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Abstract

Subband adaptive filters have been proposed to speed up the convergence and to lower the computational complexity of

time domain adaptive filters. However, subband processing causes signal degradations due to aliasing effects and

amplitude distortions. This problem is unavoidable due to further filtering operations in subbands. In this paper, the

problem of aliasing effect and amplitude distortion is studied. The prototype filter design problem is formulated as a multi-

criteria optimization problem and all the Pareto optima are sought. Since the problem is highly nonlinear and nonsmooth,

a new hybrid optimization method is proposed. Different prototype filters are used and their performances are compared.

Moreover, the effect of the number of subbands, the oversampling factors and the length of prototype filter are also

studied. We find that prototype filters designed via Kaiser or Dolph–Chebyshev window provide the best overall

performance. Also, there is a critical oversampling factor beyond which the improvement in performance is not justified.

Finally, if the length of the prototype filter increases with the number of subbands, an increase in the subband level will not

deteriorate the performance.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Adaptive filtering in subbands is an attractive
alternative to the full-band scheme in many
applications to achieve faster convergence and
lower computational cost. In a typical subband
e front matter r 2005 Elsevier B.V. All rights reserved
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adaptive filter, the filter input is first partitioned
into a set of subband signals through an ana-
lysis filter bank. These subband signals are then
decimated to a lower rate and passed through a set
of independent or partially independent adaptive
filters that operate at the decimated rate. The
outputs from these filters are subsequently com-
bined using a synthesis filter bank to reconstruct
the full-band output. The DFT multirate filter
banks are commonly used for efficient rea-
lization of the analysis and synthesis filter banks
[1,2].
.
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However, the analysis of a signal into a subband
representation and the synthesis back into its
original full-band form has several difficulties.
Noticeably, subband filtering introduces signal
degradations which include signal distortions and
aliasing effects [3]. It is well known that a filter bank
can be designed alias-free and perfectly recon-
structed when certain conditions are met by the
analysis and synthesis filters. However, any filtering
operation in the subbands may cause a possible
phase and amplitude change and thereby altering
the perfect reconstruction property. There are trade-
offs in controlling both the aliasing effect and the
distortion level. Non-critical decimation has been
suggested in [4] to improve the overall performance
of the filter banks. Depending on the level of
oversampling, the cost of computation also in-
creases significantly.

In general, the filter bank design problem is a
multi-criteria decision problem, where the criteria
are the level of distortion and the level of aliasing
effect. A very sharp prototype filter will decrease the
aliasing effect and distortion, but the length of
the filter is usually prohibitively long. Depending on
the computation complexity, the length of the
prototype filter is usually limited. Within this limit,
the optimal filter is sought. If a simple least-squares
technique is used to minimize both criteria together,
there is no direct control over each individual
criterion. During the design process, it is therefore
not possible to specify the performance of the filter
bank in advance. Methods have been proposed to
minimize both criteria simultaneously, such as [5].
However, more flexible design of the prototype filter
has not been considered, and individual criterion is
not controlled directly.

The performance of the filter bank depends on the
choice of prototype filter, the length of it, the
number of subbands, and the oversampling factor.
Here, we study the optimal designs for different
combinations of parameters. A multi-criteria for-
mulation is employed to trade off the aliasing effect
against the distortion level. In order to allow for the
worst scenario, the maximum norm is applied.
Consequently, the filter design problem becomes
highly nonlinear and both the cost function and
constraint are not differentiable. In order to tackle
this problem, the L1 exact penalty function is first
applied to transform the constrained problem into
an equivalent unconstrained problem. A new hybrid
method is then proposed to solve the resultant
highly nonlinear optimization problem. The hybrid
method combines the simulated annealing (which
has the advantage of escaping from local minima)
and the simplex search method (which is a no-
derivative search method to locate local minima) to
achieve fast convergence to the global mini-
mum. One main desirable property of the proposed
hybrid descent method is that the convergence is
monotonic.

This approach is versatile in the way that a
specific performance of the filter bank can be
imposed in advance. The aliasing and distortion
level can be controlled easily and the corresponding
optimal weights can be found. In this way, all the
Pareto optima can be sought. In assessing the
performance, different prototype filter designs are
studied. These include the window method with the
Hamming window, Kaiser window and Dolph–
Chebyshev window, and the minimax method. We
show that Kaiser and Dolph–Chebyshev window
give the best overall performance with or without
oversampling. Finally, the effects of the oversam-
pling factor, the number of subbands and the length
of the prototype filter are investigated.

