assessment can be used to devise a detailed inclusion/exclusion cri-
teria and/or to assist data analysis and synthesis [150]. We did not rank the studies ac-
cording to an overall quality score but used a simple ‘yes’ or ‘no’ scale [76]. Table A.1,
in Appendix A, shows the application of the study quality assessment criteria where a
(
√

) indicates ‘yes’ and (×) indicates ‘no’. Further a (~
√

) shows that we were not sure
as not enough information was provided but our inclination is towards ‘yes’ based on

106

Chapter 4. Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review

reading full text. A (~×) shows that we were not sure as not enough information was
provided but our inclination is towards ‘no’ based on reading full text. We developed
the following study quality assessment criteria, taking guidelines from [150, 152]:

• Are the aims of the research/research questions clearly stated?

• Do the study measures allow the research questions to be answered?

• Is the sample representative of the population to which the results will general-
ize?

• Is there a comparison group?

• Is there an adequate description of the data collection methods?

• Is there a description of the method used to analyze data?

• Was statistical hypothesis undertaken?

• Are all study questions answered?

• Are the findings clearly stated and relate to the aims of research?

• Are the parameter settings for the algorithms given?

• Is there a description of the training and testing sets used for the model construc-
tion methods?

The data extraction was done using a data extraction form for answering the re-
search question and for data synthesis. One part of the data extraction form included
the standard information of title, author(s), journal and publication detail. The second
part of the form recorded the following information from each primary study: stated
hypotheses, number of data sets used, nature of data sets (public or private), compar-
ison group(s), the measured attribute (dependent variable), evaluation measures used,
independent variables, training and testing sets, major results and future research di-
rections.

4.3 Results
The 24 identified primary studies were related to the prediction and estimation of the
following attributes:

107

Chapter 4. Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review

1. Software fault proneness (software quality classification).

2. Software cost/effort/size (CES) estimation.

3. Software fault prediction and software reliability growth modeling.

Table 4.2 describes the relevant information regarding the included primary studies.
The 24 primary studies were related to the application of GP for software quality classi-
fication (9 primary studies), software CES estimation (7 primary studies) and software
fault prediction and software reliability growth modeling (8 primary studies).

Figure 4.1 shows the year-wise distribution of primary studies within each category
as well as the frequency of application of the different comparison groups. The bubble
at the intersection of axes contains the number of primary studies. It is evident from
the left division in this figure that the application of GP to prediction problems in soft-
ware engineering has been scarce. This finding is perhaps little surprising; considering
that the proponents of symbolic regression application of GP have highlighted several
advantages of using it [209].

In the right division of Figure 4.1, it is also clear that statistical regression tech-
niques (linear, logistic, logarithmic, cubic, etc.) and artificial neural networks have
been used as a comparison group for most of the studies.

Dependent
variable

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 NN ANN NB SRGM SGP OTSR

Year Comparison groups

1 1 1 2 3 1

2

SR = statistical regression

NN = k-nearest neighbor

ANN = artificial neural network

NB = naive Bayes

SRGM = software reliability growth models

SGP = standard genetic programming

OT = other (random selection, random, LoC

 & expert ranking)

20081995

Software

 reliability

 growth modeling

Software

fault

prediction

Software

cost/effort

Software

size

Software

quality

classification

1

1 1

2 1 1

1

2 21

2 1 1 3 4

21

34 1 1

21

2 4 1

Figure 4.1: Distribution of primary studies over range of applied comparison groups
and time period.

108

Chapter 4. Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review

Table 4.2: Distribution of primary studies per predicted/estimated attribute.
Domain Author(s) Year Ref.
SW quality classification (37.50%) Robinson et al. 1995 [217]

Evett et al. 1998 [78]
Khoshgoftaar et al. 2003 [145]
Liu et al. 2001 [168]
Khoshgoftaar et al. 2004 [140]
Khoshgoftaar et al. 2004 [141]
Liu et al. 2004 [166]
Reformat et al. 2003 [215]
Liu et al. 2006 [167]

SW CES estimation (29.17%) Dolado et al. 1998 [73]
Dolado 2000 [71]
Regolin et al. 2003 [216]
Dolado 2001 [72]
Burgess et al. 2001 [45]
Shan et al. 2002 [222]
Lefley et al. 2003 [161]

SW fault prediction and reliability growth (33.33%) Kaminsky et al. 2004 [123]
Kaminsky et al. 2004 [124]
Tsakonas et al. 2008 [247]
Zhang et al. 2006 [266]
Zhang et al. 2008 [267]
Afzal et al. 2008 [6]
Costa et al. 2007 [59]
Costa et al. 2006 [60]

Next we present the description of the primary studies in relation to the research
question.

4.3.1 Software quality classification

Our literature search found 10 studies on the application of symbolic regression using
GP for software quality classification. Seven out of these ten studies were co-authored
by similar authors to a large extent, where one author was found to be part of each
of these seven studies. The data sets also over-lapped between studies, which gives
an indication that the conclusion of these studies were tied to the nature of the data
sets used. However, these seven studies were marked with different variations of the
GP fitness function and also used different comparison groups. This in our opinion

109

Chapter 4. Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review

indicates distinct contribution and thus worthy of inclusion as primary studies for this
review. The evaluation measures also varied but were mostly based on the Type-I and
Type-II misclassification rates.

A software quality classification model predicts the fault-proneness of a software
module as being either fault-prone (fp) or not fault-prone (nfp). A fault-prone module
is one in which the number of faults are higher than a selected threshold. The use
of these models leads to knowledge about problematic areas of a software system,
that in turn can trigger focused testing of fault-prone modules. With limited quality
assurance resources, such knowledge can potentially yield cost-effective verification
and validation activities with high return on investment.

The general concept of a software quality classification model is that it is built based
on the historical information of software metrics for program modules with known
classification as fault-prone or not fault-prone. The generated model is then tested to
predict the risk-based class membership of modules with known software metrics in
the testing set.

Studies making use of GP for software quality classification argue that GP carries
certain advantages for quality classification in comparison with traditional techniques
because of its white-box and comprehensible classification model [145]. This means
that the GP models can potentially show the significant software metrics affecting the
quality of modules. Additionally, by following a natural evolution process, GP can
automatically extract the underlying relationships between the software metrics and
the software quality, without relying on the assumption of the form and structure of the
model.

In [217], the authors use GP to identify fault-prone software modules. A software
module is taken to comprise of a single source code file. Different software metrics
were used as independent variables, with predictions assessed using five and nine in-
dependent variables. GP was compared with neural networks, k-nearest neighbor and
linear regression. The methods were compared using two evaluation measures, accu-
racy and coverage. Accuracy was defined as the proportion of ‘files predicted to be
faulty’ which were faulty, while coverage was defined as the proportion of ‘files which
were faulty’ which were accurately predicted to be faulty. Using a measurement data
corresponding to 163 software files, it was observed that in comparison with other
techniques, GP results were reasonably accurate but lacked coverage.

In [78] the authors describe a GP-based system for targeting software modules for
reliability enhancement. This study not only predicted the number of faults but also
ranked-order the software modules. The motivation was to assist the project managers
in deciding to select those software modules that were more fault-prone. The authors
claimed the study to be the first one that applied GP on software quality predictions.
However, we found Robinson and McIlroy’s study [217] to be the earliest using GP

110

Chapter 4. Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review

for software quality classification. Using the actual data from two industrial data sets
(a data communication system and a legacy telecommunication system), Evett et al.
showed that for rank order of modules from least to the most fault-prone, the GP mod-
els were able to reveal faults closer to the actual number in comparison with random
selection of modules for reliability enhancement. With cut-off percentile values of
75%, 80%, 85% and 90% for module ordering, GP model performance was consis-
tently superior to random ordering of modules based on the number of faults. The
problem was solved as a multi-objective optimization problem with minimization of
absolute errors in prediction of faults as well as maximization of the best percentage of
the actual faults averaged over the percentile level of interest.

A similar approach was used by Khoshgoftaar et al. [140], in which a different
multi-objective fitness value (i) maximized the best percentage of the actual faults av-
eraged over the percentile level of interest (95%, 90%, 80%, 70%) and (ii) restricted
the size of the GP tree. The data set used in the study came from an embedded software
system and five software metrics were used for quality prediction. The data set was di-
vided into three random splits of the training and the testing data sets to avoid biased
results. Based on the comparison of models ranked according to lines of code (LOC),
the GP-models ranked the modules closer to the actual ranking on two of the three data
splits. The results were not much different in an extension of this study [141], where
in an additional case study of a legacy telecommunication system with 28 independent
variables, GP outperformed the module ranking based on LOC.

Another study by Khoshgoftaar et al. [145] used a different multi-objective fitness
function for generating the software quality model. First the average weighted cost of
misclassification was minimized and subsequently the trees were simplified by con-
trolling their size. The average weighted cost of misclassification was formulated to
penalize Type-II error (a fp module misclassified as nfp) more than Type-I error (a nfp
module misclassified as fp). This was done by normalizing the cost of Type-II error
with respect to the cost of Type-I error. Data was collected from two embedded sys-
tems applications, which consisted of five different metrics for different modules. In
comparison with standard GP, the performance of multi-objective GP was found to
be better with multi-objective GP finding lower Type-I and Type-II error rates with
smaller tree sizes. A similar study was carried out by [168] in which a single objective
fitness function was used which took into account the average weighted cost of mis-
classification. Random subset selection was chosen which evaluated GP individuals
in each generation on a randomly selected subset of the fit data set. Random subset
selection helped to reduce the problem of over-fitting in GP solutions. Comparisons
with logistic regression showed that Type-I and Type-II error rates for GP model were
found to be better than for logistic regression. The same authors extended the study
by adding a case study with data from a legacy telecommunication system in [166].

111

Chapter 4. Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review

This time the fitness function was multi-objective with minimization of expected cost
of misclassification and also control of the tree size of GP solutions. The results of ap-
plying the random subset selection showed that over-fitting was reduced in comparison
with when there was no random subset selection, hence, yielding solutions with better
generalizability in the testing part of the data set.

In [215], evolutionary decision trees were proposed for classifying software ob-
jects. The comparison group in this case was the classification done by two architects
working on the project under study. The data set consisted of 312 objects whose qual-
ity was ranked by two architects as high, medium and low. The independent variables
included 19 different software metrics for each object. Both genetic algorithms and
GP were used to get best splitting of attribute domains for the decision tree and to get
a best decision tree. The GA chromosome was represented by a possible splitting for
all attributes. The fitness of the chromosome was evaluated using GP with two possi-
bilities of the fitness function: (i) When the number of data samples in each class was
comparable, K

N , where K = number of correctly specified data and N = number of data
samples in a training set. (ii) When the number of data samples in each class were not
comparable, ∏

c
i=1

ki+1
ni

, where c = number of different classes, ni = number of data
samples belonging to a class i and, finally, ki = number of correctly classified data of a
class i. The results showed that in comparison with architects’ classification of objects’
quality, the rate of successful classification for training data was around 66–72% for
the first and the second architect respectively.

In [167], the performance of GP based software quality classification is improved
by using a multi data set validation process. In this process, the hundred best models
were selected after training on a single data set. These models were then validated on
5 validation data sets. The models that performed the best on these validation data
sets were applied to the testing data set. The application of this technique to seven
different NASA software projects showed that the misclassification costs were reduced
in comparison with standard genetic programming solution.

Tables 4.3 and 4.41 show the relevant summary data extracted to answer the re-
search question from each of the primary studies within software quality classification.

4.3.2 Software cost/effort/size (CES) estimation
In line with what Jørgensen and Shepperd suggest in [120], we will use the term “cost”
and “effort” interchangeably since effort is a typical cost driver in software develop-
ment.

1The data sets in Table 4.4 are taken at a coarser level, e.g. ISBSG data ([113]) of multiple projects is 1
data set.

112

Chapter 4. Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review

Ta
bl

e
4.

3:
Su

m
m

ar
y

da
ta

fo
r

pr
im

ar
y

st
ud

ie
s

on
G

P
ap

pl
ic

at
io

n
fo

r
so

ft
w

ar
e

qu
al

ity
cl

as
si

fic
at

io
n.

(?
)

in
di

ca
te

s
ab

se
nc

e
of

in
fo

rm
at

io
n

an
d

(~
)i

nd
ic

at
es

in
di

ff
er

en
tr

es
ul

ts
.

A
rt

ic
le

D
ep

en
de

nt
va

ri
ab

le
Fi

tn
es

s
fu

nc
tio

n
C

om
pa

ri
so

n
gr

ou
p

E
va

lu
at

io
n

m
ea

su
re

s
G

P
be

tte
r?

[2
17

]
Fa

ul
t

pr
on

en
es

s
ba

se
d

on
nu

m
be

ro
ff

au
lts

M
in

im
iz

at
io

n
of

ro
ot

m
ea

n
sq

ua
re

N
eu

ra
l

ne
tw

or
ks

,
k-

ne
ar

es
t

ne
ig

hb
or

,
lin

ea
r

re
gr

es
si

on

A
cc

ur
ac

y
&

co
ve

ra
ge

~

[7
8]

Fa
ul

t
pr

on
en

es
s

ba
se

d
on

nu
m

be
ro

ff
au

lts
M

in
im

iz
at

io
n

of
ab

so
lu

te
er

ro
rs

as
w

el
la

s
m

ax
im

iz
at

io
n

of
be

st
pe

rc
en

ta
ge

of
ac

tu
al

fa
ul

ts
av

er
ag

ed
ov

er
th

e
pe

rc
en

til
e

le
ve

lo
f

in
te

re
st

R
an

do
m

ra
nk

or
de

ri
ng

R
an

ki
ng

on
th

e
ba

si
so

ff
au

lts
in

di
f-

fe
re

nt
pe

rc
en

til
e

ra
ng

es

√

[1
45

]
Fa

ul
t

pr
on

en
es

s
ba

se
d

on
nu

m
be

ro
ff

au
lts

M
in

im
iz

at
io

n
of

av
er

ag
e

co
st

of
m

is
cl

as
si

-
fic

at
io

n
an

d
m

in
im

iz
at

io
n

of
tr

ee
si

ze
St

an
da

rd
G

P
Ty

pe
I,

Ty
pe

II
an

d
ov

er
al

l
er

ro
r

ra
te

s

√

[1
68

]
Fa

ul
t

pr
on

en
es

s
ba

se
d

on
nu

m
be

ro
ff

au
lts

M
in

im
iz

at
io

n
of

th
e

av
er

ag
e

co
st

of
m

is
-

cl
as

si
fic

at
io

n
L

og
is

tic
re

gr
es

si
on

Ty
pe

I,
Ty

pe
II

an
d

ov
er

al
l

er
ro

r
ra

te
s

√

[1
40

]
N

um
be

r
of

fa
ul

ts
fo

r
ea

ch
so

ft
w

ar
e

m
od

ul
e

M
ax

im
iz

at
io

n
of

th
e

be
st

pe
rc

en
ta

ge
of

ac
-

tu
al

fa
ul

ts
av

er
ag

ed
ov

er
th

e
pe

rc
en

til
es

le
ve

l
of

in
te

re
st

an
d

co
nt

ro
lli

ng
th

e
tr

ee
si

ze

R
an

ki
ng

ba
se

d
on

lin
es

of
co

de
N

um
be

r
of

fa
ul

ts
ac

co
un

te
d

by
di

f-
fe

re
nt

cu
t-

of
fp

er
ce

nt
ile

s

√

[1
41

]
N

um
be

r
of

fa
ul

ts
fo

r
ea

ch
so

ft
w

ar
e

m
od

ul
e

M
ax

im
iz

at
io

n
of

th
e

be
st

pe
rc

en
ta

ge
of

ac
-

tu
al

fa
ul

ts
av

er
ag

ed
ov

er
th

e
pe

rc
en

til
es

le
ve

l
of

in
te

re
st

an
d

co
nt

ro
lli

ng
th

e
tr

ee
si

ze

R
an

ki
ng

ba
se

d
on

lin
es

of
co

de
N

um
be

r
of

fa
ul

ts
ac

co
un

te
d

by
di

f-
fe

re
nt

cu
t-

of
fp

er
ce

nt
ile

s

√

[1
66

]
Fa

ul
t

pr
on

en
es

s
ba

se
d

on
nu

m
be

ro
ff

au
lts

M
in

im
iz

at
io

n
of

ex
pe

ct
ed

co
st

of
m

is
cl

as
-

si
fic

at
io

n
an

d
co

nt
ro

lli
ng

th
e

tr
ee

si
ze

St
an

da
rd

G
P

N
um

be
r

of
ov

er
-fi

tti
ng

m
od

el
s

an
d

Ty
pe

I,
Ty

pe
II

er
ro

rr
at

es

√

[2
15

]
R

an
ki

ng
of

ob
je

ct
’s

qu
al

ity
(a

)
K N

(b
) ∏

c i=
1

k i
+

1
n i

Q
ua

lit
y

ra
nk

in
g

of
an

ob
-

je
ct

as
se

ss
ed

by
th

e
ar

-
ch

ite
ct

s

R
at

e
of

su
cc

es
sf

ul
cl

as
si

fic
at

io
n

fo
r

tr
ai

ni
ng

an
d

te
st

in
g

se
t

~

[1
67

]
Fa

ul
t

pr
on

en
es

s
ba

se
d

on
nu

m
be

ro
ff

au
lts

M
in

im
iz

at
io

n
of

th
e

ex
pe

ct
ed

co
st

of
m

is
-

cl
as

si
fic

at
io

n
an

d
co

nt
ro

lli
ng

th
e

tr
ee

si
ze

St
an

da
rd

G
P

Ty
pe

Ia
nd

Ty
pe

II
er

ro
rr

at
es

√

113

Chapter 4. Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review

Table 4.4: Data set characteristics for primary studies on GP application for software
quality classification. (?) indicates absence of information.

Article Data
sets
no.

Sampling of training and testing sets Industrial (I) or
academic (A)

Data sets public
or private

[217] 1 103 records for training and 60 records for
testing

? Private

[78] 2 2
3 modules for training and the rest for test-
ing

I Private

[145] 1 Approximately 2
3 for training and the rest

for testing
I Private

[168] 1 Approximately 2
3 for training and the rest

for testing and random subset selection
I Private

[140] 1 2
3 for training and the rest for testing, three
splits

I Private

[141] 2 2
3 for training and the rest for testing, three
splits

I Private

[166] 1 Training on release 1 data set, testing on
release 2,3,4 data sets

I Private

[215] 1 10 fold cross-validation I Private
[167] 7 1 training data set, 5 validation data sets

and 1 testing data set
I Private

We additionally take software size estimation to be related to either effort or cost
and discuss these studies in this same section. According to Crespo et al. [62], six
different artificial intelligence methods are common in software development effort
estimation. These are neural networks, case-based, regression trees, fuzzy logic, dy-
namical agents and genetic programming. We are here concerned with the application
of symbolic regression using genetic programming as the base technique.

In [73], five different data sets were used to estimate software effort with line of
code (LOC) and function points as the independent variables. Using the evaluation
measures of pred(0.25) and MMRE (mean magnitude of relative error), it was observed
that with respect to predictive accuracy, no technique was clearly superior. However,
neural networks and GP were found to be flexible approaches as compared with clas-
sical statistics.

In [71], different hypotheses were tested for estimating the size of the software in
terms of LOC. Specifically, the component-based method was validated using three dif-
ferent techniques of multiple linear regression, neural networks and GP. Three different
components were identified which included menus, input and reports. The independent
variables were taken to be the number of choices within the menus and the number of

114

Chapter 4. Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review

data elements and relations for inputs and reports. For evaluating the component-based
methodology in each project, six projects were selected having largest independent
variables within each type of the component. Using the evaluation measures of MMRE
and pred(0.25), it was observed that for linear relationships, small improvements ob-
tained by GP in comparison with multiple linear regression came at the expense of
the simplicity of the equations. However, it was also observed that the majority of the
linear equations were rediscovered by GP. Also GP and neural networks (NN) showed
superiority over multiple linear regression in case of non-linear relationship between
the independent variables. The conclusion with respect to GP was that it provided sim-
ilar or better values than regression equations and the GP solutions were also found to
be transparent. Regolin et al.[216] used a similar approach of estimating LOC from
function points and number of components (NOC) metric. Using GP and NN, the pre-
diction models using function points did not satisfy the criteria MMRE ≤ 0.25 and
pred(0.25) ≥ 0.75. However, the prediction models for estimating lines of code from
NOC metric were acceptable from both the NN and the GP point of view.

In [72], genetic programming and different types of standard regression analysis
(linear, logarithmic, inverse quadratic, cubic, power, exponential, growth and logistic)
were used to find a relationship between software size (independent variable) and cost
(dependent variable). The predictive accuracy measures of pred(0.25) and MMRE
showed that linear regression consistently obtained the best predictive values, with GP
achieving a significant improvement over classical regression in 2 out of 12 data sets.
GP performed well, pred(0.25), on most of the data sets but sometimes at the expense
of MMRE. This also indicated the potential existence of over-fitting in GP solutions. It
was also found that size alone as an independent variable for predicting software cost
is not enough since it did not define the types of economies of scale or marginal return
with clarity.

The study by Burgess et al. [45] extends the previous study from [72] by using 9
independent variables to predict the dependent variable of effort measured in person
hours. Using the Desharnais data set of 81 software projects, the study showed that
GP is consistently more accurate for MMRE but not for adjusted mean square error
(AMSE), pred(0.25) and balanced mean magnitude of relative error (BMMRE). The
study concluded that while GP and NN can provide better accuracy, they required more
effort in setting up and training.

In [222] the authors used grammar-guided GP on 423 projects from release 7 of the
ISBSG (The International Software Benchmarking Standards Group Limited [113])
data set to predict software project effort. The evaluation measures used were R-
squared, MSE, MMRE, pred(0.25) and pred(0.5). In comparison with linear and log-
log regression, the study showed that GP was far more accurate than simple linear
regression. With respect to MMRE, log-log regression was better than GP which led to

115

Chapter 4. Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review

the conclusion that GP maximizes one evaluation criterion at the expense of the other.
The study showed that grammar guided GP provides both a way to represent syntacti-
cal constraints on the solutions and a mechanism to incorporate domain knowledge to
guide the search process.

Lefley and Shepperd [161] used several independent variables from 407 cases to
predict the total project effort comparing GP, ANN, least squares regression, nearest
neighbor and random selection of project effort. With respect to the accuracy of the
predictions, GP achieved the best level of accuracy the most often, although GP was
found hard to configure and the resulting models could be more complex.

Tables 4.5 and 4.62 present the relevant summary data extracted to answer the re-
search question from each of the primary studies within software CES estimation.

4.3.3 Software fault prediction and reliability growth
Apart from studies on software quality classification (Section 4.3.1), where the pro-
gram modules are classified as being either fp or nfp, there are studies which are con-
cerned with prediction of either the fault content or software reliability growth.

In [123] the authors proposed the incorporation of existing equations as a way
to include domain knowledge for improving the standard GP algorithm for software
fault prediction. They specifically used Akiyama’s equations [12], Halstead’s equa-
tion [101], Lipow’s equation [165], Gaffney’s equation [86] and Compton’s equa-
tion [57] to add domain knowledge to a simple GP algorithm which is based on math-
ematical operators. Using the fitness function (1− standard error), six experiments
were performed using a NASA data set of 379 C functions. Five of these experi-
ments compared standard GP with GP enhanced with Akiyama’s, Halstead’s, Lipow’s,
Gaffney’s and Compton’s equations. The last experiment compared standard GP with
GP enhanced with all these equations simultaneously. The results showed that by in-
cluding explicit knowledge in the GP solutions, the fitness values for the GP solutions
increased.

In another study, [124], the same authors used another approach called data equal-
ization to compensate for data skewness. Specifically, duplicates of interesting training
instances (in this case functions with greater than zero faults) were added to the training
set until the total reached the frequency of most occurring instance (in this case func-
tions with zero faults). The fitness function used was: 1 + e(7∗(1−n−k)/(n−1)∗Se2/Sy2),
where k = number of inputs, n = number of valid results, Se = standard error and Sy =
standard deviation. Using the same data sets as before, the experimental results showed

2The data sets in Table 4.6 are taken at a coarser level, e.g. ISBSG data ([113]) of multiple projects is 1
data set.

116

Chapter 4. Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review

Ta
bl

e
4.

5:
Su

m
m

ar
y

da
ta

fo
rp

ri
m

ar
y

st
ud

ie
s

on
G

P
ap

pl
ic

at
io

n
fo

rs
of

tw
ar

e
C

E
S

es
tim

at
io

n.
(~

)i
nd

ic
at

es
in

di
ff

er
en

t
re

su
lts

.
A

rt
ic

le
D

ep
en

de
nt

va
ri

-
ab

le
Fi

tn
es

s
fu

nc
tio

n
C

om
pa

ri
so

n
gr

ou
p

E
va

lu
at

io
n

m
ea

su
re

s
G

P
be

tte
r?

[7
3]

So
ft

w
ar

e
ef

fo
rt

M
ea

n
sq

ua
re

d
er

ro
r

N
eu

ra
ln

et
w

or
ks

&
lin

ea
rr

eg
re

ss
io

n
pr

ed
(0

.2
5)

3
an

d
M

M
R

E
4

~
[7

1]
So

ft
w

ar
e

si
ze

M
ea

n
sq

ua
re

d
er

ro
r

N
eu

ra
ln

et
w

or
ks

&
m

ul
tip

le
lin

ea
rr

e-
gr

es
si

on
pr

ed
(0

.2
5)

an
d

M
M

R
E

~

[2
16

]
So

ft
w

ar
e

si
ze

M
M

R
E

N
eu

ra
ln

et
w

or
ks

pr
ed

(0
.2

5)
an

d
M

M
R

E
~

[7
2]

So
ft

w
ar

e
co

st
M

ea
n

sq
ua

re
er

ro
r

L
in

ea
r,

lo
ga

ri
th

m
ic

,
in

ve
rs

e
qu

ad
ra

tic
,c

ub
ic

,p
ow

er
,e

xp
on

en
tia

l,
gr

ow
th

an
d

lo
gi

st
ic

re
gr

es
si

on

pr
ed

(0
.2

5)
an

d
M

M
R

E
~

[4
5]

So
ft

w
ar

e
ef

fo
rt

M
M

R
E

ne
ur

al
ne

tw
or

ks
M

M
R

E
,

A
M

SE
5 ,

pr
ed

(0
.2

5)
,

B
M

M
R

E
6

~

[2
22

]
So

ft
w

ar
e

ef
fo

rt
M

ea
n

sq
ua

re
er

ro
r

L
in

ea
rr

eg
re

ss
io

n,
lo

g-
lo

g
re

gr
es

si
on

R
-s

qu
ar

ed
7 ,

M
M

R
E

,
pr

ed
(0

.2
5)

an
d

pr
ed

(0
.5

)
~

[1
61

]
So

ft
w

ar
e

ef
fo

rt
?

A
N

N
,l

ea
st

sq
ua

re
s

re
gr

es
si

on
,n

ea
r-

es
tn

ei
gh

bo
r

an
d

ra
nd

om
se

le
ct

io
n

of
pr

oj
ec

te
ff

or
t

Pe
ar

so
n

co
rr

el
at

io
n

co
ef

fic
ie

nt
of

ac
tu

al
an

d
pr

ed
ic

te
d,

A
M

SE
,

pr
ed

(0
.2

5)
,

M
M

R
E

,
B

M
M

R
E

,
w

or
st

ca
se

er
ro

r,
th

e
ea

se
of

se
tu

p
an

d
th

e
ex

pl
an

at
or

y
va

lu
e

~

3 Pr
ed

ic
tio

n
at

le
ve

l0
.2

5
4 M

ea
n

M
ag

ni
tu

de
of

R
el

at
iv

e
E

rr
or

5 A
dj

us
te

d
M

ea
n

M
ag

ni
tu

de
of

R
el

at
iv

e
E

rr
or

6 B
al

an
ce

d
M

ea
n

M
ag

ni
tu

de
of

R
el

at
iv

e
E

rr
or

7 C
oe

ffi
ci

en
to

fm
ul

tip
le

de
te

rm
in

at
io

n

117

Chapter 4. Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review

Table 4.6: Data set characteristics for primary studies on GP application for software
CES estimation.

Article Data
sets
no.

Sampling of training and testing sets Industrial (I) or
academic (A)

Data sets public
or private

[73] 5 a) Train and test a model with all the
points. b) Train a model on 66% of the data
points and test on 34% of the points

I Public & Pri-
vate

[71] 6 Train a model on 60 to 67 % of the data
points and test in 40 to 37%

A Public

[216] 2 Train on 2
3 and test on 1

3 I & A Public
[72] 12 Training and testing on all data points I & A Public
[45] 1 Training on 63 projects, testing on 18

projects
I Public

[222] 1 Random division of 50% in training set and
50% in testing set

I Public

[161] 1 149 projects in the training set and 15
projects in the testing set

I Public

that the average fitness values for the equalized data set were better than for the
original data set.

In [247], grammar-guided GP was used on NASA’s data set consisting of four
projects to measure the probability of detection, PD (the ratio of faulty modules found
to all known faulty modules) and false alarm rate, PF (the ratio of number of non-faulty
modules misclassified as faulty to all known non-faulty modules). The fitness func-
tion represented the coverage of knowledge represented in the individual, and equaled

t p
(t p+ f n) ∗

tn
(tn+ f p) where fp is the number of false positives, t p the number of true posi-

tives, tn the number of true negatives and f n the number of false negatives. The study
showed that grammar-guided GP performed better than naive Bayes on both measures
(PD and PF) in two of the projects’ data while in the rest of the two data, it was better
in one of the two measures.

We were also able to find a series of studies where the comparison group included
traditional software reliability growth models. Zhang et al. [266] used mean time
between failures (MTBF) time series to model software reliability growth using ge-
netic programming, neural networks (NN) and traditional software reliability models,
i.e. Schick-Wolverton, Goel-Okumoto, Jelinki-Moranda and Moranda. Using multi-
ple evaluation measures of short-term range error, prequential likelihood, model bias,
model bias trend, goodness of fit and model noise; the GP approach was found bet-
ter than the traditional software reliability growth models. However, it is not clear
from the study how neural networks performed against all the evaluation measures (ex-

118

Chapter 4. Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review

cept for the short-term range error where GP was better than neural networks). Also
it is not clear from the study what sampling strategy was used to split the data set
into training and testing set. The fitness function information is also lacking from the
study. The study is however extended in [267] with adaptive cross-over and mutation
probabilities, and the corresponding GP was named adaptive genetic programming. In
comparison with standard GP and the same reliability growth models (as used in the
previous study), the mean time between failures (MTBF) and the next mean time to
failure (MTTF) values for adaptive GP were found to be more accurate.

Afzal and Torkar [6] used fault data from three industrial software projects to
predict the software reliability in terms of number of faults. Three SRGMs (Goel-
Okumoto, Brooks and Motley, and Yamada’s S-shaped) were chosen for comparison
using the fitness function of sum of absolute differences between the obtained and ex-
pected results in all fitness cases, ∑

n
i=1 | ei−e

′
i |, where ei is the actual fault count data,

e
′
i the estimated value of the fault count data and n the size of the data set used to train

the GP models. The faults were aggregated on weekly basis and the sampling strategy
divided the first 2

3 of the data set into a training set and remaining 1
3 into a test set. Us-

ing prequential likelihood ratio, adjusted mean square error (AMSE), Braun statistic,
Kolmogorov-Smirnov tests and distribution of residuals, the GP models were found to
be more accurate for prequential likelihood ratio and Braun statistic but not for AMSE.
The goodness of fit of the GP models were found to be either equivalent or better than
the competing models used in the study. The inspection of the models’ residuals also
favored GP.

In [59], the authors used GP and GP with boosting to model software reliabil-
ity. The comparisons were done with time based reliability growth models (Jelinski-
Moranda and geometric), coverage-based reliability growth model (coverage-based
binomial model) and artificial neural network (ANN). The evaluation measures used
for time-based models included maximum deviation, average bias, average error, pre-
diction error and correlation coefficient. For coverage-based models, an additional
Kolmogorov-Smirnov test was also used. The fitness function used was weighted root

mean square error (WRMSE),
√

∑
m
i=1 (xi− xd

i)
2Dim where xi = real value, xd

i = esti-
mated value, Di = weight of each example and m = size of the data set. Using the
first 2

3 of the data set as a training set, it was observed that GP with boosting (GPB)
performed better than traditional models for models based on time. However, there was
no statistical difference between GP, GPB and ANN models. For models based on test
coverage, the GPB models’ results were found to be significantly better compared to
that of the GP and ANN models.

In [200], the authors used a modified GP algorithm called the µ + λ GP algorithm
to model software reliability growth. In the modified algorithm, n% of the best indi-

119

Chapter 4. Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review

viduals were applied the genetic operators in each generation. The genetic operators
generated λ individuals, which competed with their parents in the selection of µ best
individuals to the next generation where (λ > µ). The fitness function used was root

mean square error (RMSE), given by:
√

∑
n
i=1 |xi−xd

i |
n where xi is the real value, xd

i is the
estimated value and n is the size of the data set. Using measures as maximum devia-
tion, average bias, average error, prediction error and correlation coefficient; the results
favored modified GP algorithm. Additional paired two-sided t-tests for average error
confirmed the results in favor of modified GP with a statistically significant difference
in the majority of the results between the modified and standard GP algorithm.

Table 4.7 and Table 4.88 shows the relevant summary data extracted to answer the
research question from each of the primary studies within software fault prediction and
reliability growth.

4.4 Discussion and areas of future research
Our research question was initially posed to assess the efficacy of using GP for predic-
tion and estimation in comparison with other approaches. Based on our investigation,
this research question is answered depending upon the prediction and estimation of the
attribute under question. In this case, the attribute belonged to three categories:

1. Software fault proneness (software quality classification).

2. Software CES estimation.

3. Software fault prediction and software reliability growth modeling.

For software quality classification, seven out of nine studies reported results in favor
of using GP for the classification task. Two studies were inconclusive in favoring a
particular technique either because the different measures did not converge, as in [217],
or the proposed technique used GP for initial investigative purposes only, without being
definitive in the judgement of GP’s efficacy, as in [215] (these two studies are indicated
by the sign ~ in Table 4.3).

The other seven studies were co-authored by similar authors to a large extent and
the data sets also over-lapped between studies but these studies contributed in introduc-
ing different variations of the GP fitness function and also used different comparison
groups.

8The data sets in Table 4.8 are taken at a coarser level, e.g. ISBSG data ([113]) of multiple projects is 1
data set.

120

Chapter 4. Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review

Ta
bl

e
4.

7:
Su

m
m

ar
y

da
ta

fo
r

pr
im

ar
y

st
ud

ie
s

on
G

P
ap

pl
ic

at
io

n
fo

r
so

ft
w

ar
e

fa
ul

tp
re

di
ct

io
n

an
d

re
lia

bi
lit

y
gr

ow
th

.
(?

)
in

di
ca

te
s

ab
se

nc
e

of
in

fo
rm

at
io

n
an

d
(~

)i
nd

ic
at

es
in

di
ff

er
en

tr
es

ul
ts

.
A

rt
ic

le
D

ep
en

de
nt

va
ri

ab
le

Fi
tn

es
s

fu
nc

tio
n

C
om

pa
ri

so
n

gr
ou

p
E

va
lu

at
io

n
m

ea
su

re
s

G
P

be
t-

te
r?

[1
23

]
So

ft
w

ar
e

fa
ul

t
pr

ed
ic

-
tio

n
1
−

st
an

da
rd

er
ro

r
St

an
da

rd
G

P
Fi

tn
es

s
va

lu
es

√

[1
24

]
So

ft
w

ar
e

fa
ul

t
pr

ed
ic

-
tio

n
1
+

e(
7∗

(1
−

n−
k)

/(
n−

1)
∗S

e2 /
Sy

2)
St

an
da

rd
G

P
Fi

tn
es

s
va

lu
es

√

[2
47

]
So

ft
w

ar
e

fa
ul

t
pr

ed
ic

-
tio

n

tp
(t

p+
fn

)*
tn

(t
n+

fp
)

N
ai

ve
B

ay
es

PD
&

PF
~

[2
66

]
So

ft
w

ar
e

re
lia

bi
lit

y
?

N
eu

ra
ln

et
w

or
ks

an
d

tr
ad

iti
on

al
so

ft
w

ar
e

re
li-

ab
ili

ty
gr

ow
th

m
od

el
s

Sh
or

t-
te

rm
ra

ng
e

er
ro

r,
pr

eq
ue

nt
ia

l
lik

el
i-

ho
od

,m
od

el
bi

as
,m

od
el

bi
as

tr
en

d,
go

od
-

ne
ss

of
fit

an
d

m
od

el
no

is
e

√

[2
67

]
So

ft
w

ar
e

re
lia

bi
lit

y
?

Tr
ad

iti
on

al
so

ft
w

ar
e

re
lia

bi
lit

y
gr

ow
th

m
od

el
s

M
ea

n
tim

e
be

tw
ee

n
fa

ilu
re

s
an

d
ne

xt
m

ea
n

tim
e

to
fa

ilu
re

√

[6
]

So
ft

w
ar

e
re

lia
bi

lit
y

∑
n i=

1
|e

i−
e′ i
|

Tr
ad

iti
on

al
so

ft
w

ar
e

re
lia

bi
lit

y
gr

ow
th

m
od

el
s

Pr
eq

ue
nt

ia
ll

ik
el

ih
oo

d
ra

tio
,A

M
SE

,B
ra

un
st

at
is

tic
,

K
ol

m
og

or
ov

-S
m

ir
no

v
te

st
an

d
di

st
ri

bu
tio

n
of

re
si

du
al

s

√

[5
9]

So
ft

w
ar

e
re

lia
bi

lit
y

W
R

M
SE

9
Tr

ad
iti

on
al

so
ft

w
ar

e
re

lia
bi

lit
y

gr
ow

th
m

od
el

s
an

d
A

N
N

M
ax

im
um

de
vi

at
io

n,
av

er
ag

e
bi

as
,a

ve
ra

ge
er

ro
r,

pr
ed

ic
tio

n
er

ro
r,

co
rr

el
at

io
n

co
ef

fi-
ci

en
t,

K
ol

m
og

or
ov

-S
m

ir
no

v

√

[2
00

]
So

ft
w

ar
e

re
lia

bi
lit

y
R

M
SE

10
St

an
da

rd
G

P
M

ax
im

um
de

vi
at

io
n,

av
er

ag
e

bi
as

,a
ve

ra
ge

er
ro

r,
pr

ed
ic

tio
n

er
ro

ra
nd

co
rr

el
at

io
n

co
ef

-
fic

ie
nt

√

9 W
ei

gh
te

d
ro

ot
m

ea
n

sq
ua

re
er

ro
r

10
R

oo
tm

ea
n

sq
ua

re
er

ro
r

121

Chapter 4. Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review

Table 4.8: Data set characteristics for primary studies on GP application for software
fault prediction and reliability growth. (?) indicates absence of information.

Article Data
sets
no.

Sampling of training and testing sets Industrial (I) or
academic (A)

Data sets public
or private

[123] 1 ? I Public
[124] 1 ? I Public
[247] 1 10-fold cross-validation I Public
[266] 1 ? I Private
[267] 1 ? I Private
[6] 3 First 2

3 of the data set for training and the
rest for testing

I Private

[59] 2 First 2
3 of the data set for training and the

rest for testing
I Public & Pri-

vate
[200] 1 First 2

3 of the data set for training and the
rest for testing

I Public

cThese seven studies were in agreement that GP is an effective method for software
quality classification based on comparisons with neural networks, k-nearest neighbor,
linear regression and logistic regression. Also GP was used to successfully rank-order
software modules in a better way than the random ranking and the ranking done on the
basis of lines of code. Also it was shown that numerous enhancements to the GP algo-
rithm are possible hence improving the evolutionary search in comparison with stan-
dard GP algorithm. These enhancements include random subset selection and different
mechanisms to control excessive code growth during GP evolution. Improvements to
the GP algorithm gave better results in comparison with standard GP algorithm for two
studies [145, 166]. However, one finds that there can be two areas of improvement in
these studies: (i) Increasing the comparisons with more techniques. (ii) Increasing the
use of public data sets.

We also observe from Table 4.3 that multi-objective GP is an effective way to seek
near-optimal solutions for software quality classification in the presence of competing
constraints. This indicates that further problem-dependent objectives can possibly be
represented in the definition of the fitness function, which potentially can give bet-
ter results. We believe that in order to generalize the use of GP for software quality
classification, the comparison groups need to increase.

There are many different techniques that have been applied by researchers to soft-
ware quality classification, see e.g. [163]. GP needs to be compared with a more rep-
resentative set of techniques that have been found successful in earlier research—only
then can we be able to ascertain that GP is a competitive technique for software quality

122

Chapter 4. Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review

classification. We see from Table 4.4 that all the data sets were private. In this re-
gards, the publication of private data sets needs to be encouraged. Publication of data
sets would encourage other researchers to replicate the studies based on similar data
sets and hence we can have greater confidence in the correctness of the results. Nev-
ertheless, one encouraging trend that is observable from Table 4.4 is that the data sets
represented real world projects which adds to the external validity of these results.

For software CES estimation, there was no strong evidence of GP performing con-
sistently on all the evaluation measures used (as shown in Table 4.5). The sign ~ in
the last column of Table 4.5 shows that the results are inconclusive concerning GP. The
study results indicate that while GP scores higher on one evaluation measure, it lags
behind on others. There is also a trade-off between different qualitative factors, e.g.
complexity of interpreting the end solution, and the ease of configuration and flexibil-
ity to cater for varying data sets. The impression from these studies is that GP also
requires some effort in configuration and training. There can be different reasons re-
lated to the experimental design for the inconsistent results across the studies using
GP for software CES estimation. One reason is that the accuracy measures used for
evaluation purposes are not near to a standardized use. While the use of pred(0.25)
and MMRE are commonly used, other measures, including AMSE and BMMRE, are
also applied. It is important that researchers are aware of the merits/demerits of us-
ing these evaluation measures [85, 223]. Another aspect which differed between the
studies was the sampling strategies used for training and testing sets (Column 3, Ta-
ble 4.6). These different sampling strategies are also a potential contributing factor
in inconsistent model results. What is also observable from these studies is that over-
fitting is a common problem for GP. However, there are different mechanisms to avoid
over-fitting, such as random subset selection on the training set and placing limits on
the size of the GP trees. These mechanisms should be explored further.

As previously pointed out in Section 4.3.2, Crespo et al. [62] identified six artifi-
cial intelligence techniques applicable to software development effort estimation. It is
interesting to note that our literature search did not find any study, which compares all
of these techniques.

As for the studies related to software fault prediction and software reliability growth,
seven out of eight studies favor the use of GP in comparison with neural networks,
naive Bayes and traditional software reliability growth models (this is evident from the
last column in Table 4.7). However, as Table 4.8 showed, it was not clear from four
studies which sampling strategies were used for the training and testing sets. From two
of these four studies, it was also not clear what fitness function was used for the GP
algorithm. If, however, we exclude these four studies from our analysis, GP is still
a favorable approach for three out of four studies. With respect to comparisons with
traditional software reliability growth models, the main advantage of GP is that it is

123

Chapter 4. Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review

not dependent on the assumptions that are common in these software reliability growth
models. Also GP promises to be a valid tool in situations where different traditional
models have inconsistent results. Besides, we also observe that several improvements
to the standard GP algorithm are possible which provides comparatively better results.
Specifically, we see studies where the incorporation of explicit domain knowledge in
the GP modeling process has resulted in improved fitness values [123]. Table 4.7 also
shows that the variety of comparison groups is represented poorly; there is an oppor-
tunity to increase the comparisons with more techniques and also to use a commonly
used technique as a baseline.

For studies which were inconclusive in the use of GP for prediction/estimation, we
include quotations from the respective papers in Table 4.9 (an approach similar to the
one used in [176]) that reflects the indifference between GP and other approaches.

What is evident from these studies is the following:

1. The accuracy of GP as a modeling approach is attached to the evaluation mea-
sure used. The impression from these studies is that GP performs superior on
one evaluation measure at the cost of the other. This indicates that the GP fitness
function should not only be dependent on the minimization of standard error but
also biased in searching those solutions which reflect properties of other evalua-
tion measures, such as correlation coefficient.

2. The qualitative scores for GP models are both good and bad. While they might
be harder to configure and result in complex solutions, the results can never-
theless be interpreted to some extent. This interpretation can be in the form of
identifying the few significant variables [156]. But another key question is that
whether or not we are able to have a reasonable explanation of the relationship
between the variables. As an example, Dolado [71] provides the following equa-
tion generated by GP:

LOC = 50.7 + 1.501 ∗ data elements + data elements ∗ relations − 0.5581 ∗
relations

While this equation identifies the dependent variables, it is still difficult to ex-
plain the relationships. Simplification of resulting GP solutions is thus impor-
tant.

Based on the above discussion, we can conclude that while the use of GP as a pre-
diction tool has advantages, as presented in Section 4.3, there are, at the same time,
challenges to overcome as points 1 and 2 indicate above. We believe that these chal-
lenges offer promising future work to undertake for researchers.

124

Chapter 4. Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review

Ta
bl

e
4.

9:
Su

m
m

ar
y

of
th

e
st

ud
ie

s
sh

ow
in

g
in

co
nc

lu
si

ve
re

su
lts

in
us

in
g

G
P.

A
rt

ic
le

Q
uo

ta
tio

n
[2

17
]

W
hi

le
ge

ne
ra

lly
no

t
as

go
od

as
th

e
re

su
lts

ob
ta

in
ed

fr
om

ot
he

r
m

et
ho

ds
,

th
e

G
P

re
su

lts
ar

e
re

as
on

ab
ly

ac
cu

ra
te

bu
t

lo
w

on
co

ve
ra

ge
.

[2
15

]
T

he
ra

te
of

su
cc

es
sf

ul
cl

as
si

fic
at

io
ns

fo
r

tr
ai

ni
ng

da
ta

is
ar

ou
nd

66
an

d
72

%
fo

r
th

e
fir

st
ar

ch
ite

ct
an

d
th

e
se

co
nd

ar
ch

ite
ct

,
re

sp
ec

tiv
el

y.
In

th
e

ca
se

of
te

st
in

g
da

ta
th

e
ra

te
s

ar
e

55
an

d
63

%
.

[7
3]

H
ow

ev
er

,f
ro

m
th

e
po

in
to

fv
ie

w
of

m
ak

in
g

go
od

pr
ed

ic
tio

ns
,n

o
te

ch
ni

qu
e

ha
s

be
en

pr
ov

ed
to

be
cl

ea
rl

y
su

pe
ri

or
.

..
.F

ro
m

th
e

va
lu

es
sh

ow
n

in
th

e
ta

bl
es

,t
he

re
is

no
gr

ea
ts

up
er

io
ri

ty
of

on
e

m
et

ho
d

ve
rs

us
th

e
ot

he
rs

..
.G

P
ca

n
be

us
ed

as
an

al
te

rn
at

iv
e

to
lin

ea
rr

eg
re

ss
io

n,
or

as
a

co
m

pl
em

en
tt

o
it.

[7
1]

T
he

fin
al

im
pr

es
si

on
is

th
at

G
P

ha
s

w
or

ke
d

ve
ry

w
el

lw
ith

th
e

da
ta

us
ed

in
th

is
st

ud
y.

T
he

eq
ua

tio
ns

ha
ve

pr
ov

id
ed

si
m

ila
r

or
be

tte
rv

al
ue

s
th

an
th

e
re

gr
es

si
on

eq
ua

tio
ns

.F
ur

th
er

m
or

e,
th

e
eq

ua
tio

ns
ar

e
“i

nt
el

lig
ib

le
”,

pr
ov

id
in

g
co

nfi
de

nc
e

in
th

e
re

su
lts

.
..

.I
n

th
e

ca
se

of
lin

ea
rr

el
at

io
ns

hi
ps

,s
om

e
of

th
e

sm
al

li
m

pr
ov

em
en

ts
ob

ta
in

ed
by

G
P

co
m

pa
re

d
to

M
L

R
co

m
e

at
th

e
ex

pe
ns

e
of

th
e

si
m

pl
ic

ity
of

th
e

eq
ua

tio
ns

,b
ut

th
e

m
aj

or
ity

of
th

e
lin

ea
re

qu
at

io
ns

ar
e

re
di

sc
ov

er
ed

by
G

P.
[2

16
]

W
e

ca
nn

ot
co

nc
lu

de
G

P
is

a
be

tte
rt

ec
hn

iq
ue

th
an

N
N

.
..

.G
P

an
d

A
N

N
ar

e
va

lid
an

d
pr

om
is

in
g

ap
pr

oa
ch

es
to

si
ze

es
tim

at
io

n.
..

.H
ow

ev
er

,G
P

pr
es

en
ts

ad
di

tio
na

la
dv

an
ta

ge
s

w
ith

re
sp

ec
tt

o
N

N
.T

he
m

ai
n

ad
va

nt
ag

e
of

us
in

g
G

P
is

th
e

ea
sy

in
te

rp
re

ta
tio

n
of

re
su

lt.
[7

2]
Fr

om
th

e
po

in
to

f
vi

ew
of

th
e

ca
pa

bi
lit

ie
s

of
th

e
tw

o
m

et
ho

ds
,G

P
ac

hi
ev

es
be

tte
r

va
lu

es
in

th
e

pr
ed

(0
.2

5)
in

el
ev

en
ou

to
f

th
e

tw
el

ve
da

ta
se

ts
,b

ut
so

m
et

im
es

at
th

e
co

st
of

ha
vi

ng
a

sl
ig

ht
w

or
se

va
lu

e
of

th
e

M
M

R
E

.O
nl

y
in

da
ta

se
ts

A
an

d
H

,G
P

pr
ov

id
es

a
si

gn
ifi

ca
nt

im
pr

ov
em

en
to

ve
rc

la
ss

ic
al

re
gr

es
si

on
.

[4
5]

T
he

re
is

ev
id

en
ce

th
at

G
P

ca
n

of
fe

r
si

gn
ifi

ca
nt

im
pr

ov
em

en
ts

in
ac

cu
ra

cy
bu

tt
hi

s
de

pe
nd

s
on

th
e

m
ea

su
re

an
d

in
te

rp
re

ta
tio

n
of

ac
cu

ra
cy

us
ed

.
G

P
ha

s
th

e
po

te
nt

ia
lt

o
be

a
va

lid
ad

di
tio

na
lt

oo
lf

or
so

ft
w

ar
e

ef
fo

rt
es

tim
at

io
n

bu
ts

et
up

an
d

ru
nn

in
g

ef
fo

rt
is

hi
gh

an
d

in
te

rp
re

ta
tio

n
di

ffi
cu

lt
..

.
[2

22
]

L
og

re
gr

es
si

on
m

od
el

s
pe

rf
or

m
m

uc
h

w
or

se
th

an
G

P
on

M
SE

,a
bo

ut
th

e
sa

m
e

as
G

P
on

R
2

an
d

pr
ed

(0
.2

5)
,a

nd
be

tte
r

th
an

G
P

on
M

M
R

E
an

d
pr

ed
(0

.5
).

O
ne

w
ay

of
vi

ew
in

g
th

is
is

th
at

G
P

ha
s

m
or

e
ef

fe
ct

iv
el

y
fit

th
e

ob
je

ct
iv

e,
na

m
el

y
m

in
im

iz
in

g
M

SE
,a

t
th

e
co

st
of

in
cr

ea
se

d
er

ro
ro

n
ot

he
rm

ea
su

re
s.

[1
61

]
T

he
re

su
lts

do
no

tfi
nd

a
cl

ea
r

w
in

ne
r

bu
t,

fo
r

th
is

da
ta

,G
P

pe
rf

or
m

s
co

ns
is

te
nt

ly
w

el
l,

bu
ti

s
ha

rd
er

to
co

nfi
gu

re
an

d
pr

od
uc

es
m

or
e

co
m

pl
ex

m
od

el
s.

[2
47

]
In

tw
o

of
th

e
da

ta
ba

se
s,

ou
r

m
od

el
is

pr
ov

ed
su

pe
ri

or
to

th
e

ex
is

tin
g

lit
er

at
ur

e
in

bo
th

co
m

pa
ri

so
n

va
ri

ab
le

s,
an

d
in

th
e

re
st

tw
o

da
ta

ba
se

s,
th

e
sy

st
em

is
sh

ow
n

be
tte

ri
n

on
e

of
th

e
tw

o
va

ri
ab

le
s.

125

Chapter 4. Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review

4.5 Validity threats
We assume that our review is based on studies which were unbiased. If this is not the
case, then the validity of this study is also expected to suffer [176]. Also, like any other
systematic review, this one too is limited to making use of information given in the
primary studies [152]. There is also a threat that we might have missed a relevant study
but we are confident that both automated and manual searches of the key information
sources (Section 4.2.2) have given us a complete set. Our study selection procedure
(Section 4.2.3) is straightforward and the researchers had agreement on which studies
to include/exclude. However, this review does not cover unpublished research that had
undesired outcome and company confidential results.

4.6 Conclusions
This systematic review investigated whether symbolic regression using genetic pro-
gramming is an effective approach in comparison with machine learning, regression
techniques and other competing methods. The results of this review resulted in a total
of 24 primary studies; which were further classified into software quality classification
(nine studies), software CES estimation (seven studies) and fault prediction/software
reliability growth (eight studies).

Within software quality classification, we found that in seven out of nine stud-
ies, GP performed better than competing techniques (i.e. neural networks, k-nearest
neighbor, linear regression and logistic regression). Different enhancements to the
standard GP algorithm also resulted in more accurate quality classification, while GP
was also more successful in rank-ordering of software modules in comparison with
random ranking and ranking based on lines of code. We concluded that GP seems to
be an effective method for software quality classification. This is irrespective of the
fact that one author was part of seven out of nine primary studies and the fact that there
was an overlap of data sets used across the studies. This is because we considered
each of these primary studies representing a distinct contribution in terms of different
algorithmic variations.

For software CES estimation, the study results were inconclusive in the use of GP as
an effective approach. The main reason being that GP optimizes one accuracy measure
while degrades others. Also the experimental procedures among studies varied, with
different strategies used for sampling the training and testing sets. We were therefore
inconclusive in judging whether or not GP is an effective technique for software CES
estimation.

The results for software fault prediction and software reliability growth modeling

126

Chapter 4. Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review

leaned towards the use of GP, with seven out of eight studies resulting in GP perform-
ing better than neural networks, naive Bayes and traditional software reliability growth
models. Although four out of these eight studies lacked in some of the quality instru-
ments used in Table A.1 (Appendix A); still three out of the remaining four studies
reported results in support of GP. We therefore concluded that the current literature
provides evidence in support of GP being an effective technique for software fault pre-
diction and software reliability growth modeling.

Based on the results of the primary studies, we can offer the following recommen-
dations. Some of these recommendations refer to other researchers’ guidelines which
are useful to reiterate in the context of this study.

1. Use public data sets wherever possible. In case of private data sets, there are ways
to transform the data sets to make it public domain (e.g., one such transformation
is discussed in [259]).

2. Apply commonly used sampling strategies to help other researchers replicate,
improve or refute the established predictions and estimations. From our sample
of primary studies, the sampling strategy of 2

3 for training, remaining 1
3 for test-

ing and 10-fold cross validation are mostly used. Kitchenham et al. [152] recom-
mends using a jackknife approach with leave-one-out cross-validation process;
this needs to be validated further.

3. Avoiding over-fitting in GP solutions is possible and is beneficial to increase the
generalizability of model results in the testing data set. The primary studies in
this review offer important results in this regards.

4. Always report the settings used for the algorithmic parameters (also suggested
in [25]).

5. Compare the performances against a comparison group which is both commonly
used and currently an active field of research. For our set of primary studies,
comparisons against different forms of statistical regression and artificial neural
networks can be seen as a baseline for comparisons.

6. Use statistical experimental design techniques to minimize the threat of differ-
ences being caused by chance alone [191].

7. Report the results even if there is no statistical difference between the quality of
the solutions produced by different methods [25].