2. The uniform DFT modulated filter bank

In a typical analysis–synthesis DFT filter bank,
two sets of filters form a uniform DFT analysis
filter bank and synthesis filter bank. Assume the
same prototype filter is applied for both ana-
lysis and synthesis, the subband filters are related
to the prototype filter, h0ðnÞ, by means of modu-
lation as

HkðzÞ ¼ H0ðzW k
K Þ ¼

X1
n¼�1

h0ðnÞðzW k
K Þ
�n

¼ hTfðzW k
K Þ; k ¼ 0; . . . ;K � 1, ð1Þ

where W K ¼ e�j2p=K ; h ¼ ½hð0Þ; . . . ; hðL� 1Þ�T and
fðzÞ ¼ ½1; z�1; . . . ; z�ðL�1Þ�T. Each subband signal is
decimated by a factor D. An implementation of
such a filter bank is depicted in Fig. 1. A typical
analysis operation can be summarized in Fig. 2.
Using the subband signal definitions according to
Fig. 1, we can describe the signal path through the
filter-bank realization. Each branch signal, V kðzÞ, is
simply a filtered input signal defined as

VkðzÞ ¼ HkðzÞX ðzÞ ¼ H0ðzW k
K Þ;X ðzÞ,

k ¼ 0; . . . ;K � 1. ð2Þ

The decimators cause a summation of repeated
and expanded spectrum of the input signal
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Fig. 1. Direct form realization of an analysis and synthesis filter-bank.
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Fig. 2. A typical analysis operation.
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according to

X kðzÞ ¼
1

D

XD�1
l¼0

V kðz
1=DW l

DÞ

¼
1

D

XD�1
l¼0

H0ðz
1=DW k

K W l
DÞX ðz

1=DW l
DÞ,

k ¼ 0; . . . ;K � 1, ð3Þ

where W D ¼ e�j2p=D. The interpolators have a
compressing effect according to

UkðzÞ ¼ X kðz
DÞ ¼

1

D

XD�1
l¼0

H0ðzW k
K W l

DÞX ðzW l
DÞ,

k ¼ 0; . . . ;K � 1. ð4Þ

Finally, the signal will be synthesized by the
reconstruction filters and we can state input–output
relationship as

bX ðzÞ ¼ XK�1
k¼0

F kðzÞUkðzÞ

¼
1

D

XD�1
l¼0

X ðzW l
DÞ
XK�1
k¼0

H0ðzW k
K W l

DÞH
�
0ðzW k

K Þ,

ð5Þ

where the superscript * denotes the conjugate. This
expression can be rewritten as

bX ðzÞ ¼XD�1
l¼0

AlðzÞX ðzW l
DÞ, (6)

where

AlðzÞ ¼
1

D

XK�1
k¼0

H0ðzW k
K W l

DÞH
�
0ðzW k

K Þ. (7)



ARTICLE IN PRESS
K.F.C. Yiu et al. / Signal Processing 86 (2006) 1355–13641358
If AlðzÞ ¼ 0 for l ¼ 1; 2; . . . ;D� 1, and A0ðzÞ ¼

az�b, for any a; b where aa0, we get a per-
fect reconstruction filter-bank. However, any
filtering operation in the subbands may cause a
possible phase and amplitude change and there-
by altering the perfect reconstruction property.
Our main objective is to find the prototype
filter coefficients h to minimize both the alias-
ing power and the amplitude distortion defi-
ned as

AP ¼ max
o

XD�1
l¼1

jAlðe
�joÞj

 !
, (8)

AD ¼ max
o
ð1� jA0ðe

�joÞjÞ. (9)

The aliasing effect is best understood by Figs. 3
and 4 where a critical sampling clearly create severe
aliasing effect due to the transition region of the
prototype filter. When the oversampling increases,
the lines of aliasing will gradually move further to
reduce the aliasing effect. In optimizing the proto-
type filter, simply minimizing a sum of both
Fig. 3. The cause of the aliasing
measures may result in performance skewing
toward one extreme. There is no easy way to
introduce any scaling factor to adjust such uneven
performances. Because there are more than one
objective in the design of the filter-bank, it is
basically a multi-criteria design problem [6,7]. When
different scaling factors are applied to the criteria in
the design process, a solution set can be derived in
which all solutions are efficient, or Pareto optima.
In the present context, the set of weights h0 is a
Pareto optimum if and only if there does not exist a
set of weights h such that

APðhÞpAPðh
0
Þ; ADðhÞpADðh

0
Þ (10)

with strict inequality to at least one of the criteria.
In order to solve for the Pareto optima, one
of the criteria can be formulated as a constraint
instead so that it becomes a nonlinear programming
problem. An additional advantage of using this
formulation is that the constraint can be adjusted
freely to select the desired filter from the set of
Pareto optima.
effect in critical sampling.
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Fig. 4. The aliasing effect is reduced after over-sampling ð2xÞ.
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3. Prototype filter design