127

Chapter 4. Genetic programming versus other techniques for software engineering
predictive modeling: A systematic review

128

Chapter 5

A systematic review of
search-based testing for
non-functional system
properties

5.1 Introduction

Search-based software engineering (SBSE) is the application of optimization tech-
niques in solving software engineering problems [105, 103]. The applicability of op-
timization techniques in solving software engineering problems is suitable as these
problems frequently encounter competing constraints and require near optimal solu-
tions. Search-based software testing (SBST) research has attracted much attention in
recent years as part of a general interest in SBSE approaches. The growing interest in
SBST can be attributed to the fact that generation of software tests is generally con-
sidered as an undecidable problem, primarily due to the many possible combinations
of a program’s input [182]. All approaches to SBST are based on satisfaction of a
certain test adequacy criterion represented by a fitness function [103]. McMinn [182]
has written a comprehensive survey on search-based software test data generation. The
survey shows the application of metaheuristics in white-box, black-box and grey-box
testing. Within the domain of non-functional testing, the survey indicates the appli-
cation of metaheuristic search techniques for checking the best-case and worst-case

129

Chapter 5. A systematic review of search-based testing for non-functional system
properties

execution times (BCET, WCET) of real-time systems. McMinn highlights possible
directions of future research into non-functional testing, which includes searching for
input situations that break memory or storage requirements, automatic detection of
memory leaks, stress testing and security testing. Our work extends the survey by
McMinn [182] as it analyses actual evidence supporting McMinn’s ideas of future di-
rections in search-based testing of non-functional properties. Moreover, we anticipated
studies making use of search-based techniques to test non-functional properties not
highlighted by McMinn. This work also supports McMinn’s survey by finding further
evidence into search-based execution time testing. Another review by Mantere and
Alander [178] highlights work using evolutionary computation within software engi-
neering, especially software testing. According to the review, genetic algorithms are
highly applicable in testing coverage, timings, parameter values, finding calculation
tolerances, bottlenecks, problematic input combinations and sequences. This study
also extends and supports Mantere and Alander’s review in actually finding the evi-
dence in support of proposed future extensions.

Within non-functional search-based software testing (NFSBST) research, it is both
important and interesting to know the extent of application of metaheuristic search
techniques to non-functional testing, not covered by previous studies. This allows us to
identify potential non-functional properties suitable for applying these techniques and
provides an overview of existing non-functional properties tested using metaheuristic
search techniques. In this paper, after identifying existing non-functional properties,
we review each of the properties to determine any constraints and limitations. We
also identify the range of different fitness functions used within each non-functional
property, since the fitness function is crucial in guiding search into promising areas of
solution space and is the differentiating factor between quality of different solutions.
The contribution of this review is therefore an exploration of non-functional properties
tested using metaheuristic search techniques, identification of constraints and limita-
tions encountered and an analysis of different fitness functions used to test individual
non-functional property.

Section 5.2 describes the method of our systematic review that includes the research
questions, search strategy, study selection criteria, study quality assessment and data
extraction. Sections 5.3 and 5.4 discusses the results, synthesis of findings, areas of
future research and validity threats. Conclusions are presented in Section 5.6.

5.2 Method
A systematic review is a process of assessment and interpretation of all available re-
search related to a research question or subject of interest [150]. Kitchenham [150] also

130

Chapter 5. A systematic review of search-based testing for non-functional system
properties

describes several reasons of undertaking a systematic review, the most common are to
synthesize the available research concerning a treatment or technology, identification
of topics for further investigation and formulation of a background in positioning new
research activities.

This section describes our review protocol, consisting of several steps as outlined
in [150].

5.2.1 Research questions
In order to examine the evidence of testing non-functional properties using metaheuris-
tic search techniques, we have the following research questions:

• RQ 1. In which non-functional testing areas have metaheuristic search tech-
niques been applied?

After having identified these areas, we have three additional research questions
applicable in each area:

• RQ 1.1. What are the different metaheuristic search techniques used for testing
each non-functional property?

• RQ 1.2. What are the different fitness functions used for testing each non-
functional property?

• RQ 1.3. What are the current challenges or limitations in the application of
metaheuristic search techniques for testing each non-functional property?

The population in this study is the domain of software testing. Intervention includes
application of metaheuristic search techniques to test different types of non-functional
properties. The comparison intervention is not applicable in our case as our research
questions are not aimed at making a comparison. However, we discuss the comparisons
within the scope of each primary study to support our argumentation of obtained results
in Section 5.4.

The outcome of our interest represents different types of non-functional testing that
use metaheuristic search techniques. In terms of context and experimental design, we
do not enforce any restrictions.

5.2.2 Generation of search strategy
The search strategy was based on the following steps:

131

Chapter 5. A systematic review of search-based testing for non-functional system
properties

1. Identification of alternate words and synonyms for terms used in the research
questions. This is done to minimize the effect of differences in terminologies.

2. Identify common non-functional properties for searching. We take non-functional
properties as to encompass the three aspects of software quality defined in
ISO/IEC 9126-1 [114]. These aspects are quality in use, external quality and
internal quality. Quality in use refers to software product quality in a specific
context of use, while external quality is the quality observable at software exe-
cution. Lastly, internal quality is measured against the internal quality require-
ments.

Since there are different systems of categorizing non-functional properties, we
take guidance from four existing taxonomies to aid our search strategy and to
have a representative set of non-functional properties. These are Boehm soft-
ware quality model (as described in [83]), ISO/IEC 9126-1 [114], IEEE Standard
830-1998 [1] and Donald G. Firesmith’s taxonomy [84]. The non-functional
properties used for searching are usability, safety, robustness, capacity, integrity,
efficiency, reliability, maintainability, testability, flexibility, reusability, porta-
bility, interoperability, security, performance, availability and scalability. To
cover other potential non-functional properties, we explicitly used the term ‘non-
functional’ in our search strings.

The non-functional properties obtained from existing taxonomies are restricted
to high-level external attributes only for the sole purpose of guiding the search
strategy. The different non-functional testing areas that are discussed later in the
paper cannot be mapped one to one with these listed non-functional properties.
Therefore, while quality of service includes attributes; namely availability and
reliability, we have retained the term quality of service for the later part of the
paper to better reflect the terms as used by the original authors. Similarly, one can
argue execution time to fit under performance, but we stick to the term execution
time in the later part of the paper to remain consistent with the terms used by the
original authors.

3. Use of Boolean OR to join alternate words and synonyms.

4. Use of Boolean AND to join major terms.

We used the following search terms:

• Population: testing, software testing, testing software, test data generation, au-
tomated testing, automatic testing.

132

Chapter 5. A systematic review of search-based testing for non-functional system
properties

• Intervention: evolutionary, heuristic, search-based, metaheuristic, optimization,
hill-climbing, simulated annealing, tabu search, genetic algorithms, genetic pro-
gramming.

• Outcomes non-functional, safety, robustness, stress, security, usability, integrity,
efficiency, reliability, maintainability, testability, flexibility, reusability, portabil-
ity, interoperability, performance, availability, scalability

We used a two-phase strategy for searching. In the first phase, we searched elec-
tronic databases and performed a manual search of specific conference proceedings and
journals. We selected 1996 as the starting year for the search since this year marked the
first publication of the application of genetic algorithms to execution time testing [182]
(one of the earliest non-functional properties to be tested using metaheuristic search
techniques). We searched within the following electronic databases:

• IEEEXplore

• EI Compendex

• ISI Web of Science (WoS)

• ACM Digital Library

In the first phase of the search strategy, we piloted the search strings thrice for the
year 2007, each time refining them to eliminate irrelevant hits. We found it as a use-
ful activity to pilot the search strings in iterations as it resulted in much refinement of
search results. It also helped us to deal with the challenging task of balancing com-
prehensiveness versus precision of our search. We applied separate search strings for
searching within titles, abstracts and keywords. Complete search strings are given in
Appendix C.

We manually searched selected journals (J) and conference proceedings (C). These
journals and conferences were chosen as they had previously published primary stud-
ies relevant to our domain. They include: Real Time Systems Symposium (RTSS)
(C), Real Time Systems (RTS) (J), Genetic and Evolutionary Computation Conference
(GECCO)1—Search-based Software Engineering (SBSE) Track (C), Software Testing,
Verification and Reliability (STVR) (J) and Software Quality Journal (SQJ) (J).

We initiated a second phase of search to have a more representative set of primary
studies. In this phase, we scanned the reference lists of all the primary studies to
identify further papers. We then contacted the researchers who authored most of the

1GECCO was not part of ACM until 2005.

133

Chapter 5. A systematic review of search-based testing for non-functional system
properties

papers in a particular non-functional area for additional papers. Moreover, we scanned
the personal web pages maintained by these researchers. A total of four researchers
were contacted. Figure 5.1 shows our two-phase search strategy.

Figure 5.1: The two-phase search strategy.

In order to assess the results of the search process, we compared the results with
a small sample of primary studies we already knew about ([253, 243, 36]), to ensure
that the search process was able to find the sample (as described in [152]). All the
three known papers were found using nine sources, namely (IEEE Xplore, Compendex,
Web of Science, ACM Digital Library, Real-Time Systems Symposium (C), Real-Time
Systems (J), GECCO SBSE track (C), Software Testing, Verification and Reliability
(J), Software Quality Journal (J)).

5.2.3 Study selection criteria and procedures for including and ex-
cluding primary studies

Metaheuristic search techniques have been applied across different engineering and
scientific disciplines. Within software testing, metaheuristic search techniques have
found application in different phases, from planning to execution. Therefore, it is im-
perative that we define comprehensive inclusion/exclusion criteria to select only those
primary studies that provide evidence related to the research questions. The following
exclusion criteria is applicable in this review, i.e. exclude studies that:

• Do not relate to software engineering/development.

• Do not relate to software testing.

134

Chapter 5. A systematic review of search-based testing for non-functional system
properties

• Do not report application of metaheuristics. (We consider metaheuristics to
include hill-climbing, simulated annealing, tabu search, ant colony methods,
swarm intelligence and evolutionary methods [46].)

• Describe search-based testing approaches, which are inherently structural (white-
box), functional (black-box) or grey-box (combination of structural and func-
tional). Grey-box testing includes assertion testing and exception condition test-
ing [182]. This exclusion criterion is relaxed to include those studies where a
structural test criterion is used to test non-functional properties, e.g. [24].

• Are not related to the testing of the end product, e.g. [264].

• Are related to test planning, e.g. [64].

• Make use of model checking and formal methods, e.g. [68, 15].

• Report performance of a particular metaheuristic instead of its application to
software testing, e.g. [154].

• Report on test case prioritization, e.g. [251].

• Are used for prediction and estimation of software properties, e.g. [30].

The first phase of research resulted in a total of 501 papers. After eliminating
duplicates found by more than one electronic database, we were left with 404 papers.
Table 5.1 shows the distribution of papers before duplicate removal among different
sources.

Table 5.1: Distribution of papers before and after duplicate removal among different
publication sources.

Source Count
IEEE Xplore 209 (179)
EI Compendex 140 (87)
ISI Web of Science 61 (48)
ACM Digital Library 58 (57)
Conferences and Journals 33 (33)
Total 501 (404)

The exclusion was done using a tollgate approach (Figure 5.2). To begin with, a
single researcher excluded 37 references out of a total of 404 primarily based on ti-
tle and abstract, which were clearly out of scope and did not relate to the research

135

Chapter 5. A systematic review of search-based testing for non-functional system
properties

Figure 5.2: Multi-step filtering of studies (tollgate approach) and final number of pri-
mary studies.

question. The remaining 367 references were subject to detailed exclusion criteria,
which involved three researchers. First, each researcher applied the exclusion criteria
independently. Out of 367 references, the three researchers were in agreement on 229
references to exclude, 25 to include and 113 required a meeting to reach consensus. In
the meeting, the researcher in the minority for a paper tried to convince others; oth-
erwise the majority decision was taken. This application of detailed exclusion criteria
resulted in 60 remaining references, which were further filtered out by reading the full-
text. A final figure of 24 primary studies was reached after excluding similar studies
that were published in different venues. The 24 primary studies were complemented
with 11 more papers from phase 2 of the search strategy (Figure 5.1). The fact that we
gathered 11 papers from phase 2 of the search strategy indicates that making a generic
search string that would give the entire relevant set of primary studies from searching
only within electronic databases is difficult in the field of study under investigation.
The terminologies used by various authors differed a lot; both in terms of specifying
the non-functional property and the used metaheuristic. As an example, if we consider
the primary study [133], identified using phase 2, we observed that although it does
mention using genetic programming in the title, it does not mention the target non-
functional property of security. Similarly, in the abstract and key words, we do not
find words synonymous to testing. Therefore, we believe that the phase 2 of the search

136

Chapter 5. A systematic review of search-based testing for non-functional system
properties

strategy helped us to gather a more representative set of primary studies.

5.2.4 Study quality assessment and data extraction

Since we did not impose any restriction in terms of any specific research method or ex-
perimental design, therefore the study quality assessment covered both quantitative and
qualitative studies. The quality data can be used to devise a detailed inclusion/exclusion
criteria and/or to assist data analysis and synthesis [150]. We applied the study quality
assessment primarily as a means to guide the interpretation of findings for data anal-
ysis and synthesis [150], so as to avoid any misinterpretation of results due to study
quality. We did not assign any scores to the criterion (because our aim was not to rank
studies according to an overall quality score) but used a binary ‘yes’ or ‘no’ scale [76].
Table B.1 in Appendix B shows the application of the study quality assessment criteria
where a (

√
) indicates ‘yes’ and (×) indicates ‘no’. Most of our developed criteria were

fulfilled by all of the studies, exceptions being [94, 91, 36, 24, 206] where evidence
of a comparison group was missing, but these quality differences were not found to be
largely confounded with study outcomes. What follows next is the list of developed
criteria:

• Is the reader able to understand the aims of the research?

• Is the context of study clearly stated, that includes population being studied
(e.g. academic vs. industrial) and tasks to be performed by population (e.g. small
scale vs. large scale)

• Was there a comparison or control group?

• Are the measures used in the study fully defined [150]?

• Is there an adequate description of the data collection methods?

• Does the data collection methods relate to the aims of the research?

• Is there a description of the method used to analyze data?

• Are the findings clearly stated and relate to the aims of research?

• Is the research useful for software industry and research community?

• Do the conclusions relate to the aim and purpose of research defined?

137

Chapter 5. A systematic review of search-based testing for non-functional system
properties

We designed a data extraction form to collect information needed to address the
review questions and data synthesis. Study quality data was not part of data extraction
form as it was assessed separately. To assess the consistency of data extraction, a small
sample of primary studies were used to extract data for the second time. In addition to
the standard information of title, author(s), journal and publication details; the data ex-
traction form included information about main theme of study, motivation for the main
theme, type of non-functional testing addressed, type of metaheuristic search technique
used, examples of application of approach, constraints/limitations in the application of
the metaheuristic search technique, identified areas of future research and major con-
clusion. For each primary study, we further extracted the information relating to the
method of evaluation, number of test objects, performance factor evaluated and the
experimental outcomes.

5.3 Results and synthesis of findings
In this section we describe the descriptive evaluation of the assessed literature in rela-
tion to the research questions. The 35 primary studies were related to the application
of metaheuristic search techniques for testing five non-functional properties: execution
time, quality of service (QoS), security, usability, and safety. The number of primary
studies describing each non-functional property is: 15 (execution time), 2 (quality of
service), 7 (security), 7 (usability) and 4 (safety). Relevant information describing the
distribution of primary studies within each non-functional property is shown in Ta-
ble 5.2.

Figure 5.3 shows the year-wise distribution of primary studies within each non-
functional property as well as the frequency of application of different metaheuris-
tics [9]. The bubble at the intersection of axes contains the actual number of contribu-
tion(s). It is evident from the figure that genetic algorithms are the most widely used
metaheuristic with applications in 21 papers across different types of non-functional
testing. In the left portion of Figure 5.3, each bubble represents the actual number of
primary studies within each non-functional area in respective years from 1996–2007.
More details on Figure 5.3 can be found in [9] which is a systematic mapping study,
giving a broad overview of studies without reviewing the studies in detail.

5.3.1 Execution time
The application of evolutionary algorithms to test real-time requirements in embedded
computer systems involves finding the best and worst case execution times (BCET,
WCET) to determine if timing constraints are fulfilled. A violation of the timing con-

138

Chapter 5. A systematic review of search-based testing for non-functional system
properties

Table 5.2: Distribution of primary studies per non-functional area.
Non-functional property Author(s) Year Reference
Execution time (42.86%) Wegener et al. 1996 [252]

Alander et al. 1997 [14]
Wegener et al. 1997 [255]
Wegener et al. 1998 [253]
O’Sullivan et al. 1998 [203]
Tracey et al. 1998 [245]
Mueller et al. 1998 [185]
Puschner et al. 1998 [211]
Pohlheim et al. 1999 [207]
Wegener et al. 2000 [254]
Groß et al. 2000 [94]
Groß 2001 [91]
Groß 2003 [92]
Briand et al. 2005 [36]
Tlili et al. 2006 [243]

Quality of service (5.71%) Canfora et al. 2005 [51]
Di Penta et al. 2007 [69]

Security (20%) Dozier et al. 2004 [75]
Kayacik et al. 2005 [132]
Budynek et al. 2005 [44]
Del Grosso et al. 2005 [96]
Kayacik et al. 2006 [131]
Kayacik et al. 2007 [133]
Del Grosso et al. 2007 [95]

Usability (20%) Stardom 2001 [233]
Cohen et al. 2003 [55]
Cohen et al. 2003 [56]
Cohen et al. 2003 [174]
Nurmela 2004 [196]
Shiba et al. 2004 [225]
Bryce et al. 2007 [42]

Safety (11.43%) Tracey et al. 1999 [246]
Abdellatif-Kaddour et al. 2003 [2]
Baresel et al. 2003 [24]
Pohlheim et al. 2005 [206]

139

Chapter 5. A systematic review of search-based testing for non-functional system
properties

Non-functional
property

Safety

Usability

 Security

Quality of
service

Execution
time

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 GASA GE LGP HC,SA,
TS

GA,
PSO

TS,SA,
GA

SA,
HC

TS AC,
GA

GA,
SA

Year Range of metaheuristics

1

GA = genetic algorithm
SA = simulated annealing
GE = grammatical evolution
LGP = linear genetic programming
PSO = particle swarm optimization
TS = tabu search
HC = hill climbing
AC = ant colony

2 1 1 1 2

1 3 2 1 2 1 1 1 1 1

1 3 1 2 1 2 1 3

2

1 14

1 1

111121521

Figure 5.3: Distribution of NFSBST research over range of applied metaheuristics and
time period (adapted from [9]).

straint or temporal error means that either the outputs are produced too early, or their
computation takes too long [253]. The use of evolutionary computation to find the
input situations causing longest or shortest execution times is an example of evolu-
tionary testing. Evolutionary testing is seen as a promising approach for verifying
timing constraints and a number of studies proving the efficacy of the approach can
be found in literature. This dynamic approach to verify timing constraints involves
testing the run-time behavior of an embedded system based on execution in an appli-
cation environment. Testing of real-time systems is found to be costly as compared
to conventional applications as additional requirements of timeliness, simultaneity and
predictability needs to be tested. Although there are numerous methods to test logical
correctness, the lack of support for testing temporal behavior [185] motivated the use
of evolutionary computation in testing extreme execution times.

In [252], genetic algorithms (GA) were used to search for input situations that
produce very long or very short execution times. The fitness function used was the
execution time of an individual measured in micro seconds. The experimental results
using a simple C function showed that the longest execution time of 26.27 µsec was
found very quickly with GA in less than 20 generations. Moreover, a new shortest
execution time of 5.27 µsec, which was not discovered by statistical and systematic
testing, was found. This study marks one of the earliest use of GA to test temporal

140

Chapter 5. A systematic review of search-based testing for non-functional system
properties

correctness of real-time systems.
Alander et al. [14] presented experiments performed in a simulator environment to

measure response time extremes of protection relay software using genetic algorithms.
The fitness function used was the response time of the tested software. The results
showed that GA generated more input cases with longer response times. In [255],
experiments were performed using genetic algorithms involving five test objects from
different application domains having varying lines of code and integer input parame-
ters.

This time the fitness function used was the execution time measured in terms of pro-
cessor cycles rather than seconds. The results show that GA consistently outperformed
random testing by finding more extreme times.

The research community soon realized the benefits of measurement in terms of pro-
cessor cycles; being more precise and independent of the interrupts from the operating
system (e.g. context switching and paging). Also measurement in terms of processor
cycles is deterministic in the sense that it is independent of system load and results in
the same execution times for the same set of input parameters. However, such a mea-
surement is dependent on the compiler and optimizer used, therefore, the processor
cycles differ for each platform [255].

Wegener and Grochtmann [253] continued further with experimentation to compare
evolutionary testing (using genetic algorithms) with random testing. The fitness func-
tion used was duration of execution measured in processor cycles. This time the range
of input parameters was raised to 5,000. The results showed that, with a large number
of input parameters, evolutionary testing obtained more extreme execution times with
less or equal testing effort than random testing. In order to better evaluate the appli-
cation of evolutionary testing, Groß et al. [93] presented the design of an operational
experimental environment for evolutionary testing with the integration of a commer-
cially available timing package.

The aforementioned experimental results identified several limitations when us-
ing evolutionary testing. The instrumentation required for the software under test
(SUT), which extends the executable programming code by inserting hardware de-
pendent counting instructions, is bound to affect the execution times. Also as a typical
search strategy, it is difficult to ensure that the execution times generated in the experi-
ments represents global optimum. More experimentation is also required to determine
the most appropriate and robust parameters. Lastly, there is a need for an adequate
termination criterion to stop the search process.

In [203], cluster analysis was used on the population from the most recent genera-
tion to determine if GA should terminate. Execution time measured in processor cycles
was used as a fitness function and a complex algorithm from the domain of automotive
electronics was used for seven runs of GA. Cluster analysis was performed on the final

141

Chapter 5. A systematic review of search-based testing for non-functional system
properties

population (generation 399) of each run. With cluster analysis, it was possible to ex-
amine which of the test runs converged to local optima and thus continuing with these
runs would not yield better results. The results of the study demonstrated the potential
of incorporating cluster analysis as a useful termination criterion for evolutionary tests
and suggested appropriate changes in the search strategy to include cluster analysis
information.

Tracey et al. [245] applied simulated annealing (SA) to test four simple programs
for WCET as part of a generalized test data generation framework. The fitness function
used is the measure of actual dynamic execution time. The WCET of the programs was
already known and a valid test case was one that exercised a path yielding the already
known WCET. The results of the experiment showed that the use of SA was more ef-
fective with larger parameter space. The authors highlighted the need of a detailed
comparison of various optimization techniques to explore WCET and BCET of the
SUT. With this goal in mind, Pohlheim and Wegener [207] used an extension of ge-
netic algorithms making use of multiple sub-populations, each using a different search
strategy. The authors name the approach as extended evolutionary algorithms. The du-
ration of execution measured in processor cycles was taken as the fitness function. The
extended evolutionary algorithm was applied on two test objects. The first test object
was the bubble sort algorithm and the results from this experiment was used to find
appropriate evolutionary parameters for the second test object which contained soft-
ware modules from a motor control project. The evolutionary algorithm found longer
execution times for all the given modules in comparison with systematic testing.

As mentioned earlier, it is difficult to ensure that the execution times generated in
the experiments represent a global optimum. Therefore it appears interesting to com-
pare the results of evolutionary testing with static analysis to find a bound within which
WCET and BCET might lie. Mueller et al. [185] presented such a comparison. Both
approaches were used in five experiments to determine the WCET and BCET of dif-
ferent programs. Three programs were from real-time systems while the remaining
two were general-purpose algorithms. The fitness function used is the execution time
measured in processor cycles. The results showed that methods of static analysis and
evolutionary testing bound the actual execution times. For WCET, the estimates of
static analysis provided an upper bound while the measurements of evolutionary test-
ing yielded a lower bound. Conversely, static analysis’ estimates provided a lower
bound for BCET while evolutionary testing measurements constituted an upper bound.
In [211], genetic algorithms were applied to find WCET for seven programs and the re-
sults were compared with those from random search, static analysis and best effort tim-
ings that were researchers’ own efforts to find input data to yield WCET. The execution
time measured in processor cycles as well as time units were used as a fitness function
for different programs. Genetic algorithms found the same or longer times than random

142

Chapter 5. A systematic review of search-based testing for non-functional system
properties

search. In comparison with best effort timings, genetic algorithms matched the timings
and found a longer time in one case, while in comparison with static analysis, the upper
bounds were not broken but were matched on several occasions. In another study, We-
gener et al. [254] used genetic algorithms to test temporal behavior of six time critical
tasks in an engine control system, with the fitness function used was execution time
measured in processor cycles. Genetic algorithms outperformed both random search
and developer-made tests.

In [92], 15 example test programs were used in experiments to measure the maxi-
mal execution times using genetic algorithms. The fitness function used was the exe-
cution time of the test object for a particular input situation measured in microseconds.
The results of evolutionary testing were compared with random testing and with the
performance of an experienced human tester. The results indicated that evolutionary
testing outperforms random testing as random testing could only produce about 85%
of the maximum execution times found by evolutionary testing. The human tester was
more successful in 4 out of 15 test programs, which indicated the presence of properties
of test objects that inhibit evolutionary testability [91] i.e. the ability of an evolutionary
algorithm to successfully generate test cases that violates the timing specification.

Groß et al. [94] presented a prediction model based on complexity of the test object,
which can be used to predict evolutionary testability. It was found that there were sev-
eral properties inhibiting evolutionary testability, which included small path domains,
high-data dependence, large input vectors, and nesting.

Additionally, several source code measures, which map program attributes inhibit-
ing evolutionary testability, were also presented in [91]. Code annotations were in-
serted into the test object’s source code along their shortest and longest algorithmic
execution paths. The fitness function was then based on maximal and minimal pos-
sible annotation coverage by the generated input situations. The individual measures
were combined to form a prediction system that successfully forecasted evolutionary
testability with 90% accuracy.

Results from the two studies [94, 91] also confirmed that there is a relationship
between the complexity of a test object and the ability of evolutionary algorithm to
produce input parameters according to B/WCET. The results also confirmed the prop-
erties (given above) of the test programs that caused most problems for evolutionary
testing. Due to program properties inhibiting evolutionary testability, [92] pointed out
that an ideal testing strategy is a combination of evolutionary testing supported by hu-
man knowledge of the test object. The initial population of individuals can benefit from
human knowledge to direct the search in those areas of search space that are difficult
to reach as the fitness function does not provide information to generate such unlikely
input combinations.

In one of the more recent studies, Tlili et al. [243] used the approach of seeding an

143

Chapter 5. A systematic review of search-based testing for non-functional system
properties

evolutionary algorithm with test data achieving a high structural coverage and reduction
in the amount of search space by restricting the range of input variables in the initial
population. The fitness function was the measurement of the execution time of test
data as number of CPU clock ticks. The results indicated that for almost all the test
objects, application of seeding and range restriction outperform standard evolutionary
real-time testing with random initial population when measuring long execution times.
Also with seeding and range restriction, fewer generations found the longest execution
times. Similar results were achieved for finding the shortest execution times.

In [36, 37], another approach to use genetic algorithms for critical deadlines misses
was used. The authors called the approach stress testing because the system was exer-
cised in such a way that some tasks were close to missing a deadline. This approach
can also be called robustness testing but since the basic objective of the paper was to
find the sequence of arrival times of events for aperiodic tasks, which will cause the
greatest delays in the execution of the target task, we chose to discuss this paper under
execution time. The study was restricted to seeding times for aperiodic tasks and the
tasks synchronization, since input data were accounted for in execution time estimates.
In comparison with other approaches to evolutionary testing for finding the WCET,
this approach was different in the sense that test data design did not require the imple-
mentation of the system and, secondly, did not consider the tasks in isolation. Genetic
algorithms were used to search for the sequence of arrival times of events for aperiodic
tasks that would cause the greatest delays in execution of the target task. The fitness
function was expressed in an exponential form, based on the difference between the
deadline of an execution and the executions actual completion. A prototype tool called
Real Time Test Tool (RTTT) was built to facilitate the execution of runs of genetic
algorithm. Two case studies were conducted; one case study consisted of researchers
own scenarios while the second consisted of an actual real-time system. The results
from the timing diagrams illustrated that RTTT was a useful tool to stress the system
more than the scenarios covered by schedulability theory.

A summary of results of applying metaheuristics for testing temporal properties is
given in Table 5.3.

5.3.2 Quality of Service
Search-based testing of QoS (Quality of Service) represents a mix of search-based
software engineering and service-oriented software engineering. Metaheuristic search
techniques have been used for quality of service aware composition and violation of
service level agreements (SLAs) between the integrator and the end user.

In [51], genetic algorithms were used to determine the set of service concretiza-
tions (i.e. bindings between abstract and concrete services) that lead to QoS constraint

144

Chapter 5. A systematic review of search-based testing for non-functional system
properties

Table 5.3: Summary of results applying metaheuristics for testing temporal properties.
The last column on the right covers any issues such as constraints, limitations and
highlights.(GA is short for Genetic Algorithm, SA is short for Simulated Annealing
while EGA is short for Extended GA.)

Article Applied
meta-
heuristic

Fitness function used Limitations and highlights

Wegener et al.
1996 [252]

GA Exec. time, microseconds Instrumentation of the test objects causes probe effects. The
execution times do not always represent global optimum.

Alander et al.
1997 [14]

GA Exec. time, milliseconds The experiments are performed in a simulator environ-
ment.Non-determinism of the fitness function is problematic.

Wegener et al.
1997 [255]

GA Exec. time, processor cycles The decision about when to stop the search is arbitrary.

Wegener and
Grochtmann
1998 [253]

GA Exec. time, processor cycles There is a need to find most appropriate and robust parameters
for evolutionary testing. Cluster analysis can be a used as a
measure for termination of search.

O’Sullivan et
al. 1998 [203]

GA Exec. time, processor cycles The search strategy needs to make use of cluster analysis to react
to stagnations.

Tracey et al.
1998 [245]

SA Exec. time, time units Ways to reduce the amount of search-space is useful. There is a
need to devise different software metrics to guide the search.

Pohlheim
and Wegener
1999 [207]

EGA Exec. time, processor cycles A combination of systematic and evolutionary testing is required
for thoroughly testing real-time systems. Instead of random
generation of initial population, use of testers knowledge im-
proves search performance.

Mueller and
Wegener
1998 [185]

GA Exec. time, processor cycles For WCET, estimates of static analysis provide an upper bound,
evolutionary testing gives a lower bound. For BCET, static anal-
ysis estimates provide a lower bound, evolutionary testing con-
stitutes an upper bound.

Puschner
and Nossal
1998 [211]

GA Exec. time, processor cycles & time
units

Further investigation is required to escape the large plateaus of
equal fitness function values.

Wegener et al.
2000 [254]

GA Exec. time, processor cycles Static analysis techniques can support evolutionary testing in
search space reduction.

Groß
2003 [92]

GA Exec. time, microseconds Evolutionary testability is inhibited by source code properties
of small path domains and high-data dependence.

Groß
2001 [91]

GA Coverage of code annotations along
shortest and longest execution paths

The measures did not cater for the reliance on the parameter
setting of the GA. Effects of underlying hardware are not taken
into account. The number of considered data samples is low.

Groß et al.
2000 [94]

GA Coverage of code annotations along
shortest and longest execution paths

Traditional design principles of low coupling and high cohesion
are an important issue for an evolutionary approach.

Tlili et al.
2006 [243]

EGA Exec. time, processor cycles The nature of the test objects is not evident in the study. Using
branch coverage as a criterion for seeding has the limitation that
it does not handle the execution of all the possible values of the
predicates forming the conditions.

Briand et al.
2005 [36]

GA Exponential fitness function based
on the difference between execu-
tions deadline and executions actual
completion

The termination criterion is not adaptive and is taken as fixed
number of generations. The specification of test cases does not
require any running implementation of system. It takes into ac-
count tasks synchronizations.

145

Chapter 5. A systematic review of search-based testing for non-functional system
properties

satisfaction while optimizing the objective function. An abstract service is the fea-
ture required in a service orchestration while concrete services represent functionally
equivalent services realizing the required feature. In a contract with potential users,
the service provider can estimate ranges for the QoS attributes as part of Service Level
Agreement (SLA), i.e. a contract between an integrator and end-user for a given QoS
level. QoS attributes consist of non-functional properties such as cost, response time
and availability so the fitness function optimized the QoS attribute chosen by the ser-
vice integrator. The QoS attributes of composite services were determined using rules
with aggregation function for each workflow construct. The fitness function was de-
signed in a way to maximize some QoS attributes (e.g. reliability and availability) while
minimizing others (e.g. cost and response time). Based on the type of penalty factor
(static vs. dynamic), static fitness function and dynamic fitness functions were pro-
posed. With experiments on 18 invocations of 8 distinct abstract services, the perfor-
mance of genetic algorithms was compared with integer programming. The results
showed that when the number of concrete services is small, integer programming out-
performed genetic algorithms. But as the number of concrete services increased, the
genetic algorithm was able to keep its time performance while integer programming
grew exponentially.

Di Penta et al. [69] used genetic algorithms to generate test data that violated QoS
constraints causing SLA violations. The generated test data included combinations of
inputs and bindings for the service-oriented system. The test data generation process
was composed of two steps. In the first step, the risky paths for a particular QoS at-
tribute were identified and in the second step, genetic algorithms were used to generate
test cases that covered the path and violated the SLA. The fitness function combined a
distance-based fitness that rewards solutions close to QoS constraint violation, with a
fitness guiding the coverage of target statements. The two fitness factors were dynam-
ically weighted. The approach was applied to two case studies. The first case study
was an audio processing workflow containing invocations to four abstract services. The
second case study, a service producing charts, applied the black-box approach with fit-
ness calculated only on the basis of how close solutions violate QoS constraint. In case
of audio workflow, the genetic algorithm using the proposed fitness function, which
combined distance-based fitness with coverage of target statements, outperformed ran-
dom search. For the service producing charts, use of black box approach successfully
violated the response time constraint, showing the violation of QoS constraints for a
real service available on the Internet.

A summary of results of applying metaheuristics for QoS-aware composition and
violation of SLA is given in Table 5.4.

146

Chapter 5. A systematic review of search-based testing for non-functional system
properties

Table 5.4: Summary of results applying metaheuristics for QoS-aware composition and
violation of SLA. The last column on the right covers any issues such as constraints,
limitations and highlights.(GA is short for Genetic Algorithm.)

Article Applied
meta-
heuris-
tic

Fitness function used Limitations and highlights

Canfora
et al. 2005 [51]

GA Based on the maximization of de-
sired QoS attributes while minimiz-
ing others, including a static or dy-
namic penalty function

The QoS attributes of component services needs to be
computed for workflow constructs. The fitness function
needs to incorporate the constraints of balancing different
QoS attributes. Also weights need to be assigned to a
particular QoS attribute to indicate the importance.

Di Penta et al.
2007 [69]

GA Combination of distance based fit-
ness that rewards solutions close to
QoS constraint violation with a fit-
ness guiding the coverage of target
statements

The study does not deal with the dependency of violation
of some QoS attributes on the network and server load.
Instrumentation of the workflow can cause probe effects
which can cause the deviation of fitness calculation.

5.3.3 Security

A variety of metaheuristic search techniques have been applied to detect security vul-
nerabilities like detecting buffer overflows; including grammatical evolution, linear
genetic programming, genetic algorithm and particle swarm optimization.

In [132], grammatical evolution (GE) was used to discover the characteristics of a
successful buffer overflow. The example vulnerable application in this case performed
a data copy without checking the internal buffer size.

The exploit was represented by a sample C program that approximated the desired
return address and assembled the malicious buffer exploit. The malicious buffer con-
tained a shell code, representing attacker’s arbitrary code that overwrites the return
address to gain control.

For the attack to be successful, it was important to jump to the first instruction of the
shell code or to the sequence of no operation instructions called NoOP sled. The fitness
function represented six characteristics of malicious buffer which included existence
of the shell-code, success of the attack, NoOP sled score, back-to-back desired return
addresses, desired return address accuracy and score calculated on NoOP sled size.
Three sets of experiments were performed, namely basic Grammatical Evolution (GE),
GE with niching (to include population diversity) and GE with niching and NoOP
minimization. The results found were comparable. In [131], the vulnerable system call
was taken to be the UNIX execve command and linear GP was used to evolve variants
of an attack. The UNIX execve command required the registers EAX, EBX, ECX, EDX
to be correctly configured and the stack to contain the program name to be executed.
The fitness function returned a maximum fitness of 10 if all conditions were satisfied.

147

Chapter 5. A systematic review of search-based testing for non-functional system
properties

The experimental results indicated that evolved attacks discovered different ways of
attaining sub-goals associated with building buffer overflow attacks and expanding the
instruction set provided better results as compared to basic GP.

Kayacik et al. [133] used linear GP for automatic generation of mimicry attacks to
perform evasion of intrusion detection system (IDS), which in this case was an open
source target anomaly detector called stride. The candidate mimicry attacks were
in the form of system call sequences. The system call sequences consisted of most
frequently executed instructions from the vulnerable application, which in this case is
traceroute, a tool used to determine the route taken by packets across an IP network.

An acceptable anomaly rate was established for stride. The objective of the at-
tacker therefore was to reduce the anomaly rate below this acceptable limit. The study
described an attack denoted by successful completion of three steps i.e. open a UNIX
password file, write a line and close the file. The fitness function rewarded attacks that
successfully followed the steps and at the same time minimized the anomaly rate. The
results showed that the approach was able to reduce the anomaly rate to ∼2.97% for
the entire attack.

In [75], security vulnerabilities in an artificial immune system (AIS) based IDS
were identified using genetic algorithms and particle swarm optimization. The study
used GENERITA Red Team (GRT), a system based on evolutionary algorithms, which
performed the vulnerability analysis of the IDS. The AIS-based IDS communicates
with the GRT by receiving red packets in the form of attacks and returns the percentage
of the detector set that failed to detect the red packet. This percentage was the fitness
of the red packet. The packets took the form of triplets (ip address, port, src) while
the AIS maintained a population of detectors with different ranges of IP addresses and
ports. Matching rules were applied to match the data triple and a detector. The GRTs
used consisted of a steady-state GA and six variants of particle swarm optimization.
Experiments were performed using data representing 35 days of simulated network
traffic. The results showed that genetic algorithms outperform all of the swarms with
respect to the number of distinct vulnerabilities discovered.

Budynek et al. [44] modeled the hacker behavior along with the creation of a hacker
grammar for exploring hacker scripts using genetic algorithms. A hacker script con-
tained sequences of UNIX commands issued by the hacker upon logging in to the
system. One script was one individual with a single UNIX command acting as a gene.
A fitness function was defined based on the efficiency and effectiveness of the hacking
scripts i.e. the script fitness value was calculated by number of goals achieved, number
of pieces of evidence discovered by the log analyzer, number of bad commands used by
the hacker and the length of the script used by the hacker. The results of experiments
showed various top-scoring scripts obtained from various runs.

Grosso et al. [96] used static analysis and program slicing to identify vulnerable

148

Chapter 5. A systematic review of search-based testing for non-functional system
properties

statements and their relationships, that were further explored using genetic algorithms
for buffer overflows. Three different fitness functions were compared. The first one
(vulnerable coverage fitness) included weighted values for statement coverage, vul-
nerable statement coverage and number of executions of vulnerable statements. The
second fitness function (nesting fitness) incorporated observed maximum nesting level
corresponding to the current test case while the third fitness function (buffer bound-
ary fitness) included a term accounting for the distance from the buffer boundaries.
Two programs were used for experimentation. The case in which the expert’s knowl-
edge was used to define the initial search space and also for the case having random
initial population showed that buffer boundary fitness outperformed both the vulner-
able coverage and the nesting fitness. This showed that fitness functions using dis-
tance from the limit of buffers were helpful for deriving genetic algorithm evolution.
In [95], the authors improved on the previous basic boundary fitness [96] to propose
a dynamic weight fitness in which the genetic algorithm weights were calculated by
solving a maximization problem via linear programming. So with weights that could
be tuned at each genetic algorithm generation, fast discovery of buffer overflows could
be achieved. The dynamic weight fitness outperformed the previous basic boundary
fitness on experiments with two different sets of C applications.

A summary of results of applying metaheuristics for detecting security vulnerabil-
ities is given in Table 5.5.

5.3.4 Usability
Usability testing in the context of application of metaheuristics is concerned with con-
struction of covering array, which is a combinatorial object.

The user is involved in numerous interactions taking place through the user inter-
face. With the number of different features available and their respective levels, the
interactions cannot be tested exhaustively due to a combinatorial explosion. Interac-
tion testing offers savings, in that it aims to cover every combination of pair-wise (or
t-way) interaction at least once [41]. It is interesting to see that there are different
competing constraints. On one hand, the objective is high-coverage, while on the other
hand the test suite size needs to be small to reduce overall testing cost. Covering array
(CA) needs to be constructed to capture the t-way interactions. For software systems,
each factor (feature or component) comprises of different levels (options or parameters
or values), therefore a mixed level covering array (MCA) is proposed. However, as
compared to CA, there are few results on the upper bound and construction algorithms
for mixed level covering arrays, especially using heuristic search techniques [55]. Al-
gebraic constructs, greedy methods and metaheuristic search techniques have been ap-
plied to construct covering arrays.

149

Chapter 5. A systematic review of search-based testing for non-functional system
properties

Ta
bl

e
5.

5:
Su

m
m

ar
y

of
re

su
lts

ap
pl

yi
ng

m
et

ah
eu

ri
st

ic
s

fo
rd

et
ec

tin
g

se
cu

ri
ty

vu
ln

er
ab

ili
tie

s.
T

he
la

st
co

lu
m

n
on

th
e

ri
gh

tc
ov

er
s

an
y

is
su

es
su

ch
as

co
ns

tr
ai

nt
s,

lim
ita

tio
ns

an
d

hi
gh

lig
ht

s.
(G

E
is

sh
or

tf
or

G
ra

m
m

at
ic

al
E

vo
lu

tio
n,

L
G

P
is

sh
or

tf
or

L
in

ea
rG

en
et

ic
Pr

og
ra

m
m

in
g

an
d

PS
O

is
sh

or
tf

or
Pa

rt
ic

le
Sw

ar
m

O
pt

im
iz

at
io

n.
)

A
rt

ic
le

A
pp

lie
d

m
et

a-
he

ur
is

tic

Fi
tn

es
s

fu
nc

tio
n

us
ed

L
im

ita
tio

ns
an

d
hi

gh
lig

ht
s

K
ay

ac
ik

et
al

.
20

05
[1

32
]

G
E

R
ep

re
se

nt
at

io
n

of
si

x
ch

ar
ac

te
ri

s-
tic

s
of

m
al

ic
io

us
bu

ff
er

re
fle

ct
in

g
m

ul
tip

le
be

ha
vi

or
al

ob
je

ct
iv

es

T
he

sh
el

lc
od

e
or

th
e

at
ta

ck
er

s
ar

bi
tr

ar
y

co
de

ne
ed

s
to

be
m

od
i-

fie
d

to
in

cr
ea

se
th

e
su

cc
es

s
ch

an
ce

s
of

m
al

ic
io

us
bu

ff
er

.

K
ay

ac
ik

et
al

.
20

06
[1

31
]

L
G

P
Fi

tn
es

s
fu

nc
tio

n
ba

se
d

on
th

e
co

n-
fig

ur
at

io
n

of
re

gi
st

er
s

an
d

st
ac

k
A

m
ec

ha
ni

sm
fo

r
m

ai
nt

ai
ni

ng
di

ve
rs

ity
of

po
pu

la
tio

n
is

ne
ce

s-
sa

ry
.

K
ay

ac
ik

et
al

.
20

07
[1

33
]

L
G

P
E

va
lu

at
io

n
in

te
rm

s
of

co
m

pl
et

io
n

of
st

ep
s

le
ad

in
g

to
an

at
ta

ck
an

d
m

in
im

iz
at

io
n

of
an

om
al

y
ra

te

T
he

pr
op

os
ed

ap
pr

oa
ch

is
de

pe
nd

en
t

on
th

e
co

re
at

ta
ck

w
hi

ch
is

th
en

us
ed

to
cr

ea
te

m
im

ic
ry

at
ta

ck
s.

T
he

ap
pr

oa
ch

is
al

so
de

pe
nd

en
to

n
th

e
se

to
fp

er
m

itt
ed

sy
st

em
ca

lls
as

de
fin

ed
by

th
e

us
er

.
D

oz
ie

r
et

al
.

20
04

[7
5]

G
A

,P
SO

Pe
rc

en
ta

ge
of

th
e

de
te

ct
or

se
t

th
at

fa
ile

d
to

de
te

ct
th

e
re

d
pa

ck
et

fr
om

G
R

T

A
n

at
ta

ck
is

no
ta

s
su

ch
co

ns
tr

uc
te

d
bu

ti
s

re
pr

es
en

te
d

as
a

tr
ip

le
pa

ck
et

.

B
ud

yn
ek

et
al

.
20

05
[4

4]

G
A

T
he

fit
ne

ss
is

ca
lc

ul
at

ed
ba

se
d

up
on

th
e

sc
ri

pt
s

ab
ili

ty
of

ho
w

m
uc

h
da

m
ag

e
it

ca
n

in
fli

ct
w

ith
th

e
m

os
t

co
m

pa
ct

po
ss

ib
le

se
qu

en
ce

of
co

m
-

m
an

ds

T
he

go
al

s
of

th
e

ha
ck

er
sc

ri
pt

gr
am

m
ar

ne
ed

s
to

be
de

fin
ed

be
-

fo
re

ha
nd

.

G
ro

ss
o

et
al

.
20

05
[9

6]
G

A
T

hr
ee

di
ff

er
en

t
fit

ne
ss

fu
nc

tio
ns

co
ve

ri
ng

vu
ln

er
ab

le
st

at
em

en
ts

,
m

ax
im

um
ne

st
in

g
le

ve
l

an
d

bu
ff

er
bo

un
da

ry

D
ep

en
de

nc
y

on
to

ol
s

fo
r

st
at

ic
an

al
ys

is
an

d
pr

og
ra

m
sl

ic
in

g.
U

se
of

in
st

ru
m

en
ta

tio
n

is
a

pr
ob

ab
le

ob
st

ac
le

in
ex

pa
nd

in
g

th
e

ap
pr

oa
ch

fo
rl

ar
ge

rc
as

e
st

ud
ie

s.

G
ro

ss
o

et
al

.
20

07
[9

5]
G

A
A

dy
na

m
ic

w
ei

gh
t

fit
ne

ss
fu

nc
tio

n
in

w
hi

ch
th

e
w

ei
gh

t
de

te
rm

in
at

io
n

is
a

m
ax

im
iz

at
io

n
pr

ob
le

m

D
ep

en
de

nc
y

on
to

ol
s

fo
r

st
at

ic
an

al
ys

is
an

d
pr

og
ra

m
sl

ic
in

g.
U

se
of

in
st

ru
m

en
ta

tio
n

is
a

pr
ob

ab
le

ob
st

ac
le

in
ex

pa
nd

in
g

th
e

ap
pr

oa
ch

fo
rl

ar
ge

rc
as

e
st

ud
ie

s.
A

dd
iti

on
al

co
m

pu
ta

tio
na

lt
im

e
re

qu
ir

ed
fo

rl
in

ea
rp

ro
gr

am
m

in
g

ca
lc

ul
at

io
n.

150

Chapter 5. A systematic review of search-based testing for non-functional system
properties

Our interest here is to explore the use of metaheuristic search techniques for con-
structing covering arrays. Hoskins et al. provide definitions relevant to covering array
and mixed level covering array [110]:

A covering array, CAλ(N; t,k,v), is an N× k array for which every N× t
sub-array has the property that every t-tuple appears at least λ times. In
this application, t is the strength, k is the number of factors (degree), and v
is the number of symbols for each factor (order). When λ is 1, every t-way
interaction is covered at least once; this is the case of most interest, and
we often omit the subscript λ when it is 1. The covering array is optimal
if it contains the minimum possible number of rows. The size of such a
covering array is the covering array number CAN(t,k,v).

A mixed level covering array, MCAλ(N; t,k,(v1,v2, . . . ,vk)), is an N× k
array in which, for each column i, there are exactly vi levels; again every
N×t sub-array has the property that each possible t-tuple occurs at least λ

times. Again λ is omitted from the notation when it is 1. A mixed covering
array provides the flexibility to construct test suites for systems in which
components are not restricted to having the exact same number of levels.

To adapt to the practical concerns of software testing, it is desirable that some
subset of features have higher interaction coverage. For example, the overall system
might have 100% two-way coverage, but a subset of features might have 100% three-
way coverage. To this end, in [55], Cohen et al. propose variable strength covering
arrays. As with mixed level covering arrays, construction methods and algorithms for
variable strength test suites is in its preliminary stages with [55] providing some initial
results for test suite sizes constructed using simulated annealing (SA).

With respect to the application of metaheuristics, the fitness function used for con-
structing a covering array is the number of uncovered t-subsets, so the covering array
itself will have a cost of 0. Since one does not know the size of the test suite a priori,
therefore, heuristic search techniques apply transformations to a fixed size array until
constraints are satisfied. The results of implementing SA for handling t-way cover-
age in fixed level cases are provided by [55]. The results showed that in comparison
with greedy search techniques used in Test Case Generator (TCG) [248] and Automatic
Efficient Test Generator (AETG) [54], SA improved on the bounds of minimum test
cases in a test suite of strength two, e.g. for MCA(N;2,513822), SA gave 15 as mini-
mum test cases as compared to 20 and 19 by TCG and AETG respectively. In case of
strength three constructions, the SA algorithm did not perform as well as the algebraic
constructions. Therefore, the initial results indicated SA as more effective than other

151

Chapter 5. A systematic review of search-based testing for non-functional system
properties

Table 5.6: Variants of approaches used for constructing covering arrays using meta-
heuristics.

Approach used Articles
Independent application of meta-
heuristics

Cohen et al. [55, 56], Stardom [233],
Nurmela [196], Shiba et al. [225]

Use of an integrated approach Cohen et al. [174], Bryce et al. [42]

approaches for finding smaller sized test suites. On the other hand, SA took much
more execution time as compared to simpler heuristics. Stardom [233] also used SA,
GA and tabu search (TS) for constructing covering arrays. The results indicated that
SA and TS were best in constructing covering arrays. A genetic algorithm turned out to
be least effective; taking more time and moves to find good covering arrays. Stardom
reported new upper bounds on size of covering array using SA, some of which were
later improved by [55]. Stardom’s study indicated that SA’s main advantage was the
capability of executing many moves in a short time; therefore if the search space was
dense, SA quickly located objects. On the other hand, TS performed much better when
the size of an array’s neighborhood was smaller.

Along with the application of metaheuristic techniques for constructing covering
arrays, there is also evidence of integrated approaches (Table 5.6). Cohen et al. [55]
proposed one such approach for using algebraic construction along with search tech-
niques. An example of this integrated approach is given in [174] where a new strat-
egy called augmented annealing takes advantage of computational efficiency of alge-
braic construction and generality of SA. Specifically, algebraic construction reduced
a problem to smaller sub-problems on which SA runs faster. The experimental re-
sults reported new bounds for some strength three covering arrays e.g. CA(3,6,6) and
CA(3,10,10). A hybrid approach is also given in [42] for constructing covering array.
The study focussed on covering as many t-tuples as early as possible. So rather than
minimizing the number of tests to achieve t-way coverage, the initial rate of cover-
age was the primary concern. The hybrid approach applied a one-test-at-a-time greedy
algorithm to initialize tests and then applied heuristic search to increase the number
of t-tuples in a test. The heuristic search techniques applied were hill-climbing, SA,
TS and great flood. With different inputs, SA in general produced the quickest rate
of coverage with 10 or 100 search iterations. The study also concluded that smaller
test suites do not relate to greater rate of coverage; hence two different and sometimes
inconsistent goals when applied in a real world setting.

As mentioned earlier, there is less evidence on construction of variable strength
arrays. One such study used SA to find variable strength arrays and provided initial

152

Chapter 5. A systematic review of search-based testing for non-functional system
properties

bounds [56]. In his work using TS, Nurmela improved on previously known upper
bounds on the sizes of optimal covering arrays [196]. Experimenting with number
of factors and number of values for each factor, good upper bounds were tabulated
for strength-two covering arrays. In addition, the study improved upper bounds for
strength three covering arrays. The TS algorithm was found to work best for strength
two covering array with number of levels for each factor equal to three. According
to [196], it was difficult to be sure about the upper bounds to be optimal or not because
TS being a stochastic algorithm could improve upon the new bounds if given more
computing time.

Toshiaki et al. used genetic algorithms (GA) and ant colony algorithm (ACA)
for constructing covering arrays [225]. The results were compared with AETG, In-
Parameter Order (IPO) [162] algorithm and SA. SA outperformed their results of using
GA and ACA with respect to the size of resulting test sets for two-way and three-way
testing. Their results however outperformed AETG for two-way and three-way testing.
It was interesting to find that using GA, the results did not match with those produced
by Stardom’s study [233] which indicated that GA did not perform well in generating
covering arrays, even though several attempts were made to modify the structure of the
algorithm.

A summary of results of applying metaheuristics for covering array construction is
given in Table 5.7.

5.3.5 Safety
Safety testing is an important component of the testing strategy of safety critical sys-
tems where the systems are required to meet safety constraints. In terms of metaheuris-
tic search techniques, SA and GA are applied for safety testing.

In [246], the authors proposed an approach using GAs and SA to generate test data
violating a safety property. This approach extended the authors’ previous work in de-
veloping a general framework for dynamically generating test data. The violation of a
safety property meant a hazard or a failure condition, which was initially identified us-
ing some form of hazard analysis technique e.g. functional hazard analysis. The fitness
function used evaluates different branch predicates and evaluates to zero if the safety
property evaluates to false and will be positive otherwise. The search stopped when
a test data with a zero cost was found. The cost function calculation is presented in
Table 5.8. where K represents the penalty which was added for undesirable data [246].
The paper provided a simple example where either SA or GAs can be applied to au-
tomatically search for test data violating safety properties that must hold ‘after’ the
execution of the SUT. The same given cost function can also be used to generate test
data to violate safety conditions at specific points ‘during’ the execution of the SUT.

153

Chapter 5. A systematic review of search-based testing for non-functional system
properties

Ta
bl

e
5.

7:
Su

m
m

ar
y

of
re

su
lts

ap
pl

yi
ng

m
et

ah
eu

ri
st

ic
s

fo
r

co
ve

ri
ng

ar
ra

y
co

ns
tr

uc
tio

n.
T

he
la

st
co

lu
m

n
on

th
e

ri
gh

tc
ov

er
s

an
y

is
su

es
su

ch
as

co
ns

tr
ai

nt
s,

lim
ita

tio
ns

an
d

hi
gh

lig
ht

s.
(T

S
is

sh
or

tf
or

Ta
bu

Se
ar

ch
,S

A
is

sh
or

tf
or

Si
m

ul
at

ed
A

nn
ea

lin
g,

H
C

is
sh

or
tf

or
H

ill
C

lim
bi

ng
,A

C
A

is
sh

or
tf

or
A

nt
C

ol
on

y
A

lg
or

ith
m

an
d

G
A

is
sh

or
tf

or
G

en
et

ic
A

lg
or

ith
m

.)
A

rt
ic

le
A

pp
lie

d
m

et
a-

he
ur

is
tic

Fi
tn

es
s

fu
nc

tio
n

us
ed

L
im

ita
tio

ns
an

d
hi

gh
lig

ht
s

St
ar

do
m

20
01

[2
33

]
T

S,
SA

an
d

G
A

N
um

be
r

of
un

co
ve

re
d

t-
su

bs
et

s
G

A
ta

ke
s

m
or

e
tim

e
an

d
m

or
e

m
ov

es
to

fin
d

a
go

od
co

ve
ri

ng
ar

ra
y.

L
ar

ge
r

pa
ra

m
et

er
se

ts
re

qu
ir

e
gr

ea
te

rm
em

or
y

to
st

or
e

in
fo

rm
at

io
n.

C
oh

en
et

al
.

20
03

[5
5]

SA
an

d
H

C
N

um
be

r
of

un
co

ve
re

d
t-

su
bs

et
s

T
he

re
is

st
ill

no
be

st
m

et
ho

d
fo

rb
ui

ld
in

g
va

ri
ab

le
st

re
ng

th
te

st
su

ite
.C

om
bi

n-
in

g
al

ge
br

ai
c

co
ns

tr
uc

tio
ns

w
ith

m
et

ah
eu

ri
st

ic
se

ar
ch

is
pr

om
is

in
g.

C
oh

en
et

al
.