A typical nonrecursive causal prototype filter can
be defined by the transfer function

HðzÞ ¼
XL�1
n¼0

hðnÞz�n. (11)

There are several ways to design this type of filter.
One method is to use a window function. The filter
coefficients hðnÞ is given by the Window method as

hðnÞ ¼
sinð2pf cðn� ðL� 1Þ=2ÞÞ

pðn� ðL� 1Þ=2Þ
wðnÞ, (12)

where wðnÞ is a window function. For a given number
of subbands, M, and a given decimation/interpolation
factor, D, and for a certain length of the prototype
filter, L, we need to design the cut-off frequency
0of co 1

2
and the corresponding window function.

A simple popular window function is the Ham-
ming window, defined as

wðnÞ ¼
a� ð1� aÞ cos

2pn

L� 1
for n ¼ 0; 1; . . . ;L� 1;

0 otherwise;

8<:
(13)
where a ¼ 0:54. There is no additional parameter
for this window function.

In case of the Kaiser window, there is an
additional design parameter a. Also, it can control
the ripple ratio and the main-lobe width. This
window is given by

wðnÞ ¼

I0 a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L�1
2

� �2
� n� L�1

2

� �2q� �
Io a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
L�1
2

� �2q� � , (14)

where IoðxÞ is the zeroth-order modified Bessel
function of the first kind.

Another window which can vary the ripple ratio
and main-lobe width is the Dolph–Chebyshev
window defined as

wðnÞ ¼
1

L

1

r
þ 2

XðL�1Þ=2
i¼1

TL�1ðx0cosip=LÞ cosð2npi=LÞ

" #
,

(15)

where r is the ripple ratio as a fraction, and

x0 ¼ cosh
1

L� 1
cosh�1

1

r

� �
. (16)
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Function TkðxÞ is the kth-order Chebyshev poly-
nomial assoicated with the Chebyshev approxima-
tion for recursive filters and is given by

TkðxÞ ¼
cosðk cos�1xÞ for jxjp1;

coshðk cosh�1xÞ for jxj41:

(
(17)

The additional design parameter is therefore r for
this window.

Apart from using the window method, it is also
possible to use the minimax technique instead. Once
the cut-off frequency f c and the stop-band fre-
quency f s is fixed, the minimax optimization
problem can be solved quickly via the Remez
exchange algorithm. Therefore, the two design
parameters for the minimax method are f c and f s.

In order to control the aliasing effect and the
amplitude distortion separately, the final optimal
design problem can be formulated into an equiva-
lent optimization problem ðP1Þ as

min
g

APðhðgÞÞ (18)

subject to

ADðhðgÞÞpad , (19)

where ad is a pre-defined tolerance for the amplitude
distortion. The level of distortion can now be
controlled freely. Note that g is one-dimensional
for the Hamming window and two-dimensional for
the other windows and the minimax method. ðP1Þ is
a nonsmooth constrained optimization problem. In
order to simplify the problem, the L1 exact penalty
function is applied to convert it into an equivalent
unconstrained minimization problem ðP2Þ as

min
g

f ðgÞ � APðhðgÞÞ þM maxðADðhðgÞÞ � ad ; 0Þ,

(20)

where M is a large number. In this way, constraint
violations are penalized by a weighted L1 term.
4. Algorithms

Since ðP2Þ is a non-differentiable and highly
nonlinear minimization problem, gradient-based
approaches cannot adequately be used. Because
the dimension of the problem is relatively low, a
more realistic approach is to apply the simplex
search technique to locate the minima via systematic
moves in the solution space [8]. However, this still
does not guarantee to reach the global minimum
because of the nonlinearity. Consequently, a hybrid
technique comprises the simulated annealing algo-
rithm and the simplex search technique is proposed.

Theoretically, the global minimum of f ðgÞ could
be sought by using the simulated annealing algo-
rithm alone. However, its convergence rate is
usually very slow. On the other hand, the simplex
search algorithm is much more efficient in conver-
ging to a stationary point. Thus, by combining the
simulated annealing algorithm with the simplex
search algorithm, we obtain an efficient hybrid
descent method, which is formally stated in the
following:

A Hybrid Descent Algorithm
1.
 Generate gð0Þ randomly and evaluate f ðgð0ÞÞ. Set
k ¼ 0.
2.
 Solve for the local minimum of f ðgÞ via the
simplex search method with gðkÞ as the initial
guess to give gðkÞ0 such that f ðgðkÞ0Þ � f ðgðkÞÞp0.
3.
 Starting from gðkÞ0, execute N simulating anneal-
ing iterations until a point gðkþ1Þ is obtained, such
that f ðgðkþ1ÞÞ � f ðgðkÞ0Þp0.
4.
 Set k :¼ k þ 1. Return to Step 2 until conver-
gence.