20
03

[5
6]

SA
N

um
be

r
of

un
co

ve
re

d
t-

su
bs

et
s

Va
ri

ab
le

st
re

ng
th

ar
ra

ys
gu

ar
an

te
e

a
m

in
im

um
st

re
ng

th
of

ov
er

al
l

co
ve

ra
ge

an
d

al
lo

w
va

ry
in

g
th

e
st

re
ng

th
am

on
g

di
sj

oi
nt

su
bs

et
s

of
co

m
po

ne
nt

s.
N

ur
m

el
a

20
03

[1
96

]
T

S
N

um
be

r
of

un
co

ve
re

d
t-

su
bs

et
s

If
m

or
e

co
m

pu
tin

g
tim

e
is

gi
ve

n,
m

an
y

of
th

e
ne

w
bo

un
ds

ca
n

be
im

pr
ov

ed
sl

ig
ht

ly
.

C
oh

en
et

al
.

20
03

[1
74

]
SA

N
um

be
r

of
un

co
ve

re
d

t-
su

bs
et

s
A

to
ol

ca
n

be
de

si
gn

ed
to

ta
ke

ad
va

nt
ag

e
of

co
m

bi
ni

ng
co

m
bi

na
to

ri
al

co
ns

tr
uc

-
tio

n
al

on
g

w
ith

he
ur

is
tic

se
ar

ch
.

B
ry

ce
et

al
.

20
07

[4
2]

T
S,

SA
an

d
H

C
N

um
be

r
of

un
co

ve
re

d
t-

su
bs

et
s

SA
pr

ov
id

es
th

e
fa

st
es

tr
at

e
of

t-
tu

pl
e

co
ve

ra
ge

w
hi

le
T

S
is

sl
ow

es
t.

To
sh

ia
ki

et
al

.
20

04
[2

25
]

A
C

A
,G

A
N

um
be

r
of

un
co

ve
re

d
t-

su
bs

et
s

T
he

te
st

se
ts

ge
ne

ra
te

d
ar

e
sm

al
lb

ut
th

ey
ar

e
no

ta
lw

ay
s

op
tim

al
.

154

Chapter 5. A systematic review of search-based testing for non-functional system
properties

Table 5.8: Cost function calculation.
Element Value
Boolean if TRUE then 0 else K
a = b if abs(a - b) = 0 then 0 else abs(a - b) + K
a 6= b if abs(a - b) 6= 0 then 0 else K
a < b if a - b < 0 then 0 else (a - b) + K
a≤ b if a - b ≤ 0 then 0 else (a - b) + K
a > b if b - a < 0 then 0 else (b - a) + K
a≥ b if b - a ≤ 0 then 0 else (b - a) + K
a∨b min(cost(a), cost(b))
a∧b cost(a) + cost(b)
¬a Negation propagated over a

In this case, the SUT needed to be instrumented such that the branch predicates
were replaced by procedures which served two purposes of returning the Boolean value
of the predicate they replaced and adding to the overall cost the contribution made
by each individual branch predicate that was executed. An example was given with
an original program and the instrumented program with examples of how the fitness
function was able to guide the search.

The approach presented by [246] has been extended by Abdellatif-Kaddour et
al. [2] for sequential problems. In [2], SA was used for step-wise construction of
test scenarios (progressive exploration of longer test scenarios) to test safety proper-
ties in cyclic real-time control systems. The stepwise construction was required due
to the sequential behavior of the control systems as it was expected that safety prop-
erty violation will occur after execution of a particular trajectory or sequence of data
in the input domain. The test strategy was applied to a steam boiler case study where
the target safety property was the non-explosion of the boiler. Along with the objec-
tive of violating a safety property, there was a set of dangerous situations of interest
when exploring progressive evolution towards property violation. So the objective was
not only violation of a target property but also to reach a dangerous situation. For the
steam boiler case study, there could be ten possible safety property violations and three
dangerous situations. The solution space in this case was divided into several subsets
of smaller sizes. So different classes of test sequences were independently searched.
For each class, the objective was defined into sub-objectives corresponding to either
safety property violation or the achievement of a dangerous situation. The overall cost
was the minimum value of the different sub-objective cost functions. The efficiency
of using SA was analyzed in comparison with random sampling. The first experiment

155

Chapter 5. A systematic review of search-based testing for non-functional system
properties

showed that random sampling found test sequences that fulfilled main objective more
quickly than the approach using SA. Therefore a revised SA was used in which the
acceptance probability was adjusted to allow for significant moves in case of no cost
improvement. The revised version of SA offered significant improvement over the ba-
sic version of SA, while in comparison with random sampling a slight improvement
was observed both in terms of total number of iterations and successful search. The
results of the study confirmed the usefulness of stepwise construction of test scenarios,
but in terms of efficiency of SA algorithm, the cost effectiveness as compared with
random sampling remains questionable.

In [24, 206], an evolutionary testing approach using genetic algorithms was pre-
sented for structural and functional sequence testing. For complex dynamic system
like car control systems, long input sequences were necessary to simulate these sys-
tems. At the same time, one of the most important aims was to generate a compact
description for the input sequences, containing as few elements as possible but having
enough variety to stimulate the system under test as much as necessary. In order to
have a compact description of input sequences for a car control system, the long input
sequence was divided into sections. Each section had a base signal having signal type,
amplitude and length of section as variables. These variables had bounds within which
the optimization generated solutions. The output sequences generated by simulating
the car control system were to be evaluated against a fitness function, which was de-
fined according to the problem at hand. For example, in case of a car control system,
the fitness function checked for violations of signal amplitude boundaries. The applied
fitness function consisted of two levels, which differentiated quality between multiple
output signals violating the defined boundaries. An objective value of −1 indicated a
severe violation while for less severe violations, the closeness of the maximal value
to the defined boundary was calculated. The results of the experiment performed on
a car control system showed that the optimization continually found better values and
ultimately a serious violation was detected.

A summary of results of applying metaheuristics for safety testing is given in Ta-
ble 5.9.

5.4 Discussion and areas for future research
The body of knowledge into the use of metaheuristic search techniques for verifying
the temporal correctness is geared towards real-time embedded systems. For these sys-
tems, temporal correctness must be verified along with the logical correctness. The
fact that there is a lack of support for dynamic testing of real-time system for temporal
correctness caused the research community to take advantage of metaheuristic search

156

Chapter 5. A systematic review of search-based testing for non-functional system
properties

Table 5.9: Summary of results applying metaheuristics for safety testing. The last
column on the right covers any issues such as constraints, limitations and highlights.
(GA is short for Genetic Algorithm and SA is short for Simulated Annealing.)

Article Applied
meta-
heuristic

Fitness function used Limitations and highlights

Tracey et al.
1999 [246]

GA and
SA

Evaluation of different branch pred-
icates with zero cost if the safety
property evaluates to false and pos-
itive cost otherwise

Experimentation on small scale problems, thus results are
preliminary. Instrumentation of the test objects is a challenge
in the scalability of the technique.

Kaddour et al.
2003 [2]

SA Cost related to the violation of the
safety property and achievement of
dangerous situation

Using SA, many trials are necessary for investigating alterna-
tive design choices and calibrating the corresponding param-
eters. More experimentation is required to confirm the effi-
ciency applying revised SA algorithm.

Baresel et al.
2003 [24],
and Pohlheim
et al.
2005 [206]

GA Problem-specific fitness function
measuring different properties e.g.
signal amplitude boundaries

The input sequences must be long enough and should have the
right attributes to stimulate the system. The output sequence
must be evaluated according to the problem under investiga-
tion.

techniques. It is possible to differentiate the temporal testing research into two dimen-
sions. One of them focuses on violation of timing constraints due to input values and
most of the temporal testing research follows this dimension. The other dimension,
which is the one taken by Briand et al. in [36] analyses task architectures and consider
seeding times of events triggering tasks and tasks’ synchronization, i.e. Briand’s et
al. study does not consider tasks in isolation. Both approaches to temporal verification
are complementary.

The performance outcome information from studies related to execution time are
given in Table 5.10. It is fairly evident from the table that GA consistently outperforms
random and statistical testing in wide variety of situations, producing comparatively
longer execution times faster and also finding new bounds on BCET. GAs were also
able to perform better than human testers and on occasions where it failed to do so may
be attributed to the complexity of the test objects inhibiting evolutionary testability.
With respect to comparison with static analysis, GA performed comparably well and
both techniques are shown to bound the actual execution times from opposite ends.

For execution time, genetic algorithms are used as the metaheuristic in vast majority
of cases (14 out of 15 papers), while SA finds application in one of the studies. The
preference of using genetic algorithms over SA can be attributed to the very nature of
search mechanism inherent to genetic algorithms. Since a genetic algorithm maintains
a population of possible solutions, it has a better chance of locating global optimum as
compared to SA which proceed one solution at a time. Also due to the fact that temporal
behavior of real-time systems always results in complicated multi-dimensional search
space with many plateaus and discontinuities, genetic algorithms are suitable since

157

Chapter 5. A systematic review of search-based testing for non-functional system
properties

Table 5.10: Key evaluation information and outcomes of execution time studies. (GA
is short for Genetic Algorithm, EGA is short for Extended GA, while SA is short for
Simulated Annealing)

Article and
Metaheuristic

Method of evaluation Test objects Performance fac-
tor evaluated

Outcomes of the experiment

Wegener et al.
1996 [252],
GA

Comparison with statis-
tical and systematic test-
ing

Simple C function Finding
WCET/BCET
and number of
generations

The longest execution time was found very fast and
a new shortest execution time was found, not previ-
ously discovered by statistical and systematic testing

Alander et al.
1997 [14],
GA

Comparison with ran-
dom testing

Relay software sim-
ulator

Finding process-
ing time extremes

GA generated input data with longer response times

Wegener et al.
1997 [255],
GA

Comparison with statis-
tical and systematic test-
ing

5 programs with up
to 1511 LoC and
843 integer input pa-
rameters

Finding
WCET/BCET
and the number
of tests required

GA found more extreme times although on occasions
required more tests to do so

Wegener and
Grochtmann
1998 [253],
GA

Comparison with ran-
dom testing

8 programs with up
to 1511 LoC and
5000 input parame-
ters

Finding
WCET/BCET
and the number
of tests required

GA always obtained better results as compared with
random testing

O’Sullivan
et al.
1998 [203],
GA

Comparison with differ-
ent termination criteria
i.e. limiting the num-
ber of generations, time
spent on test and exam-
ining the fitness evolu-
tion

An algorithm from
automotive electron-
ics

Convergence
analysis of vari-
ous termination
criteria

Cluster analysis turned out to be a more powerful ter-
mination criterion which allowed quick location of
local optima

Tracey et al.
1998 [245],
SA

Comparison in terms of
size of parameter space
to search

4 programs (condi-
tional blocks, simple
loop, binary integer
square root and in-
sertion sort)

Finding WCET SA successfully executed a worst case path and was
more effective with larger, complex parameter space

Pohlheim
and Wegener
1999 [207],
EGA

Comparison with sys-
tematic testing

Modules from a mo-
tor control system

Finding maxi-
mum execution
times

GAs found longer execution times for all the given
modules

Mueller and
Wegener
1998 [185],
GA

Comparison with static
analysis

5 experiments with
industrial and refer-
ence applications

Finding
WCET/BCET

Use of evolutionary testing and static analysis
bounded the actual execution times from opposite
ends and were complementary

Puschner
and Nossal
1998 [211],
GA

Comparison with static
analysis and random
testing

7 programs with di-
verse execution time
characteristics

Finding WCET For large input data space, GA outperformed random
method. In comparison with static analysis, the per-
formance of GA is comparable

Wegener et al.
2000 [254],
GA

Comparison with execu-
tion time found with de-
velopers test

An engine control
system with 6 time-
critical tasks

Finding WCET Longer execution times were found with the evolu-
tionary test than with the developer tests

Groß
2003 [92],
GA

Random test case gen-
eration and performance
of an experienced human
tester

15 example test pro-
grams

Finding WCET Evolutionary testing generated more worst-case
times as compared with random testing. Also for
only 4 out of 15 test objects the human tester was
more successful

Groß
2001 [91],
GA

None 21 test objects of
varying input size

Evolutionary
testability

The prediction system forecasted evolutionary testa-
bility with almost 90

Groß et al.
2000 [94],
GA

None 22 test objects with
varying input sizes

Evolutionary
testability

Evolutionary testability and complexity of test ob-
jects was found to be interrelated

Tlili et al.
2006 [243],
EGA

Standard evolutionary
real-time testing with
random initial popula-
tion and no search space
restriction

12 test objects with
varying cyclomatic
complexity

Finding longer
execution times

Using range restriction and seeding initial population
with data achieving high structural branch coverage,
longer execution times were found for most of the
test objects except for two

Briand et al.
2005 [36],
GA

None Two case studies,
one of researchers
own scenarios and
the second consisted
of an actual real time
system

Maximizing
critical deadline
misses

It was possible to identify seeding times such that
small errors in the execution time estimates could
lead to missed deadlines

158

Chapter 5. A systematic review of search-based testing for non-functional system
properties

Figure 5.4: Two ways to analyze temporal testing research using metaheuristics.

they perform well for problems involving large number of variables and complex input
domains.

There is another way of analyzing the body of knowledge into the use of meta-
heuristics for testing temporal correctness; which is in terms of (1) properties associ-
ated with the metaheuristic itself and (2) properties related to the SUT (test object). In
terms of metaheuristic, the research focuses on improving multiple issues: reduction
in search space, comparative studies with static analysis, selection schemes for initial
population of genetic algorithm, evaluation of suitable termination criterion for search,
choice of fitness function, mutation and crossover operators and search for robust and
appropriate parameters. In terms of test objects, the research focuses on properties of
test objects inhibiting evolutionary testability and formulation of complexity measures
for predicting evolutionary testability (Figure 5.4).

The fact that seeding the initial population of an evolutionary algorithm with test
data having high structural coverage has had better results, it would be interesting to
design a fitness function that takes into account structural properties of individuals.
Then it will be possible not only to reward individuals on the basis of execution time
but also on their ability to execute complex parts of the source code. Similarly, there
are different types of structural coverage criteria, which can be used to seed initial
populations and might prove helpful in the design of a fitness function that takes into
account such a structural coverage criterion.

In terms of reliable termination criterion for evolutionary testing, use of cluster
analysis is found to be useful over other termination criteria, e.g. number of genera-

159

Chapter 5. A systematic review of search-based testing for non-functional system
properties

Table 5.11: Key evaluation information and outcomes of QoS studies. (GA is short for
Genetic Algorithm)

Article
and Meta-
heuristic

Method of evalua-
tion

Test objects Performance fac-
tor evaluated

Outcomes of the experiment

Canfora
et al.
2005 [51],
GA

Linear integer pro-
gramming

A workflow con-
taining 18 invoca-
tions of 8 distinct
abstract services

Convergence
times of integer
programming and
GA for the same
achieved solution

When the number of concrete services available for each
abstract service is large, GA should be preferred instead
of integer programming. On the other hand, whenever the
number of concrete services available is limited, integer
programming is to be preferred

Di Penta
et al.
2007 [69],
GA

Random search Audio processing
workflow and a
service for chart
generation

Violation of QoS
constraint and
time required to
converge to a
solution

The new approach outperformed random search and suc-
cessfully violated QoS constraints

tions and examination of fitness evolution. However, to the authors’ knowledge, the
use of cluster analysis as a termination criterion is used in only one study [203]. Clus-
ter analysis information can be used to change the search strategy in a way that escapes
local optima and helps exploring more feasible areas of the search space. Also the
performance of evolutionary algorithms can be made much better by using robust pa-
rameters. The search for these parameters is still on. Similarly, variations of existing
algorithms e.g. like using extended evolutionary algorithms might give interesting in-
sights into the performance of evolutionary testing.

We also gathered studies regarding application of metaheuristic search techniques
for quality of service aware composition and violation of service level agreements
(SLAs) between the integrator and the end user. Genetic algorithms have been ap-
plied to tackle the QoS-aware composition problem as well as generation of inputs
causing SLA violations. Table 5.11 show that in comparison with linear integer pro-
gramming and random search, genetic algorithms were more successful in meeting
QoS constraints. We also infer that the testing of service-oriented systems has inher-
ently several issues. These include testability problems due to lack of observability
of service code and structure, integration testing issues due to the use of late-binding
mechanisms, lack of control and involved cost of testing [69]. These issues raises the
need for adequate testing strategies and approaches tailored for service-oriented sys-
tems. In terms of QoS, different attributes are of interest and are competing e.g. cost,
response time, availability and reliability. These attributes need to be computed for
workflow constructs. Empirical evidence has to be gathered for a thorough compari-
son of genetic algorithms with non-linear integer programming for QoS-aware service
composition. Also network configurations and server load, being one of the factors
causing SLA violations, is to be accounted for generating test data violating the SLA.
Buffer overflow attacks compromises the security of applications. The attacker needs

160

Chapter 5. A systematic review of search-based testing for non-functional system
properties

three requirements for a successful exploit, (i) a vulnerable program within the target
system (ii) information of the size of memory reference necessary to cause the over-
flow and (iii) the correct placement of a suitable exploit to make use of the overflow
when it occurs [131]. In order to guide the interpretation of findings, performance out-
comes are summarized in Table 5.12, in addition to Table 5.5. The range of studies
offers variations with respect to the main theme, although all have the common goal
of addressing security testing. Therefore, we see studies making use of metaheuristic
search techniques to create a range of successful attacks to evade common intrusion
detection systems as well as to identify buffer overflows. For detecting buffer over-
flows, the attacker’s arbitrary code needs modification to increase the success chances
of creating a malicious buffer. In case of hacker scripts generation, the goals for the
hacker script generation need to be defined. The use of metaheuristic search tech-
niques includes grammatical evolution, linear genetic programming, genetic algorithm
and particle swarm optimization. Devising a useful fitness function is the focus of ma-
jority of the studies which highlights the difficulty in instrumenting security issues as
an appropriate search metric. Most of the fitness functions are based on the ability of
the attack to fulfill the conditions necessary for a successful exploit. This has resulted
in studies comparing the performances of different fitness functions rather than com-
paring with traditional approaches to security testing. This indicates that most of the
studies into use of metaheuristics for this domain is largely exploratory and no trends
are observable that can be generalized. Due to this we see authors experimenting with
simple and small applications on a limited scale. The scalability of these approaches,
with larger data sets and greater number of trials, is an interesting area of future re-
search. The work of Kayacik et al. [132, 131, 133] is notable as they move towards
a general framework for attack generation based on the evolution of system call se-
quences. Also the co-evolution of attacker-detector pairs (as pointed out by Kayacik
et al. [133]) that provides the opportunity to actually preempt new attack behaviors
before they are encountered, formulation of techniques (like static analysis and pro-
gram slicing) to reduce the search space for the evolutionary algorithm, hybridization
of GA and PSO algorithm for effective searching and creation of an interactive tool for
vulnerability assessment based on evolutionary computation for the end users provides
further future extensions.

In the area of usability, we found the application of metaheuristic search techniques
for constructing covering arrays. Being a qualitative attribute, usability possesses dif-
ferent interpretations. However, we classify studies reporting construction of covering
arrays under usability as they relate to a form of interaction testing covering t-way
user interactions whereby each test case exposes different areas of a user interface.
The research for construction of covering arrays for software testing have dual focus
of finding new techniques to produce smaller covering arrays and to produce them

161

Chapter 5. A systematic review of search-based testing for non-functional system
properties

in reasonable amount of time. As expected, a trade-off must be achieved between
computational power and size of resulting test suites. The extent of evidence related
to applying metaheuristics for finding better bounds on covering arrays suggest that
metaheuristics are very successful for smaller parameter sets. For larger parameter
sets, the heuristic algorithms run slowly due to the large amount of memory required
(to store information). Therefore, execution time is a known barrier in finding more
results using metaheuristic search algorithms. One obvious way to achieve efficient
memory management is to reuse the previously calculated t-combinations by storing
them in some form of a temporary memory. Also as mentioned earlier, the size of the
test suite is not known a priori, many sizes must be tested for obtaining a good bound
on a t-way test set of given size.

It is also worth mentioning that finding optimal parameters for effectively using
metaheuristics require many trials, moreover it is difficult to be sure whether the up-
per bounds produced are optimal or not because further improvements on bounds can
take place if given more computing time. In addition to Table 5.7, we summarize key
evaluation information and outcomes in Table 5.13. We gather that a range of meta-
heuristics have been applied for constructing covering arrays. This includes SA, TS,
GA and ant colony optimization. We find SA and TS to be widely applicable search
techniques, particularly SA being applied to generate smaller sized test suites. Out of
seven primary studies, five report using SA while three use TS, either being used inde-
pendently or in combination with other search techniques and algebraic constructions.
We infer from Table 5.13, SA consistently performs better than GA, HC, ACA and TS
in terms of size of resulting test sets. The performance of SA can further be improved
by integrating it with the use of algebraic constructions. Another possibility is to be-
gin with a greedy algorithm (like TCG) and then make a transition to heuristic search
after meeting a certain condition [55]. GA has been applied in two studies with con-
tradictory results and hence requires further experimentation. An interesting area is to
explore the use of ant colony optimization to generalize initial results given by [225].
In terms of construction of variable strength covering arrays, there is a potential for
further research for finding the best approach for variable strength test suite.

Safety testing is used to test safety critical systems that have to satisfy the safety
constraints in addition to satisfying the functional specification. We take safety in
terms of dangerous conditions, which may contribute to an accident. There are two
approaches for achieving verification of safety properties: dynamic testing and static
analysis. Static analysis does not require execution of the safety-critical system while
dynamic testing executes the system in a suitable environment with test data generated
to test safety properties. Both static analysis and dynamic testing are complementary
approaches; in many cases the results of static analysis are used to give criteria for
dynamic testing (as in [246]). The available primary studies discussing testing of safety

162

Chapter 5. A systematic review of search-based testing for non-functional system
properties

Ta
bl

e
5.

12
:K

ey
ev

al
ua

tio
n

in
fo

rm
at

io
n

an
d

ou
tc

om
es

of
se

cu
ri

ty
st

ud
ie

s.
(G

A
is

sh
or

tf
or

G
en

et
ic

A
lg

or
ith

m
,G

E
is

sh
or

tf
or

G
ra

m
m

at
ic

al
E

vo
lu

tio
n,

w
hi

le
PS

O
is

sh
or

tf
or

Pa
rt

ic
le

Sw
ar

m
O

pt
im

iz
at

io
n)

A
rt

ic
le

an
d

M
et

ah
eu

ri
st

ic
M

et
ho

d
of

ev
al

ua
tio

n
Te

st
ob

je
ct

s
Pe

rf
or

m
an

ce
fa

ct
or

ev
al

u-
at

ed
O

ut
co

m
es

of
th

e
ex

pe
ri

m
en

t

D
oz

ie
r

et
al

.
20

04
[7

5]
,

G
A

an
d

PS
O

C
om

pa
ri

so
n

of
st

ea
dy

st
at

e
G

A
an

d
si

x
va

ri
an

ts
of

PS
O

19
98

M
IT

L
in

co
ln

L
ab

D
at

a
To

di
sc

ov
er

ho
le

s
(T

yp
e

II
er

ro
rs

/fa
ls

e
ne

ga
tiv

es
)

G
A

ou
tp

er
fo

rm
ed

al
lo

f
th

e
sw

ar
m

s
w

ith
re

sp
ec

t
to

nu
m

be
ro

fd
is

tin
ct

vu
ln

er
ab

ili
tie

s
di

sc
ov

er
ed

K
ay

ac
ik

et
al

.
20

05
[1

32
],

G
E

(b
as

ic
,

ni
ch

in
g

an
d

ni
ch

in
g

&
N

oO
P

m
in

im
iz

at
io

n)

D
et

ec
tio

n
(o

r
no

t)
of

ea
ch

ex
pl

oi
tt

hr
ou

gh
th

e
Sn

or
tm

is
us

e
de

te
ct

io
n

sy
st

em
A

si
m

pl
e

(g
en

er
ic

)
vu

ln
er

ab
le

ap
-

pl
ic

at
io

n
pe

rf
or

m
in

g
a

da
ta

co
py

w
ith

ou
tc

he
ck

in
g

th
e

in
te

rn
al

bu
ff

er
si

ze

T
he

nu
m

be
r

of
al

er
ts

th
at

Sn
or

t
ge

ne
ra

te
s

w
he

n
at

-
ta

ck
s

ar
e

ex
ec

ut
ed

T
he

re
su

lts
fr

om
th

re
e

va
ri

an
ts

of
G

E
w

er
e

co
m

-
pa

ra
bl

e

B
ud

yn
ek

et
al

.
20

05
[4

4]
,G

A
R

es
ul

ts
fr

om
a

lo
g

an
al

yz
er

A
ut

om
at

ic
ge

ne
ra

tio
n

of
co

m
pu

te
r

ha
ck

er
sc

ri
pt

s
(a

se
qu

en
ce

of
U

ni
x

co
m

m
an

ds
)

E
vi

de
nc

e
co

lle
ct

io
n

fr
om

th
e

lo
gs

V
ar

io
us

to
p

sc
or

in
g

sc
ri

pt
s

w
er

e
ob

ta
in

ed

G
ro

ss
o

et
al

.
20

05
[9

6]
,G

A
C

om
pa

ri
so

n
of

th
re

e
di

ff
er

en
tfi

tn
es

s
fu

nc
-

tio
ns

na
m

el
y

vu
ln

er
ab

le
co

ve
ra

ge
fit

ne
ss

,
ne

st
in

g
fit

ne
ss

an
d

bu
ff

er
bo

un
da

ry
fit

ne
ss

A
w

hi
te

-n
oi

se
ge

ne
ra

to
ra

nd
a

fu
nc

-
tio

n
co

nt
ai

ne
d

in
th

e
ft

p
cl

ie
nt

M
od

ifi
ed

t-
te

st
to

co
m

pa
re

fit
ne

ss
va

lu
es

of
th

re
e

fit
ne

ss
fu

nc
tio

ns
ac

ro
ss

th
e

tw
o

te
st

ob
je

ct
s

A
fit

ne
ss

fu
nc

tio
n

ac
co

un
tin

g
fo

r
th

e
di

st
an

ce
fr

om
th

e
bu

ff
er

bo
un

da
ri

es
ou

tp
er

fo
rm

ed
fit

ne
ss

fu
nc

tio
n

no
tu

si
ng

th
e

sa
m

e
fa

ct
or

G
ro

ss
o

et
al

.
20

07
[9

5]
,G

A
T

he
fit

ne
ss

th
at

do
es

no
t

us
e

dy
na

m
ic

w
ei

gh
in

g
Tw

o
di

ff
er

en
ts

et
s

of
C

ap
pl

ic
at

io
ns

A
co

m
pa

ri
so

n
of

fit
ne

ss
va

l-
ue

s
of

co
m

pe
tin

g
fit

ne
ss

ca
se

s
in

te
rm

s
of

nu
m

be
r

of
ge

ne
ra

tio
ns

T
he

ne
w

fit
ne

ss
fu

nc
tio

n
ou

tp
er

fo
rm

ed
th

e
co

m
-

pa
ra

bl
e

on
es

K
ay

ac
ik

et
al

.
20

06
[1

31
],

L
in

-
ea

rG
P

E
va

lu
at

io
n

of
a

ne
w

ap
pr

oa
ch

T
hr

ee
ex

pe
ri

m
en

ts
w

ith
di

ff
er

en
t

da
ta

se
ts

A
vo

id
an

ce
of

at
ta

ck
de

te
c-

tio
n

by
Sn

or
t,

th
e

ne
t-

w
or

k
ba

se
d

in
tr

us
io

n
de

te
c-

tio
n

sy
st

em

T
he

ev
ol

ve
d

at
ta

ck
s

di
sc

ov
er

ed
di

ff
er

en
t

w
ay

s
of

at
ta

in
in

g
su

b-
go

al
s

as
so

ci
at

ed
w

ith
bu

ild
in

g
bu

ff
er

ov
er

flo
w

at
ta

ck
s

K
ay

ac
ik

et
al

.
20

07
[1

33
],

L
in

-
ea

rG
P

C
om

pa
re

s
tw

o
fit

ne
ss

fu
nc

tio
ns

(i
nc

re
m

en
-

ta
l

an
d

co
nc

ur
re

nt
)

in
de

te
ct

in
g

an
om

al
y

ra
te

In
st

ru
ct

io
n

se
t

co
ns

is
tin

g
of

m
os

t
fr

eq
ue

nt
ly

oc
cu

rr
in

g
sy

st
em

ca
lls

M
ea

su
re

m
en

t
of

al
ar

m
ra

te
in

di
ca

tin
g

ev
as

io
n

of
St

ri
de

,
th

e
an

om
al

y
ho

st
ba

se
d

de
-

te
ct

io
n

sy
st

em

R
ed

uc
tio

n
of

an
om

al
y

ra
te

fr
om

∼
65

%
to
∼

2.
7%

163

Chapter 5. A systematic review of search-based testing for non-functional system
properties

Ta
bl

e
5.

13
:K

ey
ev

al
ua

tio
n

in
fo

rm
at

io
n

an
d

ou
tc

om
es

of
us

ab
ili

ty
st

ud
ie

s.
(G

A
is

sh
or

tf
or

G
en

et
ic

A
lg

or
ith

m
,T

S
is

sh
or

tf
or

Ta
bu

Se
ar

ch
,S

A
is

sh
or

tf
or

Si
m

ul
at

ed
A

nn
ea

lin
g,

H
C

is
sh

or
tf

or
H

ill
C

lim
bi

ng
,P

SO
is

sh
or

tf
or

Pa
rt

ic
le

Sw
ar

m
O

pt
im

iz
at

io
n

w
hi

le
,A

C
A

is
sh

or
tf

or
A

nt
C

ol
on

y
A

lg
or

ith
m

)
A

rt
ic

le
an

d
M

et
ah

eu
ri

st
ic

M
et

ho
d

of
ev

al
ua

tio
n

Te
st

ob
je

ct
s

Pe
rf

or
m

an
ce

fa
ct

or
ev

al
ua

te
d

O
ut

co
m

es
of

th
e

ex
pe

ri
m

en
t

St
ar

do
m

20
01

[2
33

],
SA

,
T

S
an

d
G

A

C
om

pa
ri

so
n

of
SA

,T
S

an
d

G
A

D
iff

er
en

t
si

ze
s

of
co

ve
ri

ng
ar

-
ra

ys
,

C
A

(1
3,

11
:1

),
C

A
(9

,7
:1

),
C

A
(7

,6
:1

)

T
hr

ee
te

st
s

to
fin

d
th

e
be

st
ar

ra
ys

po
s-

si
bl

e
in

th
e

sh
or

te
st

am
ou

nt
of

tim
e

G
A

w
as

in
ef

fe
ct

iv
e

at
fin

di
ng

qu
al

ity
ar

ra
ys

w
he

n
co

m
pa

re
d

w
ith

T
S

an
d

SA
.S

A
in

ge
ne

ra
l

w
as

fo
un

d
to

be
ve

ry
us

ef
ul

fo
r

fin
di

ng
co

ve
r-

in
g

ar
ra

ys
of

va
ri

ou
s

si
ze

s
w

hi
le

w
he

n
th

e
si

ze
of

an
ar

ra
ys

ne
ig

hb
or

ho
od

w
as

sm
al

le
r,

T
S

w
as

ab
le

to
fin

d
m

uc
h

be
tte

ra
rr

ay
s

C
oh

en
et

al
.

20
03

[5
5]

,S
A

an
d

H
C

C
om

pa
ri

so
n

of
SA

,H
C

an
d

gr
ee

dy
m

et
ho

ds
(A

E
T

G
,T

C
G

)

D
iff

er
en

t
si

ze
s

of
m

ix
ed

co
ve

ri
ng

ar
ra

ys
an

d
fix

ed
co

ve
ri

ng
ar

ra
ys

N
um

be
r

of
te

st
ca

se
s

in
a

te
st

su
ite

an
d

tim
e

re
qu

ir
ed

to
ob

ta
in

th
em

H
C

an
d

SA
im

pr
ov

ed
on

bo
un

ds
gi

ve
n

by
A

E
T

G
an

d
T

C
G

,
SA

co
ns

is
te

nt
ly

pe
rf

or
m

ed
w

el
lo

rb
et

te
rt

ha
n

H
C

C
oh

en
et

al
.

20
03

[5
6]

,S
A

Pr
es

en
ta

tio
n

of
re

su
lts

fo
r

a
ne

w
co

m
bi

na
-

to
ri

al
ob

je
ct

(v
ar

ia
bl

e
st

re
ng

th
co

ve
ri

ng
ar

-
ra

y)

M
in

im
um

,
m

ax
im

um
an

d
av

er
ag

e
si

ze
s

of
di

ff
er

en
t

va
ri

ab
le

st
re

ng
th

co
ve

ri
ng

ar
ra

ys

M
in

im
um

,
m

ax
i-

m
um

an
d

av
er

ag
e

si
ze

s
of

va
ri

ab
le

st
re

ng
th

co
ve

ri
ng

ar
ra

ys
af

te
r

10
ru

ns
of

SA

V
ar

ia
bl

e
st

re
ng

th
co

ve
ri

ng
ar

ra
ys

of
di

ff
er

en
t

si
ze

s

N
ur

m
el

a
20

03
[1

96
],

T
S

C
om

pa
ri

so
n

w
ith

be
st

kn
ow

n
up

pe
rb

ou
nd

s
U

pp
er

bo
un

ds
on

g 2
(Z

q n
)

fo
r

sm
al

lq
an

d
n

Si
ze

of
th

e
co

ve
ri

ng
ar

ra
y

T
he

se
ar

ch
al

go
ri

th
m

w
or

ke
d

be
st

fo
r

t=
2

an
d

q=
3

C
oh

en
et

al
.

20
03

[1
74

],
SA

C
om

pa
ri

so
ns

w
ith

st
re

ng
th

th
re

e
co

ve
ri

ng
ar

ra
ys

Se
ve

ra
l

bo
un

ds
fo

r
st

re
ng

th
th

re
e

co
ve

ri
ng

ar
ra

ys

Si
ze

of
st

re
ng

th
th

re
e

co
ve

ri
ng

ar
ra

y
C

om
bi

na
tio

n
of

co
m

bi
na

to
ri

al
co

ns
tr

uc
tio

n
an

d
SA

pr
es

en
te

d
ne

w
bo

un
ds

fo
r

so
m

e
st

re
ng

th
3

co
ve

ri
ng

ar
ra

ys
B

ry
ce

et
al

.
20

07
[4

2]
,

T
S,

SA
,H

C

C
om

pa
ri

so
ns

am
on

g
T

S,
SA

an
d

H
C

Tw
o

in
pu

ts
w

ith
fa

c-
to

rs
ha

vi
ng

eq
ua

ln
um

-
be

r
of

le
ve

ls
an

d
tw

o
in

pu
ts

ha
vi

ng
m

ix
ed

nu
m

be
ro

fl
ev

el
s

R
at

e
of

t-
tu

pl
e

co
v-

er
ag

e
SA

ha
d

th
e

fa
st

es
tr

at
e

of
t-

tu
pl

e
co

ve
ra

ge

To
sh

ia
ki

et
al

.
20

04
[2

25
],

A
C

A
,G

A

C
om

pa
ri

so
ns

w
ith

A
E

T
G

,
IP

O
an

d
SA

al
go

ri
th

m
s

fo
r

th
e

ca
se

s
t=

2
an

d
t=

3

C
ov

er
in

g
ar

ra
ys

an
d

m
ix

ed
co

ve
ri

ng
ar

ra
ys

of
st

re
ng

th
2

an
d

3

Si
ze

of
re

su
lti

ng
te

st
se

ts
an

d
am

ou
nt

of
tim

e
re

qu
ir

ed
fo

r
ge

ne
ra

tio
n

Fo
r

t=
2,

G
A

an
d

A
C

A
pe

rf
or

m
ed

co
m

pa
ra

bl
e

to
A

E
T

G
.F

or
t=

3,
G

A
an

d
A

C
A

ou
tp

er
fo

rm
ed

A
E

T
G

.
SA

ou
tp

er
fo

rm
ed

G
A

an
d

A
C

A
w

ith
re

sp
ec

tt
o

si
ze

of
th

e
re

su
lti

ng
te

st
se

ts

164

Chapter 5. A systematic review of search-based testing for non-functional system
properties

properties can be differentiated into two themes. One is the case where generation
of separate inputs is discussed to test the safety property while the other case discusses
generation of sequence of inputs. The performance outcomes for studies related to
safety testing are given in Table 5.14. The studies show that SA and GAs are applied

Table 5.14: Key evaluation information and outcomes of safety studies. (GA is short
for Genetic Algorithm, while SA is short for Simulated Annealing)

Article and
Metaheuristic

Method of evaluation Test objects Performance factor
evaluated

Outcomes of the experiment

Tracey et al.
1999 [246],
GA and SA

Comparison of safety
conditions obtained
from software fault tree
analysis and functional
specification

Small size functions
used in the pre-proof
step

Finding test data that
causes an implemen-
tation to violate a
safety property

The approach might be useful not only for
safety verification but also for integration with
fault injection, testing for exception conditions
and testing for safe component reuse

Kaddour et al.
2003 [2], SA

Effectiveness in terms of
finding appropriate test
sequences and efficiency
in terms of comparing
the speed of SA with ran-
dom sampling

Non-explosion of the
steam boiler

Finding the test se-
quence that lead to
either an explosion or
a dangerous situation

Both random search and SA were effective
while random search was more efficient

Baresel et al.
2003 [24],
Pohlheim
et al.
2005 [206],
GA

None Dynamic car control
system

Violation of defined
requirements for out-
put sequence gener-
ated by the simula-
tion of the dynamic
system

It was possible to generate real-world input se-
quences causing violations of a given safety re-
quirement

in the context of safety testing, GA being more successfully applied. However, the
results suggest a need for further experimentation in terms of investigating alternative
design choices and calibration of algorithmic parameters. This is desirable especially
when the extensions to the basic approaches of safety testing can be applied to fault
injection, testing for exception conditions and testing for safe component reuse and
integration [246]. In terms of alternate design choices, we see in [2] that the effi-
ciency of SA is dependent on the initial solution because when no cost improvement is
observed, the search does not allow moves larger than those authorized by the neigh-
borhood function. Therefore, improvement in the efficiency of the SA algorithm can
be achieved by searching elsewhere then the neighborhood of the current solution if
no cost improvement is made. Further experimentation is also desirable in terms of
safety testing real-world applications, however, the instrumentation required for test-
ing of safety conditions is a challenge with respect to the scalability of the technique.
Also, since the design choices are highly dependent on the nature of the safety critical
system, it is consequently important to include more problem-specific knowledge into
the representation of solutions and design of fitness function.

We can infer from this review that search-based testing is poorly represented in the
testing of non-functional properties. While search-based software engineering might
be transitioning from early optimistic results to more in-depth understanding of the

165

Chapter 5. A systematic review of search-based testing for non-functional system
properties

associated problems [103], search-based testing of non-functional properties is still ad-
hoc and largely exploratory. The main reasons that can be attributed to this trend are the
difficulties associated with instrumenting non-functional properties as fitness functions
and also difficulties in generalizing search-based testing of non-functional properties
on a broader scale due to strictly domain specific nature of existing studies. With the
majority of studies in search-based software testing applied to functional testing, the
use of metaheuristic search techniques for testing non-functional properties is rather
limited and, with exception to execution time studies, are very problem specific. We
believe that it is important, in order to develop the currently emerging field of search-
based software testing, to analyze the applicability of search techniques in testing of
diverse non-functional properties which can then trigger the second phase of explo-
ration requiring a deeper understanding of problem and solution characteristics [103].

5.5 Validity threats
There can be different threats to the validity of study results.

Conclusion validity refers to the statistically significant relationship between the
treatment and the outcome [258]. One possible threat to conclusion validity is biasness
in applying quality assessment and data extraction. In order to minimize this threat,
we explicitly define the inclusion and exclusion criteria, which we believe is detailed
enough to provide an assessment of how we reached the final set of papers for analysis.
With respect to the quality assessment, we wanted to be as inclusive as possible, so we
resorted to a binary ‘yes’ or ‘no’ scale rather than assigning any scores. We made sure
to a large extent include instead of exclude references, hence making sure not to place,
by mistake, any relevant contributions in the ‘no’ category. To assess the consistency
of data extraction, a small sample of primary studies were used to extract data for the
second time.

Internal validity refers to a causal relationship between treatment and outcome [258].
One threat to internal validity arises from unpublished research that had undesired out-
comes or proprietary literature that is not made available. It is difficult to find such
grey literature; however we acknowledge that inclusion of such literature would have
contributed in increasing internal validity.

Construct validity is concerned with the relationship between the theory and appli-
cation [258]. One possible threat to construct validity is exclusion of relevant studies.
In order to minimize this threat, we defined a rigorous search strategy (Subsect. 5.2.2),
which included two phases, to ultimately protect us against threats to construct validity.

External validity is concerned with the generalization of results outside the scope
of the study [258]. We can relate it to the degree to which the primary studies are rep-

166

Chapter 5. A systematic review of search-based testing for non-functional system
properties

resentative of the overall goal of the review. We believe that our review protocol helped
us achieve a representative set of studies to a greater extent. During the course of scan-
ning references, the authors also came across two studies by Schultz et al. [220, 221],
applying evolutionary algorithms for the robustness testing of autonomous vehicle con-
trollers. We do not include these two studies in our analysis since these studies were
published in 1992 and 1995, which are outside the time span (1996–2007) of this re-
view. Furthermore, we did not anticipate finding other relevant studies outside the time
span of 1996–2007 as previous relevant surveys supports such a choice of time span.

5.6 Conclusions
This systematic review investigated the use of metaheuristic search techniques for test-
ing non-functional properties of the SUT. The 35 primary studies are distributed among
execution time (15 papers), quality of service (2 papers), safety (4 papers), security (7
papers) and usability (7 papers). While scanning references, we also found two papers
relating to robustness testing of autonomous vehicle controllers [220, 221] but we do
not include these two papers in our review as they were outside the time span of our
search (1996 to 2007).

Within execution time testing, genetic algorithms finds application in 14 out of 15
papers. The research trend within execution time testing is more towards violation of
timing constraints due to input values; however, the paper by Briand et al. [36] provides
another research approach that analyzes the task architectures and consider seeding
times of events triggering tasks and tasks’ synchronization. In terms of use of fitness
function, we find three variations; the execution time measured in CPU clock cycles,
coverage of code annotations inserted along shortest and longest algorithmic execution
paths and the fitness function based on the difference between execution’s deadline and
execution’s actual completion. The challenges identified include dealing with potential
probe effects due to instrumentation and uncertainty about global optimum, finding
appropriate and robust search parameters and a having a suitable termination criteria
of search.

Within quality of service (QoS), the two papers apply genetic algorithms to de-
termine the set of service concretizations that lead to QoS constraint satisfaction and
to generate combinations of bindings and inputs causing violations of service level
agreements. One of the papers uses a fitness function based on the maximization of
desired QoS attributes while minimizing others and includes the possibility of having
static or dynamic fitness function. The other paper uses a fitness function that com-
bines distance-based fitness with a fitness guiding the coverage of target statements.
The challenges include the need to compute QoS attributes of component services for

167

Chapter 5. A systematic review of search-based testing for non-functional system
properties

workflow constructs and to deal with the possibility of deviation of fitness calculation
due to workflow instrumentation.

In security testing; genetic algorithms, linear genetic programming, grammatical
evolution and particle swarm optimization have been applied. The applied fitness func-
tions used different representations for the completion of conditions leading to suc-
cessful exploits. Modifications to the attacker’s arbitrary code and finding appropriate
goals for hacker script generation are identified as the challenges for security testing.

Within usability testing, metaheuristic search techniques are applied to find better
bounds on covering arrays. A variety of metaheuristic search techniques are applied
including SA, TS, GA and ant colony algorithms. The fitness function used is the
number of uncovered t-subsets. Execution time is a major challenge in this case as for
large parameter sets, the metaheuristic algorithms run slowly due to the large amount
of memory required to store information.

In safety testing, we find two research directions to test safety properties of the
SUT. One makes use of generation of separate inputs to test the safety property, while
the other uses a sequence of inputs. Simulated annealing and genetic algorithms are
the used metaheuristics and the fitness function takes into account the violation of
various safety properties. The incorporation of problem specific knowledge into the
representation of solution and design of fitness function presents a challenge for the
application of metaheuristic search techniques to test safety properties.

We believe that there is still plenty of potential for automating non-functional test-
ing using search-based techniques and we expect that studies involving NFSBST will
increase in the following years. The results of our systematic review also indicate that
the current body of knowledge concerning search-based software testing does not re-
port studies on many of the other non-functional properties. On the other hand, there is
a need to extend the early optimistic results of applying NFSBST to larger real world
systems, thus moving towards a generalization of results.

168

Chapter 6

Summary and conclusions

6.1 Summary

The research questions (Section 1.3) in this thesis are targeted towards two activities
within software V&V: Software predictive modeling and software testing. The first
two specific research questions (RQ1.1–1.2) are focused on empirical evaluation of
symbolic regression using genetic programming as a predictive modeling technique.
The third specific research question (RQ2.1) reviews the state of research within testing
of non-functional system properties using search-based techniques.

Chapter 2 comprises of an initial investigation into the predictive capabilities of
applying symbolic regression using genetic programming. The comparative evaluation
with traditional software reliability growth models shows that symbolic regression us-
ing genetic programming has a potential to be a valid fault prediction technique. Using
three measures of model validity, prequential likelihood ratio showed favorability for
the GP models while the same was not the case with the Braun statistic and AMSE. The
goodness of fit of GP models was either equivalent or better in comparison with tradi-
tional models but not statistically significant in every case. The box plots of residuals
and matched paired t-tests showed a positive result in favor of GP models.

Chapter 3 carries forward the early positive results of using symbolic regression
application of genetic programming. The empirical investigation this time is into
cross-release prediction of fault-count data from large and complex industrial and open-
source software. The results are evaluated both quantitatively and qualitatively, while
the comparisons are done with both machine-learning and traditional approaches to
fault prediction. The results show that, quantitatively, symbolic regression using ge-

169

Chapter 6. Summary and conclusions

netic programming is at least as competitive as other techniques for cross-release fault
prediction. Qualitatively, symbolic regression using genetic programming scores better
for transparency of resulting solutions and generality, in comparison with comparative
techniques. On the other hand, ease of configuration is not a strength for symbolic
regression using genetic programming.

Chapter 4 consolidates the existing evidence in the software engineering literature
that comparatively evaluates the symbolic regression application of genetic program-
ming with other techniques. The results of this study provide evidence in support
of symbolic regression using genetic programming for software quality classification,
software fault prediction and software reliability growth modeling in comparison with
regression/machine learning techniques and other models.

Chapter 5 focuses on conducting a systematic review of search-based approaches
for testing non-functional system properties. The results of the review show that meta-
heuristic search techniques have been applied for non-functional testing of execution
time, quality of service, security, usability and safety. The results further show the
applicability of different search techniques including simulated annealing, tabu search,
genetic algorithms, ant colony methods, grammatical evolution, genetic programming
and swarm intelligence methods.

6.2 Conclusions

What we can conclude from the studies in this thesis is that a search-based technique
like genetic programming can be applied for software fault predictions (as investigated
in Chapters 2, 3 and 4). This is in addition to the existing literature evidence showing
the application of different search-based techniques for testing non-functional system
properties (as investigated in Chapter 5).

Another important conclusion that can be drawn from the studies on software fault
prediction in this thesis is that while use of symbolic regression application of genetic
programming had benefits (as outlined in Section 1.1), there were also shortcomings.
These shortcomings were concerned with difficulties in configuring the genetic pro-
gramming algorithm, which had different parameters to configure, and with the com-
plexity of the resulting solutions.

More specific conclusions, which can be drawn from this thesis, are given below:

1. The evolutionary search mechanism of symbolic regression using genetic pro-
gramming was suitable for predicting the future software reliability in terms of
number of faults (Section 2.4).

170

Chapter 6. Summary and conclusions

2. Based on the weekly fault count data from three different industrial software
projects, the results for goodness of fit and prediction accuracy were statistically
significant in favor of models built using symbolic regression application of ge-
netic programming (Section 2.5).

3. Using the same data as in bullet 2 above, the comparative evaluation of models
from symbolic regression application of genetic programming and three tradi-
tional software reliability growth models showed that one out of three measures
of model validity favored the GP models.The measures for goodness of fit and
model bias showed that models built using symbolic regression application of
genetic programming were at least competitive to traditional software reliability
growth models (Section 2.6).

4. The quantitative evaluation of models built using symbolic regression applica-
tion of genetic programming showed that for cross-release fault predictions, they
were at least as competitive as other machine learning and traditional models
(Section 3.7).

5. There is a need to take into account qualitative factors for assessing the practical
utility of a prediction system. The solutions given by the symbolic regression
application of genetic programming were open to interpretation but they might
be complex and might not be able to give logical explanation of the relationships.
Furthermore, the parameter tuning problem was time consuming and therefore
ease of configuration was not a strength for symbolic regression application of
genetic programming (Sections 3.9 and 4.4).

6. While there was evidence in software engineering literature in support of us-
ing symbolic regression application of genetic programming for software quality
classification, software fault prediction and software reliability growth modeling;
we were inconclusive for software cost/effort/size estimation (Section 4.4).

7. The results of the systematic review in Chapter 5 suggested that execution time
is the most suitable non-functional system property for applying search-based
software testing. In terms of search techniques, genetic algorithm was the mostly
used search technique.

This thesis has given indications that search-based techniques are applicable for
activities within software verification and validation. The evolutionary search mecha-
nism of symbolic regression using genetic programming has shown some encouraging
results for predictive modeling of fault data; that is, in addition to the literature evi-
dence where search-based techniques have been applied successfully for testing non-
functional system properties.

171

Chapter 6. Summary and conclusions

6.3 Future research
Through empirical investigations and literature reviews conducted as part of this the-
sis, we anticipate a promising future where there are further research opportunities
for evaluating the application of search-based techniques in software verification and
validation. These research opportunities are grouped into different themes and given
below.

• Industrial

– Apply and evaluate the early positive results of using genetic programming
for software fault predictions in an on-going industrial project.

• Scope expansion

– Empirically evaluate the effectiveness of using genetic programming in
prediction across other phases of the software development life cycle, such
as maintenance task effort.

– Investigate the accuracy of predictions from the genetic programming al-
gorithm early on in a software development life cycle.

– Evaluate the use of other search-based approaches for predictions, such
as particle swarm optimization, artificial immune programming and gene
expression programming.

• Algorithmic enhancements

– Empirically evaluate the use of different fitness functions to better guide
search of feasible solutions for the genetic programming algorithm.

– Investigate the mechanisms of finding compact and less complex genetic
programming solutions.

– Investigate the potential of saving the state information during genetic pro-
gramming evolved solutions so as to enhance the predictive accuracy on
time-series nature of data.

• Design enhancements

– Assess the impact of different lengths of the training data and different
cross-validation schemes on the effectiveness of the predictions from the
genetic programming algorithm.

172

Chapter 6. Summary and conclusions

– Investigate the potential of adaptive parameter control during a genetic pro-
gramming run to ease parameter tuning for the genetic programming algo-
rithm.

– Evaluate the adaptive capability of the genetic programming algorithm for
different sets of independent software metrics.

– Evaluate the effectiveness of genetic programming predictions at finer lev-
els of detail by collecting different metrics at the code and/or module level.

– Increase the number of comparisons with other competitive approaches,
such as Bayesian networks [80] and MARS [38].

– Investigate the possibility of having an ensemble of techniques for software
fault prediction at hand for use by software engineers working in real-world
projects.

The above mentioned opportunities indicate that there are future research opportunities
along multiple dimensions. While there are opportunities to seek algorithmic improve-
ments within a particular search-based technique like genetic programming, there are
also open opportunities to apply other search-based techniques. Furthermore, there are
opportunities to evaluate existing applications of search-based techniques in a particu-
lar domain and, especially, in real-world settings, i.e. in ongoing projects in industry.

173

Chapter 6. Summary and conclusions

174

References

[1] Institute of Electrical and Electronics Engineers recommended practice for soft-
ware requirements specifications. Technical Report 830–1998, Institute of Elec-
trical and Electronics Engineers, Inc., 1998.

[2] O. A.-Kaddour, P. Thévenod-Fosse, and H. Waeselynck. Property-oriented test-
ing based on simulated annealing. http://www.laas.fr/∼francois/SVF/
seminaires/inputs/02/olfapaper.pdf, Last checked 05 Mar 2009.

[3] A. A. Abdel-Ghaly, P. Y. Chan, and B. Littlewood. Evaluation of competing
software reliability predictions. IEEE Transactions on Reliability, 12(9):950–
967, 1986.

[4] A. Abraham. Real time intrusion prediction, detection and prevention programs.
In Proceedings of the 2008 IEEE International Conference on Intelligence and
Security Informatics (ISI’08), Piscataway, NJ, USA, 2008.

[5] W. Adnan, M. Yaakob, R. Anas, and M. Tamjis. Artificial neural network for
software reliability assessment. In Proceedings of IEEE TENCON’00, 2000.

[6] W. Afzal and R. Torkar. A comparative evaluation of using genetic program-
ming for predicting fault count data. In Proceedings of the 3rd International
Conference on Software Engineering Advances (ICSEA’08), Los Alamitos, CA,
USA, 2008. IEEE Computer Society.

[7] W. Afzal and R. Torkar. Suitability of genetic programming for software re-
liability growth modeling. In Proceedings of the 1st International Symposium
on Computer Science and its Applications (CSA’08), Los Alamitos, CA, USA,
2008. IEEE Computer Society.

175

REFERENCES

[8] W. Afzal, R. Torkar, and R. Feldt. Prediction of fault count data using genetic
programming. In Proceedings of the 12th IEEE International Multitopic Con-
ference (INMIC’08). IEEE, 2008.

[9] W. Afzal, R. Torkar, and R. Feldt. A systematic mapping study on non-
functional search-based software testing. In Proceedings of the 20th In-
ternational Conference on Software Engineering & Knowledge Engineering
(SEKE’08). Knowledge Systems Institute Graduate School, 2008.

[10] W. Afzal, R. Torkar, and R. Feldt. A systematic review of search-based testing
for non-functional system properties. Information and Software Technology,
51(6):957–976, 2009.

[11] J. S. Aguilar-Ruiz, I. Ramos, J. C. Riquelme, and M. Toro. An evolutionary ap-
proach to estimating software development projects. Information and Software
Technology, 43(14):875 – 882, 2001.

[12] F. Akiyama. An example of software system debugging. International Federa-
tion for Information Processing Congress, 71(1):353–359, 1971.

[13] J. T. Alander. An indexed bibliography of genetic programming. Report Se-
ries no 94-1-GP, Department of Information Technology and Industrial Man-
agement, University of Vaasa, Finland, 1995. Last checked 13 Feb 2009.

[14] J. T. Alander, T. Mantere, G. Moghadampour, and J. Matila. Searching protec-
tion relay response time extremes using genetic algorithm-software quality by
optimization. In Proceedings of the 4th International Conference on Advances
in Power System Control, Operation and Management (APSCOM’97), 1997.

[15] E. Alba and F. Chicano. Finding safety errors with ACO. In Proceed-
ings of the 9th Annual Conference on Genetic and Evolutionary Computation
(GECCO’07), pages 1066–1073, New York, NY, USA, 2007. ACM.

[16] E. Alfaro-Cid, E. W. McGookin, D. J. Murray-Smith, and T. I. Fossen. Genetic
programming for the automatic design of controllers for a surface ship. IEEE
Transactions on Intelligent Transportation Systems, 9(2):311–321, 2008.

[17] S. Aljahdali, A. Sheta, and D. Rine. Prediction of software reliability: A com-
parison between regression and neural network non-parametric models. In Pro-
ceedings of the ACS/IEEE International Conference on Computer Systems and
Applications, 2001.

176

REFERENCES

[18] E. Alpaydin. Introduction to machine learning. The MIT Press, 2004.

[19] B. Andersson, P. Svensson, P. Nordin, and M. Nordahl. Reactive and memory-
based genetic programming for robot control. In Proceedings of the 2nd Euro-
pean Workshop on Genetic Programming (EuroGP’99), Berlin, Germany, 1999.

[20] F. J. Anscombe. Graphs in statistical analysis. The American Statistician,
27(1):17–21, February 1973.

[21] T. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Evolutionary computation 1
– Basic algorithms and operators. Taylor & Francis Group, LLC, 27 Madison
Avenue, New York, USA, 2000.