In Step 3 of the algorithm, the simulated annealing
iterations composes of three key steps, namely the
generation of the next trial point in the solution
space via random perturbations, a choice of a
probability distribution to govern the acceptance of
uphill steps, and an annealing schedule.

In this paper, following [9,10], the Boltzmann
probability distribution is used. The annealing
schedule is determined by the parameters b, the
cooling speed; Nc, the number of cooling steps; N,
the number of random perturbations for each
temperature; and the initial temperature, T. Typical
choices of these parameters can be found in [11].
The simulated algorithm algorithm can be imple-
mented as follows:

Initiation: Select b;Nc, N, and initial T. Evaluate
f ðgðkÞ0Þ.

Cooling
(a)
 Let j be the cooling step. Set j ¼ 1.

(b)
 If j 2 ð1; . . . ;NcÞ

(i) i ¼ randomf1; 2g.
(ii) Depending on the outcome of i, re-generate

randomly either one element of g, or the
whole vector of g. This gives ~g.

(iii) Calculate D ¼ f ð~gÞ � f ðgÞ. If Do0 or
random½0; 1�oT expð�D=TÞ, then g ¼ ~g.
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(iv) Set j :¼ j þ 1 and return to (i) until N

perturbations are executed.

(c)
 Set T :¼bT and j :¼ j þ 1. Return to Step (b)

until Nc cooling steps are executed.
5. Evaluation results

In the multi-criteria formulation, either the
aliasing effect or the amplitude distortion can be
imposed as a constraint. Since it is easier to assess
the impact of the amplitude distortion for the
application, it is therefore better to treat it as a
constraint.

The first example is to assess different design
of prototype filter and its implication to the alias-
ing effect for different oversampling factors. The
amplitude distortion ad is first restricted to be
�20 dB and the result is depicted in Fig. 5. It is
observed that by increasing the oversampling factor,
the minimized aliasing effect is decreasing. How-
ever, the decrease is very slow for the Hamming
window and is diminishing for the Remez method.
Only the Kaiser and Dolph–Chebyshev window
maintains a fast decrease in the minimized aliasing
effect with the increase of the oversampling factor.
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In this way, the Kaiser and Dolph–Chebyshev
window out-performed other methods for all over-
sampling factor. We then varied the amplitude
distortion ad requirement to �30 dB and re-opti-
mized the aliasing effect for different oversampling
factors. The result is shown in Fig. 6. We observe a
very similar pattern of performance. Also, we
observe a trade-off between the amplitude distor-
tion and the optimized aliasing effect, which is
expected due to the multi-criteria nature of the
problem. The choice of ad depends largely on the
application requirements.

In order to understand the influence of the
prototype filter length and the number of sub-
bands, we apply the Kaiser window as a demon-
stration. As the number of subbands increases,
the passband gets narrower. Thus, it is hard
to maintain the low distortion level unless the
length of the filter increases to allow for a narrower
transition region. If the filter length is propor-
tional to the number of subbands, the result
is shown in Fig. 7. It is interesting to see that as
the number of subbands increases, there is a
uniform improvement in the minimized aliasing
effect for all oversampling levels. The improvement
is more significant for sampling factors near to
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critical one. The final designs of prototype filters
are shown in Fig. 8. All designs have a similar
level of minimized aliasing effect; however, they
all have different transition widths and stopband
ripples. As the maximum of the aliasing effect
usually occurs near to the transition region, the
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transition width and the stopband ripple clearly
compensates for each other. When oversampling
factor about 0.5 is applied, the result is given in
Fig. 9. From the figure, the transition widths are
very similar for different designs. However, there
are significant differences in the stopband ripples.
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This account for the differences in the aliasing effect
suppression.

6. Conclusions

In this paper, the problem of filter bank design has
been studied. The design problem has been formu-
lated as a multi-criteria optimization problem. Using
the L1 exact penalty function, a new hybrid method is
proposed to tackle the problem. Consequently, all the
Pareto optima can be solved and studied. Different
designs of the prototype filter have been investigated.
It turns out that Kaiser and Dolph–Chebyshev
window give the best performance with the lowest
aliasing effect for a fixed amplitude distortion level. If
the length of the prototype filter is proportional to the
number of subbands, the optimal aliasing effect
generally improves with the number of subbands.
The improvement is more significant for sampling
factors close to the critical one.
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