[22] A. J. Bagnall, V. J. Rayward-Smith, and I. M. Whittley. The next release prob-
lem. Information and Software Technology, 43(14):883– 890, 2001.

[23] W. Banzhaf, P. Nordin, R. Keller, and F. Francone. Genetic programming - An
introduction. Morgan Kaufmann Publishers, Inc., 1998.

[24] A. Baresel, H. Pohlheim, and S. Sadeghipour. Structural and functional sequence
test of dynamic and state-based software with evolutionary algorithms. In Ge-
netic and Evolutionary Computation—GECCO 2003, volume 2724 of Lecture
Notes in Computer Science, pages 2428–2441. Springer, 2003.

[25] R. S. Barr, B. L. Golden, J. P. Kelly, M. G. C. Resende, and W. R. S. Junior.
Designing and reporting on computational experiments with heuristic methods.
Journal of Heuristics, 1(1):9–32, 1995.

[26] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-oriented de-
sign metrics as quality indicators. IEEE Transactions on Software Engineering,
22(10):751–761, 1996.

[27] B. Boehm and V. R. Basili. Software defect reduction top 10 list. Computer,
34(1):135–137, 2001.

[28] B. W. Boehm. Software Engineering Economics. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1981.

[29] S. Bouktif, G. Antoniol, E. Merlo, and M. Neteler. A novel approach to opti-
mize clone refactoring activity. In Proceedings of the 8th Annual Conference
on Genetic and Evolutionary Computation (GECCO’06), New York, NY, USA,
2006. ACM.

177

REFERENCES

[30] S. Bouktif, H. Sahraoui, and G. Antoniol. Simulated annealing for improving
software quality prediction. In Proceedings of the 8th Annual Conference on
Genetic and Evolutionary Computation (GECCO’06), New York, NY, USA,
2006. ACM.

[31] G. E. P. Box, W. G. Hunter, and J. S. Hunter. Statistics for experimenters: An
introduction to design, data analysis, and model building. Wiley-Interscience,
1978.

[32] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil. Lessons
from applying the systematic literature review process within the software engi-
neering domain. Journal of Systems and Software, 80(4):571 – 583, 2007.

[33] L. Briand, V. R. Basili, and W. M. Thomas. A pattern recognition approach for
software engineering data analysis. IEEE Transactions on Software Engineer-
ing, 18(11):931–942, 1992.

[34] L. Briand, K. Emam, and S. Morasca. On the application of measurement theory
in software engineering. ISERN-95-04.

[35] L. C. Briand, V. R. Basili, and C. J. Hetmanski. Developing interpretable mod-
els with optimized set reduction for identifying high-risk software components.
IEEE Transactions on Software Engineering, 19(11):1028–1044, 1993.

[36] L. C. Briand, Y. Labiche, and M. Shousha. Stress testing real-time systems with
genetic algorithms. In Proceedings of the 7th Annual Conference on Genetic
and Evolutionary Computation (GECCO’05). ACM Press, 2005.

[37] L. C. Briand, Y. Labiche, and M. Shousha. Using genetic algorithms for early
schedulability analysis and stress testing in real-time systems. Genetic Program-
ming and Evolvable Machines, 7(2):145–170, 2006.

[38] L. C. Briand, W. L. Melo, and J. Wust. Assessing the applicability of fault-
proneness models across object-oriented software projects. IEEE Transactions
on Software Engineering, 28(7):706–720, 2002.

[39] S. Brocklehurst and B. Littlewood. Techniques for prediction analysis and re-
calibration. In Handbook of software reliability engineering, Editor M. R. Lyu,
Hightstown, NJ, USA, 1996. McGraw-Hill, Inc.

[40] W. D. Brooks and R. W. Motley. Analysis of discrete software reliability models.
Technical report, IBM FEDERAL SYSTEMS, 1980. ADA086334.

178

REFERENCES

[41] R. C. Bryce. Automatic generation of high coverage usability tests. In Extended
Abstracts on Human Factors in Computing Systems (CHI’05), New York, NY,
USA, 2005. ACM.

[42] R. C. Bryce and C. J. Colbourn. One-test-at-a-time heuristic search for interac-
tion test suites. In Proceedings of the 9th Annual Conference on Genetic and
Evolutionary Computation (GECCO’07), New York, NY, USA, 2007. ACM.

[43] R. D. Buck and J. H. Dobbins. Application of software inspection methodology
in design and code. In Proceedings of the Symposium on Software Validation:
Inspection-Testing-Verification-Alternatives, New York, NY, USA, 1984. Else-
vier North-Holland, Inc.

[44] J. Budynek, E. Bonabeau, and B. Shargel. Evolving computer intrusion scripts
for vulnerability assessment and log analysis. In Proceedings of the 7th An-
nual Conference on Genetic and Evolutionary Computation (GECCO’05), New
York, NY, USA, 2005. ACM.

[45] C. J. Burgess and M. Lefley. Can genetic programming improve software effort
estimation? A comparative evaluation. Information and Software Technology,
43(14):863–873, 2001.

[46] E. K. Burke and G. Kendall, editors. Search methodologies – Introductory tu-
torials in optimization and decision support techniques. Springer Science and
Business Media, Inc., 233 Spring Street, New York, USA, 2005.

[47] L. I. Burke. Introduction to artificial neural systems for pattern recognition.
Computers & Operations Research, 18(2), 1991.

[48] K. Y. Cai, L. Cai, W. D. Wang, Z. Y. Yu, and D. Zhang. On the neural network
approach in software reliability modeling. Journal of Systems and Software,
58(1):47–62, 2001.

[49] K. Y. Cai, C. Wen, and M. Zhang. A critical review on software reliability
modeling. Reliability Engineering and System Safety, 32(3):357–371, 1991.

[50] K. Y. Cai, C. Wen, and M. Zhang. A novel approach to software reliability
modeling. Microelectronics and Reliability, 33(15):2265–2267, 1993.

[51] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani. An approach for
QoS-aware service composition based on genetic algorithms. In Proceed-
ings of the 7th Annual Conference on Genetic and Evolutionary Computation
(GECCO’05). ACM, 2005.

179

REFERENCES

[52] C. Catal and B. Diri. A systematic review of software fault prediction studies.
Expert Systems with Applications, 36(4):7346 – 7354, 2009.

[53] V. U. B. Challagulla, F. B. Bastani, I. Yen, and R. A. Paul. Empirical assessment
of machine learning based software defect prediction techniques. In WORDS
’05: Proceedings of the 10th IEEE International Workshop on Object-Oriented
Real-Time Dependable Systems, pages 263–270, Washington, DC, USA, 2005.
IEEE Computer Society.

[54] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG system:
An approach to testing based on combinatorial design. IEEE Transactions on
Software Engineering, 23(7), 1997.

[55] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J. Colbourn. Construct-
ing test suites for interaction testing. In Proceedings of the 25th International
Conference on Software Engineering (ICSE’03). IEEE Computer Society, 2003.

[56] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, C. J. Colbourn, and J. S.
Collofello. Variable strength interaction testing of components. In Proceed-
ings of the 27th Annual International Conference on Computer Software and
Applications (COMPSAC’03). IEEE Computer Society, 2003.

[57] B. T. Compton and C. Withrow. Prediction and control of Ada software defects.
Journal of Systems and Software, 12(3):199–207, 1990.

[58] S. D. Conte, H. E. Dunsmore, and V. Y. Shen. Software engineering metrics and
models. Benjamin/Cummings, 1986.

[59] E. Costa, G. de Souza, A. Pozo, and S. Vergilio. Exploring genetic programming
and boosting techniques to model software reliability. IEEE Transactions on
Reliability, 56(3):422–434, 2007.

[60] E. O. Costa and A. Pozo. A mu + lambda – GP algorithm and its use for re-
gression problems. In Proceedings of the 18th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI’06), Washington, DC, USA, 2006.
IEEE Computer Society.

[61] E. O. Costa, S. R. Vergilio, A. Pozo, and G. Souza. Modeling software relia-
bility growth with genetic programming. In Proceedings of the 16th IEEE In-
ternational Symposium on Software Reliability Engineering (ISSRE’05), pages
171–180, Washington, DC, USA, 2005. IEEE Computer Society.

180

REFERENCES

[62] J. Crespo, J. J. Cuadrado, L. Garcia, O. Marban, and M. I. Sanchez-Segura.
Survey of artificial intelligence methods on software development effort estima-
tion. In Proceedings of the 10th ISPE International Conference on Concurrent
Engineering. Swets en Zeitlinger B.V., 2003.

[63] J. W. Creswell. Research design – Qualitative, quantitative and mixed method
approaches. Sage Publications, United Kingdom/India, second edition, 2003.

[64] Y. S. Dai, M. Xie, K. L. Poh, and B. Yang. Optimal testing-resource allocation
with genetic algorithm for modular software systems. Journal of Systems and
Software, 66(1):47–55, 2003.

[65] M. A. de Almeida, H. Lounis, and W. L. Melo. An investigation on the use of
machine learned models for estimating correction costs. In Proceedings of the
20th International Conference on Software Engineering (ICSE’98), 1998.

[66] J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research, 7:1–30, 2006.

[67] G. Denaro and M. Pezze. An empirical evaluation of fault-proneness models.
In Proceedings of the 24th International Conference on Software Engineering
(ICSE’02), 2002.

[68] K. Derderian, R. M. Hierons, M. Harman, and Q. Guo. Input sequence gener-
ation for testing of communicating finite state machines (CFSMs). In Proceed-
ings of the 6th Annual Conference on Genetic and Evolutionary Computation
(GECCO’04). ACM, 2004.

[69] M. Di Penta, G. Canfora, G. Esposito, V. Mazza, and M. Bruno. Search-based
testing of service level agreements. In Proceedings of the 9th Annual Conference
on Genetic and Evolutionary Computation (GECCO’07). ACM Press, 2007.

[70] T. Dohi, Y. Nishio, and S. Osaki. Optimal software release scheduling based
on artificial neural networks. Annals of Software Engineering, 8(1-4):167–185,
1999.

[71] J. J. Dolado. A validation of the component-based method for software size
estimation. IEEE Transactions on Software Engineering, 26(10), 2000.

[72] J. J. Dolado. On the problem of the software cost function. Information and
Software Technology, 43(1):61 – 72, 2001.

181

REFERENCES

[73] J. J. Dolado and L. Fernandez. Genetic programming, neural networks and lin-
ear regression in software project estimation. In Proceedings of the International
Conference on Software Process Improvement, Research, Education and Train-
ing (INSPIRE’98), London, 1998. British Computer Society.

[74] J. J. Dolado, L. Fernandez, M. C. Otero, and L. Urkola. Software effort estima-
tion: The elusive goal in project management. In Proceedings of the Interna-
tional Conference on Enterprise Information Systems, 1999.

[75] G. V. Dozier, D. Brown, J. Hurley, and K. Cain. Vulnerability analysis of
immunity-based intrusion detection systems using evolutionary hackers. In Pro-
ceedings of the 6th Annual Conference on Genetic and Evolutionary Computa-
tion (GECCO’04). Springer, 2004.

[76] T. Dybå, T. Dingsøyr, and G. K. Hanssen. Applying systematic reviews to di-
verse study types: An experience report. In Proceedings of the 1st International
Symposium on Empirical Software Engineering and Measurement (ESEM’07),
2007.

[77] T. Dybå, B. A. Kitchenham, and M. Jørgensen. Evidence-based software engi-
neering for practitioners. IEEE Software, 22(1):58–65, 2005.

[78] M. Evett, T. Khoshgoftar, P. d. Chien, and E. Allen. GP-based software quality
prediction. In Proceedings of the 3rd Annual Genetic Programming Conference,
1998.

[79] W. Farr. SMERFS3 homepage, 2009. http://www.slingcode.com/smerfs/
downloads/, Last checked 05 Mar 2009.

[80] N. Fenton, M. Neil, W. Marsh, P. Hearty, Ł. Radliński, and P. Krause. On the
effectiveness of early life cycle defect prediction with bayesian nets. Empirical
Software Engineering, 13(5):499–537, 2008.

[81] N. E. Fenton and M. Neil. A critique of software defect prediction models. IEEE
Transactions on Software Engineering, 25(5):675–689, 1999.

[82] N. E. Fenton and N. Ohlsson. Quantitative analysis of faults and failures
in a complex software system. IEEE Transactions on Software Engineering,
26(8):797–814, 2000.

[83] N. E. Fenton and S. L. Pfleeger. Software metrics: A rigorous and practical
approach. Course Technology, Boston, MA, USA, 2nd edition, 1998.

182

REFERENCES

[84] D. G. Firesmith. Common concepts underlying safety, security, and survivability
engineering. Technical Report CMU/SEI-2003-TN-033, Software Engineering
Institute, Pittsburgh, Pennsylvania, 2003.

[85] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit. A simulation study of the
model evaluation criterion MMRE. IEEE Transactions on Software Engineer-
ing, 29(11), 2003.

[86] J. E. Gaffney. Estimating the number of faults in code. IEEE Transactions on
Software Engineering, 10(4):459–465, 1984.

[87] K. Gao and T. Khoshgoftaar. A comprehensive empirical study of count models
for software fault prediction. IEEE Transactions on Reliability, 56(2), 2007.

[88] A. L. Goel. Software reliability models: Assumptions, limitations, and appli-
cability. IEEE Transactions on Software Engineering, SE-11(12):1411–1423,
1985.

[89] A. L. Goel and K. Okumoto. Time dependent error detection rate model for
software reliability and other performance measures. IEEE Transactions on Re-
liability, R-28(3):206–211, 1979.

[90] A. Gray and S. MacDonell. A comparison of techniques for developing pre-
dictive models of software metrics. Information and Software Technology,
39(6):425 – 437, 1997.

[91] H.-G. Groß. A prediction system for dynamic optimization-based execution
time analysis. In Proceedings of the 1st International Workshop on Software En-
gineering using Metaheuristic Innovative Algorithms (SEMINAL’01), Toronto,
Canada, 2001.

[92] H.-G. Groß. An evaluation of dynamic, optimisation-based worst-case execution
time analysis. In Proceedings of the International Conference on Information
Technology: Prospects and Challenges in the 21st Century (ITPC’03), Kath-
mandu, Nepal, 2003.

[93] H.-G. Groß, B. Jones, and D. Eyres. Evolutionary algorithms for the verification
of execution time bounds for real-time software. In IEE Colloquium on Appli-
cable Modelling, Verification and Analysis Techniques for Real-Time Systems,
1999.

183

REFERENCES

[94] H.-G. Groß, B. F. Jones, and D. E. Eyres. Structural performance measure
of evolutionary testing applied to worst-case timing of real-time systems. IEE
Proceedings—Software, 147(2):25–30, 2000.

[95] C. D. Grosso, G. Antoniol, E. Merlo, and P. Galinier. Detecting buffer overflow
via automatic test input data generation. Computers and Operations Research
(COR) focused issue on search based software engineering, 35(10):3125–3143.

[96] C. D. Grosso, G. Antoniol, M. Di Penta, P. Galinier, and E. Merlo. Improving
network applications security: A new heuristic to generate stress testing data. In
Proceedings of the 7th Annual Conference on Genetic and Evolutionary Com-
putation (GECCO’05), pages 1037–1043, New York, NY, USA, 2005. ACM.

[97] S. R. Gunn. Support vector machines for classification and regression. Technical
report, School of electronics and computer science, University of Southampton,
1998.

[98] P. Guo and M. R. Lyu. A pseudoinverse learning algorithm for feedforward
neural networks with stacked generalization applications to software reliability
growth data. Neurocomputing, 56:101–121, 2004.

[99] N. Gupta and M. P. Singh. Estimation of software reliability with execution
time model using the pattern mapping technique of artificial neural network.
Computers & Operations Research, 32(1):187–199, 2005.

[100] T. Gyimothy, R. Ferenc, and I. Siket. Empirical validation of object-oriented
metrics on open source software for fault prediction. IEEE Transactions on
Software Engineering, 31(10):897–910, 2005.

[101] M. H. Halstead. Elements of software science. Elsevier, North-Holland, 1977.

[102] M. Harman. Search based software engineering. In Proceedings of the Workshop
on Computational Science in Software Engineering, collocated with 6th Interna-
tional Computational Science (ICCS’06), Berlin, Germany, 2006. Lecture Notes
in Computer Science Vol. 3994.

[103] M. Harman. The current state and future of search-based software engineering.
In Proceedings of Future of Software Engineering at 29th International Confer-
ence on Software Engineering (FOSE’07). IEEE Computer Society, USA, 2007.

[104] M. Harman and J. Clark. Metrics are fitness functions too. In Proceedings of
the 10th International Symposium on Software Metrics (METRICS’04). IEEE,
2004.

184

REFERENCES

[105] M. Harman and B. Jones. Search-based software engineering. Information and
Software Technology, 43(14):833 – 839, 2001.

[106] K. Henningsson. A fault classification approach to software process improve-
ment. Blekinge Institute of Technology Licentiate Series No. 2005:03, Ronneby,
Sweden, 2005.

[107] S. Ho, M. Xie, and T. Goh. A study of the connectionist models for software reli-
ability prediction. Computers and Mathematics with Applications, 46(3):1037–
1045, 2003.

[108] J. H. Holland. Adaptation in natural and artificial systems: An introductory
analysis with applications to biology, control and artificial intelligence. MIT
Press (reprinted 1992), Cambridge, MA, USA, 1975.

[109] M. Hollander and D. A. Wolfe. Non-parametric statistical methods. John Wiley
and Sons, Inc., 1999.

[110] D. Hoskins, R. C. Turban, and C. J. Colbourn. Experimental designs in soft-
ware engineering: D-optimal designs and covering arrays. In Proceedings of
the 2004 ACM workshop on Interdisciplinary Software Engineering Research
(WISER’04), New York, NY, USA, 2004. ACM.

[111] The Institute of Electrical and Electronics Engineers, Inc., Los Alamitos, Cali-
fornia. Guide to the Software Engineering Body of Knowledge (SWEBOK ®),
2004.

[112] J. P. A. Ioannidis. Why most published research findings are false. PLoS
Medicine, 2(8):696–701, August 2005.

[113] ISBSG. The International Software Benchmarking Standards Group Limited,
2009. Last checked 18 Mar 2009.

[114] ISO. International standard ISO/IEC 9126, information technology—product
quality—part1: Quality model. Technical report, International Standard Orga-
nization, 2001.

[115] Z. Jelinski and P. B. Moranda. Software reliability research. In Statistical Com-
puter Performance Evaluation, Ed. W. Freiberger, pages 465–497. Academic
Press, New York, USA, 1972.

185

REFERENCES

[116] C. Jones. The pragmatics of software process improvements, 1996. Software
Process Newsletter of the Software Engineering Technical Council Newsletter,
No. 5.

[117] M. Jørgensen. Experience with the accuracy of software maintenance task effort
prediction models. IEEE Transactions on Software Engineering, 21(8):674–681,
1995.

[118] M. Jørgensen. BESTweb, a repository of software cost and effort estimation
papers – Simula research laboratory, 2009. Last checked 07 Mar 2009.

[119] M. Jørgensen, T. Dybå, and B. Kitchenham. Teaching evidence-based software
engineering to university students. In Proceedings of the 11th IEEE Interna-
tional Symposium on Software Metrics (METRICS’05), 2005.

[120] M. Jørgensen and M. Shepperd. A systematic review of software development
cost estimation studies. IEEE Transactions on Software Engineering, 33(1):33–
53, 2007.

[121] N. Juristo and A. M. Moreno. Basics of software engineering experimentation.
Kluwer Academic Publishers, 2001.

[122] S. K. Kachigan. Statistical analysis – An interdisciplinary introduction to uni-
variate and multivariate methods. Radius Press, 1982.

[123] K. Kaminsky and G. Boetticher. Building a genetically engineerable evolvable
program (GEEP) using breadth-based explicit knowledge for predicting soft-
ware defects. In Proceedings of the 2004 IEEE Annual Meeting of the Fuzzy
Information Processing (NAFIPS’04)., 2004.

[124] K. Kaminsky and G. D. Boetticher. Defect prediction using machine learners
in an implicitly data starved domain. In Proceedings of the 8th world multi-
conference on systemics, cybernetics and informatics, Orlando, FL, 2004.

[125] S. H. Kan. Metrics and models in software quality engineering. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[126] N. Karunanithi. A neural network approach for software reliability growth mod-
eling in the presence of code churn. In Proceedings of the 4th International
Symposium on Software Reliability Engineering (ISSRE’93), 1993.

186

REFERENCES

[127] N. Karunanithi and Y. K. Malaiya. Neural networks for software reliability en-
gineering, in Handbook of software reliability and system reliability. McGraw-
Hill Inc., Hightstown, NJ, USA, 1996.

[128] N. Karunanithi, Y. K. Malaiya, and D. Whitley. Prediction of software reliability
using neural networks. In Proceedings of the 1991 International Symposium on
Software Reliability Engineering (ISSRE’91), 1991.

[129] N. Karunanithi, D. Whitley, and Y. K. Malaiya. Prediction of software relia-
bility using connectionist models. IEEE Transactions on Software Engineering,
18(7):563–574, 1992.

[130] N. Karunanithi, D. Whitley, and Y. K. Malaiya. Using neural networks in relia-
bility prediction. IEEE Software, 9(4):53–59, 1992.

[131] H. G. Kayacik, M. Heywood, and A. N. Zincir-Heywood. On evolving buffer
overflow attacks using genetic programming. In Proceedings of the 8th an-
nual conference on Genetic and evolutionary computation (GECCO’06), pages
1667–1674, New York, NY, USA, 2006. ACM.

[132] H. G. Kayacik, A. N. Z.-Heywood, and M. Heywood. Evolving successful
stack overflow attacks for vulnerability testing. In Proceedings of the 21st
Annual Computer Security Applications Conference (ACSAC’05), Washington,
DC, USA, 2005. IEEE Computer Society.

[133] H. G. Kayacik, A. N. Z.-Heywood, and M. Heywood. Automatically evading
IDS using GP authored attacks. In Proceedings of the IEEE Symposium on
Computational Intelligence in Security and Defense Applications (CISDA’07),
pages 153–160, New York, NY, USA, 2007. IEE Computer Society.

[134] T. Khoshgoftaar, E. Allen, J. Hudepohl, and S. Aud. Application of neural net-
works to software quality modeling of a very large telecommunications system.
IEEE Transactions on Neural Networks, 8(4), 1997.

[135] T. Khoshgoftaar, A. Pandya, and H. More. A neural network approach for pre-
dicting software development faults. In Proceedings of the 3rd International
Symposium on Software Reliability Engineering (ISSRE’92), 1992.

[136] T. Khoshgoftaar and R. Szabo. Using neural networks to predict software faults
during testing. IEEE Transactions on Reliability, 45(3):456–462, 1996.

187

REFERENCES

[137] T. M. Khoshgoftaar and E. B. Allen. Logistic regression modeling of software
quality. International Journal of Reliability, Quality and Safety Engineering,
6(4):303–317, 1999.

[138] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. I. Hudepohl. Classification
tree models of software quality over multiple releases. In Proceedings of the
10th International Symposium on Software Reliability Engineering (ISSRE’99),
Washington, USA, 1999. IEEE Computer Society.

[139] T. M. Khoshgoftaar and Y. Liu. A multi-objective software quality classifi-
cation model using genetic programming. IEEE Transactions on Reliability,
56(2):237–245, 2007.

[140] T. M. Khoshgoftaar, Y. Liu, and N. Seliya. Module-order modeling using an evo-
lutionary multi-objective optimization approach. In Proceedings of the 10th In-
ternational Symposium on Software Metrics, (METRICS’04), Washington, DC,
USA, 2004. IEEE Computer Society.

[141] T. M. Khoshgoftaar, Y. Liu, and N. Seliya. A multiobjective module-order model
for software quality enhancement. IEEE Transactions on Evolutionary Compu-
tation, 8(6):593–608, 2004.

[142] T. M. Khoshgoftaar and J. C. Munson. Predicting software development errors
using software complexity metrics. IEEE Journal on Selected Areas in Commu-
nications, 8(2):253–261, 1990.

[143] T. M. Khoshgoftaar, J. C. Munson, B. B. Bhattacharya, and G. D. Richardson.
Predictive modeling techniques of software quality from software measures.
IEEE Transactions on Software Engineering, 18(11):979–987, 1992.

[144] T. M. Khoshgoftaar and N. Seliya. Tree-based software quality estimation mod-
els for fault prediction. In Proceedings of the 8th International Symposium on
Software Metrics (METRICS’02), Washington, DC, USA, 2002. IEEE Computer
Society.

[145] T. M. Khoshgoftaar, N. Seliya, and Y. Liu. Genetic programming-based deci-
sion trees for software quality classification. In Proceedings of the 15th IEEE
International Conference on Tools with Artificial Intelligence (ICTAI’03), 2003.

[146] T. M. Khoshgoftaar, N. Seliya, and N. Sundaresh. An empirical study of pre-
dicting software faults with case-based reasoning. Software Quality Control,
14(2):85–111, 2006.

188

REFERENCES

[147] T. M. Khoshgoftaar and Naeem Seliya. Fault prediction modeling for software
quality estimation: comparing commonly used techniques. Empirical Software
Engineering, 8(3):255–283, 2004.

[148] N. R. Kiran and V. Ravi. Software reliability prediction by soft computing tech-
niques. Journal of Systems and Software, 81(4), 2008.

[149] B. Kitchenham, L. Pickard, S. MacDonell, and M. Shepperd. What accuracy
statistics really measure? IEE Proceedings Software, 148(3), Jun 2001.

[150] B. A. Kitchenham. Guidelines for performing systematic literature reviews in
software engineering. Technical Report EBSE-2007-001, UK, July 2007.

[151] B. A. Kitchenham, T. Dybå, and M. Jørgensen. Evidence-based software en-
gineering. In Proceedings of the 26th International Conference on Software
Engineering (ICSE’04), Washington, DC, USA, 2004. IEEE Computer Society.

[152] B. A. Kitchenham, E. Mendes, and G. H. Travassos. Cross versus within-
company cost estimation studies: A systematic review. IEEE Transactions on
Software Engineering, 33(5):316–329, 2007.

[153] B. A. Kitchenham, L. M. Pickard, and S. J. Linkman. An evaluation of some
design metrics. Software Engineering Journal, 5(1):50–58, 1990.

[154] J. Koljonen, M. Mannila, and M. Wanne. Testing the performance of a 2D
nearest point algorithm with genetic algorithm generated gaussian distributions.
Expert Systems with Applications, 32(3):879–889, 2007.

[155] A. Kordon, G. Smits, E. Jordaan, and E. Rightor. Robust soft sensors based
on integration of genetic programming, analytical neural networks, and support
vector machines. IEEE International Conference on E-Commerce Technology,
1, 2002.

[156] M. Kotanchek, G. Smits, and A. Kordon. Industrial strength genetic program-
ming. Kluwer, 2003.

[157] J. R. Koza. Genetic programming: On the programming of computers by means
of natural selection. MIT Press, Cambridge, MA, USA, 1992.

[158] J. R. Koza and R. Poli. Search methodologies – Introductory tutorials in opti-
mization and decision support techniques, edited by Edmund K. Burke and Gra-
ham Kendall, chapter 5 – Genetic programming. Springer Science and Business
Media, Inc., 233 Spring Street, New York, USA, 2005.

189

REFERENCES

[159] W. Langdon, S. Gustafson, and J. Koza. The genetic programming bibliography,
2009. Last checked 13 Feb 2009.

[160] F. Lanubile and G. Visaggio. Evaluating predictive quality models derived
from software measures: Lessons learned. Journal of Systems and Software,
38(3):225 – 234, 1997.

[161] M. Lefley and M. J. Shepperd. Using genetic programming to improve software
effort estimation based on general data sets. In Proceedings of the 2003 Confer-
ence on Genetic and Evolutionary Computation (GECCO’03). ACM, 2003.

[162] Y. Lei and K.-C. Tai. In-Parameter-Order: A test generation strategy for pairwise
testing. In Proceedings of The 3rd IEEE International Symposium on High-
Assurance Systems Engineering (HASE’98), Washington, DC, USA, 1998. IEEE
Computer Society.

[163] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking classifica-
tion models for software defect prediction: A proposed framework and novel
findings. IEEE Transactions on Software Engineering, 34(4):485–496, 2008.

[164] P. L. Li, M. Shaw, J. Herbsleb, B. Ray, and P. Santhanam. Empirical evaluation
of defect projection models for widely-deployed production software systems.
In Proceedings of the 12th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (SIGSOFT’04/FSE-12), New York, NY, USA,
2004. ACM.

[165] M. Lipow. Number of faults per line of code. IEEE Transactions on Software
Engineering, 8(4):437–439, 1982.

[166] Y. Liu and T. Khoshgoftaar. Reducing overfitting in genetic programming mod-
els for software quality classification. In Proceedings of the 8th IEEE Interna-
tional Symposium on High-Assurance Systems Engineering (HASE’04), Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[167] Y. Liu, T. Khoshgoftaar, and J.-F. Yao. Developing an effective validation strat-
egy for genetic programming models based on multiple datasets. In Proceedings
of the 2006 IEEE International Conference on Information Reuse and Integra-
tion, 2006.

[168] Y. Liu and T. M. Khoshgoftaar. Genetic programming model for software quality
classification. In Proceedings of the 6th IEEE International Symposium on High-
Assurance Systems Engineering (HASE’01), Washington, DC, USA, 2001. IEEE
Computer Society.

190

REFERENCES

[169] G. C. Low and D. R. Jeffery. Function points in the estimation and evaluation of
the software process. IEEE Transactions on Software Engineering, 16(1):64–71,
1990.

[170] S. Luke and L. Panait. A comparison of bloat control methods for genetic pro-
gramming. Evolutionary Computation, 14(3):309–344, 2006.

[171] M. R. Lyu. Handbook of software reliability engineering. IEEE Computer So-
ciety Press and McGraw-Hill, 1996.

[172] M. R. Lyu. Software reliability engineering: A roadmap. In Proceedings of
Future of Software Engineering at 29th International Conference on Software
Engineering (FOSE’07), Washington, DC, USA, 2007. IEEE Computer Society.

[173] M. R. Lyu and A. Nikora. Applying reliability models more effectively. IEEE
Software, 9(4), 1992.

[174] C. J. Colbourn M. B. Cohen and A. C. H. Ling. Constructing strength three cov-
ering arrays with augmented annealing. In Proceedings of the 25th International
Conference on Software Engineering (ICSE’03). IEEE Computer Society, 2003.

[175] C. Mair, G. Kadoda, M. Lefley, K. Phalp, C. Schofield, M. Shepperd, and
S. Webster. An investigation of machine learning based prediction systems.
Journal of Systems and Software, 53(1):23–29, 2000.

[176] C. Mair and M. Shepperd. The consistency of empirical comparisons of regres-
sion and analogy-based software project cost prediction. In Proceedings of the
4th International Symposium on Empirical Software Engineering (ISESE’05),
Los Alamitos, CA, USA, 2005. IEEE Computer Society.

[177] Y. K. Malaiya, N. Karunanithi, and P. Verma. Predictability measures for soft-
ware reliability models. In Proceedings of the 14th Annual International Com-
puter Software and Applications Conference (COMPSAC’90), 1990.

[178] T. Mantere and J. T. Alander. Evolutionary software engineering, A review.
Applied Soft Computing, 5:315–331, 2005.

[179] The MathWorks, Inc. http://www.mathworks.com. Last checked 20 Apr
2008.

[180] K. Matsumoto, K. Inoue, T. Kikuno, and K. Torii. Experimental evaluation of
software reliability growth models. In Proceedings of the 18th International
Symposium on Fault-Tolerant Computing (FTCS-18), 1988.

191

REFERENCES

[181] T. J. McCabe. A complexity measure. In Proceedings of the 2nd International
Conference on Software Engineering (ICSE’76), Los Alamitos, CA, USA, 1976.
IEEE Computer Society Press.

[182] P. McMinn. Search-based software test data generation: A survey. Software
Testing, Verification and Reliability, 14(2):105–156, 2004.

[183] T. Menzies, J. Greenwald, and A. Frank. Data mining static code attributes to
learn defect predictors. IEEE Transactions on Software Engineering, 33(1):2–
13, 2007.

[184] Z. Michalewicz and D. B. Fogel. How to solve it: Modern heuristics. Springer
Verlag, second edition, 2004.

[185] F. Mueller and J. Wegener. A comparison of static analysis and evolutionary
testing for the verification of timing constraints. Real-Time Systems, 21(3):241–
268, 1998.

[186] J. Munson and T. M. Khoshgoftaar. Regression modelling of software quality:
Empirical investigation. Journal of Electronic Materials, 19(6):106–114, 1990.

[187] J. C. Munson and T. M. Khoshgoftaar. The detection of fault-prone programs.
IEEE Transactions on Software Engineering, 18(5):423–433, 1992.

[188] J. D. Musa. Software reliability engineering: More reliable software faster and
cheaper. AuthorHouse, 2nd edition, 2004.

[189] G. J. Myers. Art of Software Testing. John Wiley & Sons, Inc., New York, NY,
USA, 1979.

[190] I. Myrtveit and E. Stensrud. A controlled experiment to assess the benefits of
estimating with analogy and regression models. IEEE Transactions on Software
Engineering, 25(4), 1999.

[191] I. Myrtveit and E. Stensrud. A controlled experiment to assess the benefits of
estimating with analogy and regression models. IEEE Transactions on Software
Engineering, 25(4):510–525, 1999.

[192] I. J. Myung. Tutorial on maximum likelihood estimation. Journal of Mathemat-
ical Psychology, 47(1), 2003.

[193] D. E. Neuman. An enhanced neural network technique for software risk analysis.
IEEE Transactions on Software Engineering, 28(9):904–912, 2002.

192

REFERENCES

[194] A. P. Nikora. CASRE homepage, 2009. Available at http://www.
openchannelfoundation.org/projects/CASRE\ 3.0/, Last checked 20
Apr 2008.

[195] A. P. Nikora and M. R. Lyu. An experiment in determining software reliabil-
ity model applicability. In Proceedings of the 6th International Symposium on
Software Reliability Engineering (ISSRE’95), 1995.

[196] K. J. Nurmela. Upper bounds for covering arrays by tabu search. Discrete
Applied Mathematics, 138(1-2):143–152, 2004.

[197] N. Ohlsson and H. Alberg. Predicting fault-prone software modules in telephone
switches. IEEE Transactions on Software Engineering, 22(12):886–894, 1996.

[198] N. Ohlsson, A. C. Eriksson, and M. Helander. Early risk-management by identi-
fication of fault-prone modules. Empirical Software Engineering, 2(2):166–173,
1997.

[199] N. Ohlsson, M. Zhao, and M. Helander. Application of multivariate analysis for
software fault prediction. Software Quality Journal, 7(1):51–66, 1998.

[200] E. Oliveira, A. Pozo, and S. R. Vergilio. Using boosting techniques to improve
software reliability models based on genetic programming. In Proceedings of
the 18th IEEE International Conference on Tools with Artificial Intelligence (IC-
TAI’06), Washington, DC, USA, 2006. IEEE Computer Society.

[201] T. J. Ostrand and E. J. Weyuker. The distribution of faults in a large indus-
trial software system. In Proceedings of the 2002 ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA’02), New York, NY, USA,
2002. ACM.

[202] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Predicting the location and number
of faults in large software systems. IEEE Transactions on Software Engineering,
31(4):340–355, 2005.

[203] M. OSullivan, S. Vössner, and J. Wegener. Testing temporal correctness of real-
time systems. In Proceedings of the 6th International Conference on Software
Testing Analysis and Review (EuroSTAR’98), 1998.

[204] M. Petticrew and H. Roberts. Systematic reviews in the social sciences: A prac-
tical guide. Wiley-Blackwell, Victoria, Australia, 2005.

193

REFERENCES

[205] L. Pickard, B. Kitchenham, and S. Linkman. An investigation of analysis tech-
niques for software datasets. In Proceedings of the 6th International Software
Metrics Symposium (METRICS’99), Los Alamitos, USA, 1999. IEEE Computer
Society.

[206] H. Pohlheim, M. Conrad, and A. Griep. Evolutionary safety testing of embedded
control software by automatically generating compact test data sequences. In
SAE 2005 World Congress & Exhibition, April 2005.

[207] H. Pohlheim and J. Wegener. Testing the temporal behavior of real-time software
modules using extended evolutionary algorithms. In Proceedings of the 1999
Genetic and Evolutionary Computation Conference (GECCO’99), 1999.

[208] R. Poli, W. B. Langdon, and N. F. McPhee. A field guide to genetic
programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008. (With contributions by J. R.
Koza).

[209] R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza. Genetic programming:
An introductory tutorial and a survey of techniques and applications. Technical
report CES-475, ISSN: 1744-8050, 2007.

[210] R. S. Pressman. Software Engineering – A Practitioner’s Approach. McGraw-
Hill Higher Education, fifth edition, 2001.

[211] P. Puschner and R. Nossal. Testing the results of static worst-case execution-time
analysis. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS’98),
Washington, DC, USA, 1998. IEEE Computer Society.

[212] L. H. Putnam. A general empirical solution to the macro software sizing and
estimating problem. IEEE Transactions on Software Engineering, 4(4):345–
361, 1978.

[213] S. R. Rakitin. Software verification and validation for practitioners and man-
agers. Artech House., Inc., 685 Canton Street, Norwood, MA, USA, second
edition, 2001.

[214] J. Ratzinger, H. Gall, and M. Pinzger. Quality assessment based on attribute
series of software evolution. In Proceedings of the 14th Working Conference on
Reverse Engineering (WCRE’07), 2007.

194

REFERENCES

[215] M. Reformat, W. Pedrycz, and N. J. Pizzi. Software quality analysis with the use
of computational intelligence. Information and Software Technology, 45(7):405
– 417, 2003.

[216] E. N. Regolin, G. A. de Souza, A. R. T. Pozo, and S. R. Vergilio. Exploring
machine learning techniques for software size estimation. In Proceedings of the
International Conference of the Chilean Computer Science Society, Los Alami-
tos, CA, USA, 2003. IEEE Computer Society.

[217] G. Robinson and P. McIlroy. Exploring some commercial applications of ge-
netic programming. In Selected Papers from AISB Workshop on Evolutionary
Computing, London, UK, 1995. Springer–Verlag.

[218] C. Robson. Real world research. Blackwell Publishing, United Kingdom, sec-
ond edition, 2002.

[219] S. Russell and P. Norvig. Artificial intelligence—A modern approach. Prentice
Hall Series in Artificial Intelligence, USA, 2003.

[220] A. C. Schultz, J. J. Grefenstette, and K. A. D. Jong. Adaptive testing of con-
trollers for autonomous vehicles. In Proceedings of the 1992 Symposium on
Autonomous Underwater Vehicle Technology (AUV’92), 1992.

[221] A. C. Schultz, J. J. Grefenstette, and K. A. De Jong. Learning to break things:
Adaptive testing of intelligent controllers, chapter G3.5. IOP Publishing Ltd.
and Oxford Press, 1997.

[222] Y. Shan, R. I. McKay, C. J. Lokan, and D. L. Essam. Software project effort
estimation using genetic programming. In Proceedings of the 2002 International
Conference on Communications, Circuits and Systems, Piscataway, NJ, USA,
2002.

[223] M. Shepperd, M. Cartwright, and G. Kadoda. On building prediction systems
for software engineers. Empirical Software Engineering, 5(3):175–182, 2000.

[224] M. Shepperd and G. Kadoda. Comparing software prediction techniques using
simulation. IEEE Transactions on Software Engineering, 27(11):1014–1022,
2001.

[225] T. Shiba, T. Tsuchiya, and T. Kikuno. Using artificial life techniques to gener-
ate test cases for combinatorial testing. In Proceedings of the 28th Annual In-
ternational Computer Software and Applications Conference (COMPSAC’04),
Washington, DC, USA, 2004. IEEE Computer Society.

195

REFERENCES

[226] K. K. Shukla. Neuro-genetic prediction of software development effort. Infor-
mation and Software Technology, 42(10):701–713, 2000.

[227] S. Silva. GPLAB—A genetic programming toolbox for MATLAB. http://
gplab.sourceforge.net. Last checked 30 Mar 2009.

[228] R. Sitte. Comparison of software-reliability-growth predictions: Neural net-
works vs parametric-recalibration. IEEE Transactions on Reliability, 48(3):285–
291, 1999.

[229] S. F. Smith. A learning system based on genetic adaptive algorithms. PhD
thesis, Pittsburgh, PA, USA, 1980.

[230] S. S. So, S. D. Cha, and Y. R. Kwon. Empirical evaluation of a fuzzy logic-based
software quality prediction model. Fuzzy Sets and Systems, 127(2):199–208,
2002.

[231] Software Engineering Standards Coordinating Committee of the IEEE Com-
puter Society, IEEE Standards Board, The Institute of Electrical and Electronic
Engineers, Inc. New York, USA. IEEE Guide for Software Verification and
Validation Plans – IEEE Std 1059-1993, 1993.

[232] Standards Coordinating Committee of the Computer Society of the IEEE, IEEE
Standards Board, The Institute of Electrical and Electronic Engineers, Inc. New
York, USA. IEEE Standard Glossary of Software Engineering Terminology –
IEEE Std 610.12-1990, 1990.

[233] J. Stardom. Metaheuristics and the search for covering and packing arrays. Mas-
ter’s thesis, Simon Fraser University, B.C., Canada.

[234] C. Stringfellow and A. Amschler Andrews. An empirical method for selecting
software reliability growth models. Empirical Software Engineering, 7(4):319–
343, 2002.

[235] Y. Su and C. Huang. Neural-network-based approaches for software reliability
estimation using dynamic weighted combinational models. Journal of Systems
and Software, 80(4):606–615, 2007.

[236] T. Thelin. Team-based fault content estimation in the software inspection pro-
cess. In Proceedings of the 26th International Conference on Software Engi-
neering (ICSE’04), 2004.

196

REFERENCES

[237] J. Tian. An integrated approach to test tracking and analysis. Journal of Systems
and Software, 35(2):127–140, 1996.

[238] J. Tian. Quality-evaluation models and measurements. IEEE Software,
21(3):84–91, 2004.

[239] L. Tian and A. Noore. Dynamic software reliability prediction: An approach
based on support vector machines. International Journal of Reliability, Quality
and Safety Engineering, 12(4):309–321, 2005.

[240] L. Tian and A. Noore. Evolutionary neural network modeling for software cu-
mulative failure time prediction. International Journal of Reliability, Quality
and Safety Engineering, 87(1):45–51, 2005.

[241] L. Tian and A. Noore. On-line prediction of software reliability using an evolu-
tionary connectionist model. Journal of Systems and Software, 77(2):173–180,
2005.

[242] L. Tian and A. Noore. Computational intelligence methods in software reliabil-
ity prediction. Computational Intelligence in Reliability Engineering, 39:375–
398, 2007.

[243] M. Tlili, S. Wappler, and H. Sthamer. Improving evolutionary real-time test-
ing. In Proceedings of the 8th Annual Conference on Genetic and Evolutionary
Computation (GECCO’06). ACM Press, 2006.

[244] C. Torgerson. Systematic reviews. Continuum International Publishing Group,
2003.

[245] N. Tracey, J. Clark, and K. Mander. The way forward for unifying dynamic test
case generation: The optimisation-based approach. In Internation Workshop on
Dependable Computing and Its Applications (DCIA’98), 1998.

[246] N. Tracey, J. Clark, J. McDermid, and K. Mander. Integrating safety analy-
sis with automatic test data generation for software safety verification. In Pro-
ceedings of 17th International System Safety Conference. System Safety Society,
1999.

[247] A. Tsakonas and G. Dounias. Predicting defects in software using grammar-
guided genetic programming. In Proceedings of the 5th Hellenic conference on
Artificial Intelligence (SETN’08), Berlin, Heidelberg, 2008. Springer-Verlag.

197

REFERENCES

[248] Y.-W. Tung and W.S. Aldiwan. Automating test case generation for the new gen-
eration mission software system. In Proceedings of the 2000 IEEE Aerospace
Conference Proceedings, 2000.

[249] L. Utkin, S. Gurov, and M. Shubinsky. A fuzzy software reliability model with
multiple-error introduction and removal. International Journal of Reliability,
Quality and Safety Engineering, 9(3):215–227, 2002.

[250] A. Veevers and A. C. Marshall. A relationship between software coverage met-
rics and reliability. Software Testing, Verification and Reliability, 4(1):3–8, 1994.

[251] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos. Time aware
test suite prioritization. In Proceedings of the 2006 International Symposium on
Software Testing and Analysis (ISSTA’06), New York, NY, USA, 2006. ACM.

[252] J. Wegener, K. Grimm, M. Grochtmann, H. Sthamer, and B. Jones. Systematic
testing of real-time systems. In Proceedings of the 4th International Conference
on Software Testing Analysis and Review (EuroSTAR’96), 1996.

[253] J. Wegener and M. Grochtmann. Verifying timing constraints of real-time sys-
tems by means of evolutionary testing. Real-Time Systems, 15(3):275–298,
1998.

[254] J. Wegener, P. Pitschinetz, and H. Sthamer. Automated testing of real-time tasks.
In Proceedings of the 1st International Workshop on Automated Program Anal-
ysis, Testing and Verification (WAPATV’00), Limerick, Ireland, 2000.

[255] J. Wegener, H. Sthamer, B. F. Jones, and D. E. Eyres. Testing real-time systems
using genetic algorithms. Software Quality Control, 6(2):127–135, 1997.

[256] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin,
1(6):80–83, 1945.

[257] I. H. Witten and E. Frank. Data mining—Practical machine learning tools and
techniques. Morgan Kaufmann Publishers, USA, 2005.

[258] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wesslén. Ex-
perimentation in software engineering: An introduction. Kluwer Academic Pub-
lishers, USA, 2000.

[259] A. Wood. Predicting software reliability. Computer, 29(11), 1996.

198

REFERENCES

[260] A. Wood. Software reliability growth models: Assumptions vs. reality. In Pro-
ceedings of the 8th IEEE International Symposium on Software Reliability En-
gineering (ISSRE’97), Los Alamitos, CA, USA, 1997. IEEE Computer Society.

[261] S. Yamada, M. Ohba, and S. Osaki. S-shaped reliability growth modeling for
software error detection. IEEE Transactions on Reliability, R-32(5):475 – 478,
1983.

[262] X. Yao and Y. Liu. Search methodologies – Introductory tutorials in optimiza-
tion and decision support techniques, edited by Edmund K. Burke and Graham
Kendall. Springer Science and Business Media, Inc., 233 Spring Street, New
York, USA, 2005. Chapter 12 – Machine learning.

[263] T. J. Yu, V. Y. Shen, and H. E. Dunsmore. An analysis of several software defect
models. IEEE Transactions on Software Engineering, 14(9):1261–1270, 1988.

[264] Y. Zhan and J. A. Clark. Search based automatic test-data generation at an
architectural level. In Proceedings of the 2004 Conference on Genetic and Evo-
lutionary Computation (GECCO’04). ACM, 2004.

[265] D. Zhang and J. J. P. Tsai. Machine learning and software engineering. Software
Quality Control, 11(2):87–119, 2003.

[266] Y. Zhang and H. Chen. Predicting for MTBF failure data series of software
reliability by genetic programming algorithm. In Proceedings of the 6th Inter-
national Conference on Intelligent Systems Design and Applications (ISDA’06),
Washington, DC, USA, 2006. IEEE Computer Society.

[267] Y. Zhang and J. Yin. Software reliability model by AGP. In Proceedings of
the IEEE International Conference on Industrial Technology, Piscataway, NJ,
United States, 2008.

199

REFERENCES

200

Appendix A

Study quality assessment:
Chapter 4

201

Chapter A. Study quality assessment: Chapter 4

Table A.1: Study quality assessment.
Criteria

A: Are the aims of the research/research questions clearly stated?
B: Do the study measures allow the research questions to be answered?
C: Is the sample representative of the population to which the results
will generalize?
D: Is there a comparison group?
E: Is there an adequate description of the data collection methods?
F : Is there a description of the method used to analyze data?
G: Was statistical hypothesis testing undertaken?
H: Are all study questions answered?
I: Are the findings clearly stated and relate to the aims of research?
J: Are the parameter settings for the algorithms given?
K: Is there a description of the training and testing sets used for the
model construction methods?

(a) Study quality assessment criteria
[217] [78] [145] [168] [140] [141] [166] [215] [167]

A
√ √ √ √ √ √ √ √ √

B
√ √ √ √ √ √ √ √ √

C ~× ~
√

~
√

~
√

~
√

~
√

~
√

~
√

~
√

D
√ √ √ √ √ √ √ √ √

E ~
√

~
√

~
√

~
√

~
√

~
√

~
√

~
√

~
√

F
√ √ √ √ √ √ √ √ √

G × × × × × × × × ×
H

√ √ √ √ √ √ √ √ √

I
√ √ √ √ √ √ √ √ √

J ~
√ √

~
√ √ √ √

~
√

×
√

K
√ √ √ √ √ √ √ √ √

(b) Study quality assessment for software quality classification studies
[73] [71] [216] [72] [45] [222] [161]

A
√ √ √ √ √ √ √

B
√ √ √ √ √ √ √

C
√

~
√ √ √ √ √ √

D
√ √ √ √ √ √ √

E ~
√ √ √ √ √ √ √

F
√ √ √ √ √ √ √

G × × × × ~
√

× ×
H

√ √ √ √ √ √ √

I
√ √ √ √ √ √ √

J
√ √ √ √ √ √ √

K
√ √ √ √ √ √ √

(c) Study quality assessment for software CES estima-
tion

[123] [124] [247] [266] [267] [6] [59] [200]
A

√ √ √ √ √ √ √ √

B
√ √ √ √ √ √ √ √

C ~
√

~
√

~
√

~
√

~
√ √ √

~
√

D
√ √ √ √ √ √ √ √

E
√ √ √

× × ~
√

~
√ √

F
√ √ √

~
√

~
√ √ √ √

G
√ √

× × ×
√ √ √

H
√ √ √ √ √ √ √ √

I
√ √ √

~
√

~
√ √ √ √

J ~
√

~
√ √

~
√

~
√ √ √ √

K × ×
√

× ×
√ √ √

(d) Study quality assessment for software fault prediction and
software reliability growth modeling

202

Appendix B

Study quality assessment:
Chapter 5

203

Chapter B. Study quality assessment: Chapter 5

Table B.1: Study quality assessment.
Criteria

A: Is the reader able to understand the aims of the research?
B: Is the context of study clearly stated?
C: Was there a comparison or control group?
D: Are the measures used in the study fully defined [150]?
E: Is there an adequate description of the data collection methods?
F : Does the data collection methods relate to the aims of the research?
G: Is there a description of the method used to analyze data?
H: Are the findings clearly stated and relate to the aims of research?
I: Is the research useful for software industry and research community?
J: Do the conclusions relate to the aim and purpose of research defined?

(a) Study quality assessment criteria
[252] [14] [255] [253] [203] [245] [185] [211] [207] [254] [94] [91] [92] [36] [243]

A
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

B
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

C
√ √ √ √ √ √ √ √ √ √

× ×
√

×
√

D
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

E
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

F
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

G
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

H
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

I
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

J
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

(b) Study quality assessment for execution time studies

[51] [69]
A

√ √

B
√ √

C
√ √

D
√ √

E
√ √

F
√ √

G
√ √

H
√ √

I
√ √

J
√ √

(c) Study quality
assessment for
QoS studies

[75] [132] [44] [96] [95] [131] [133]
A

√ √ √ √ √ √ √

B
√ √ √ √ √ √ √

C
√ √ √ √ √ √ √

D
√ √ √ √ √ √ √

E
√ √ √ √ √ √ √

F
√ √ √ √ √ √ √

G
√ √ √ √ √ √ √

H
√ √ √ √ √ √ √

I
√ √ √ √ √ √ √

J
√ √ √ √ √ √ √

(d) Study quality assessment for security studies

[233] [55] [56] [196] [174] [42] [225]
A

√ √ √ √ √ √ √

B
√ √ √ √ √ √ √

C
√ √ √ √ √ √ √

D
√ √ √ √ √ √ √

E
√ √ √ √ √ √ √

F
√ √ √ √ √ √ √

G
√ √ √ √ √ √ √

H
√ √ √ √ √ √ √

I
√ √ √ √ √ √ √

J
√ √ √ √ √ √ √

(e) Study quality assessment for usability studies

[246] [2] [24] [206]
A

√ √ √ √

B
√ √ √ √

C
√ √

× ×
D

√ √ √ √

E
√ √ √ √

F
√ √ √ √

G
√ √ √ √

H
√ √ √ √

I
√ √ √ √

J
√ √ √ √

(f) Study quality assessment for
safety studies

204

Appendix C

Search strings: Chapter 5

• Abstracts: (evolutionary OR heuristic OR search-based OR metaheuristic OR
optimization OR hill-climbing OR simulated annealing OR tabu search OR ge-
netic algorithms OR genetic programming) AND (“software testing” OR “test-
ing software” OR “test data generation” OR “automated testing” OR “automatic
testing”) AND (non-functional OR safety OR robustness OR stress OR security
OR usability OR integrity OR efficiency OR reliability OR maintainability OR
testability OR flexibility OR reusability OR portability OR interoperability OR
performance OR availability OR scalability)

• Titles: (evolutionary OR heuristic OR search-based OR metaheuristic OR op-
timization OR hill-climbing OR simulated annealing OR tabu search OR ge-
netic algorithms OR genetic programming) AND (testing) AND (non-functional
OR safety OR robustness OR stress OR security OR usability OR integrity OR
efficiency OR reliability OR maintainability OR testability OR flexibility OR
reusability OR portability OR interoperability OR performance OR availability
OR scalability)

• Keywords: (evolutionary OR heuristic OR search-based OR metaheuristic OR
optimization OR hill-climbing OR simulated annealing OR tabu search OR ge-
netic algorithms OR genetic programming) AND (“software testing” OR “test-
ing software” OR “test data generation” OR “automated testing” OR “automatic
testing”) AND (non-functional OR safety OR robustness OR stress OR security
OR usability OR integrity OR efficiency OR reliability OR maintainability OR
testability OR flexibility OR reusability OR portability OR interoperability OR

205

Chapter C. Search strings: Chapter 5

performance OR availability OR scalability)

206

Blekinge Institute of Technology
Licentiate Dissertation Series No. 2009:06

School of Engineering

search-based approaches to
software fault prediction
and software testing

Wasif Afzal

s
e

a
r

c
h

-b
a

s
e

d
 a

p
p

r
o

a
c

h
e

s
 t

o

s
o

f
t

w
a

r
e

 fa
u

lt
 p

r
e

d
ic

t
io

n
 a

n
d

 s
o

f
t

w
a

r
e

 t
e

s
t

in
g

W
asif A

fzal
2009:06

Software verification and validation activities are
essential for software quality but also constitute a
large part of software development costs. There-
fore efficient and cost-effective software verifica-
tion and validation activities are both a priority and
a necessity considering the pressure to decrease
time-to-market and intense competition faced by
many, if not all, companies today. It is then perhaps
not unexpected that decisions related to software
quality, when to stop testing, testing schedule and
testing resource allocation needs to be as accu-
rate as possible.

This thesis investigates the application of search-
based techniques within two activities of software
verification and validation: Software fault predic-
tion and software testing for non-functional sys-
tem properties. Software fault prediction mode-
ling can provide support for making important
decisions as outlined above. In this thesis we em-
pirically evaluate symbolic regression using gene-
tic programming (a search-based technique) as a
potential method for software fault predictions.
Using data sets from both industrial and open-

source software, the strengths and weaknesses of
applying symbolic regression in genetic program-
ming are evaluated against competitive techniques.
In addition to software fault prediction this thesis
also consolidates available research into predictive
modeling of other attributes by applying symbo-
lic regression in genetic programming, thus pre-
senting a broader perspective. As an extension to
the application of search-based techniques within
software verification and validation this thesis
further investigates the extent of application of
search-based techniques for testing non-functional
system properties.

Based on the research findings in this thesis it can
be concluded that applying symbolic regression
in genetic programming may be a viable techni-
que for software fault prediction. We additionally
seek literature evidence where other search-
based techniques are applied for testing of non-
functional system properties, hence contributing
towards the growing application of search-based
techniques in diverse activities within software ve-
rification and validation.

abstract

ISSN 1650-2140

ISBN 978-91-7295-163-12009:06

