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Abstract

This thesis consists of two parts: performance bounds for scheduling algorithms for
parallel programs in multiprocessor systems, and recovery schemes for fault tolerant
distributed systems when one or more computers go down.

In the first part we deliver tight bounds on the ratio for the minimal completion time
of a parallel program executed in a parallel system in two scenarios. Scenario one, the
ratio for minimal completion time when processes can be reallocated compared to
when they cannot be reallocated to other processors during their execution time. Sce-
nario two, when a schedule is preemptive, the ratio for the minimal completion time
when we use two different numbers of preemptions.

The second part discusses the problem of redistribution of the load among running
computers in a parallel system. The goal is to find a redistribution scheme that main-
tains high performance even when one or more computers go down. Here we deliver
four different redistribution algorithms.

In both parts we use theoretical techniques that lead to explicit worst-case programs
and scenarios. The correctness is based on mathematical proofs.
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Introduction

Theoretical Aspects on Performance Bounds and
Fault Tolerance in Parallel Computing

1 Introduction

If one single processor does not give the required performance, one improvement
alternative may be to execute the application on several processors that work in paral-
lel. To increase the performance in parallel computing, we would like to spread the
work between the processors (computers) as evenly as possible. This technique is
called load balancing. There are many ways to implement parallel computing with
multiple processors. One of them is a loosely coupled parallel system consisting of a
number of stand-alone computers, connected by a network, where a process can only
be executed by the processor on which it was started. This allocation of processes to
processors is called static allocation.

A loosely coupled parallel system is very attractive due to its low cost and the
potential improvement in availability and fault-tolerance. If one computer fails, the
work on the failed computer can be taken over by another computer. However, one
challenging problem in loosely coupled systems is to schedule processes among pro-
cessors to achieve some performance goals, such as minimizing communication delays
and completion time. The completion time of a program is also called the makespan.

Another parallel system is a tightly coupled Symmetric MultiProcessor system
(SMP), consisting of multiple similar processors within the same computer, intercon-
nected by a bus or some other fast interconnection network. Here a process may be
executed by different processors during different time periods. This allocation of pro-
cesses to processors is called dynamic allocation. An SMP system offers high perfor-
mance and efficient load balancing, but does not offer availability. If one processor
fails the entire application will usually fail.

One is often interested in improving the performance by reducing the completion
time of a parallel program consisting of a number of synchronizing processes (static
allocation). There is a conflict between the execution of the tasks and the communica-
tion between them. One extreme example is a parallel program that executes on only
one processor. This program is not affected by communication/synchronization over-
head, but it suffers from serious load imbalance. On the other hand, if the same parallel
program is executed on many processors, then the load may be evenly spread among
the processors, but the communication cost can be very high.

Finding a scheduling algorithm that minimizes the completion time for a parallel
program consisting of a number of processes is one of the classical computer science
problems, and it has been shown to be NP-hard (Garey et al., [21]). A number of good
heuristic methods have been suggested, but it is difficult to know when to stop the heu-
ristic search for better schedules. Therefore it is important to know the optimal bounds
to figure out how close/far the algorithms are from the optimal results.
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An important question is how much performance one can gain by allowing dynamic
allocation provided that we are able to find (almost) optimal scheduling and allocation
algorithms. The answer to this question would provide important input when we want
to balance the additional cost and complexity of allowing dynamic allocation against
the performance loss of restricting ourself to static allocation. In Paper I we define a
function that answers this question for a very wide range of multiprocessors and paral-
lel programs.

Another possibility to increase the performance is to allow preemptions. In a pre-
emptive schedule, a process can be interrupted by other processes and then resumed on
the same or on another processor. Scheduling with preemptions is more flexible, but it
is not always possible and preemptions can be costly due to overhead for context
switching. A preemption can be made at any point in time. Here, the state must be
saved before a process is preempted and then restored when it resumes. This means
that there is a trade-off - on the one hand one needs preemptions in order to obtain a
balanced load, but on the other hand one would like to limit the number of preemptions
in order to minimize the overhead costs. The optimal solution to this trade-off problem
depends on a number of parameters, such as the cost for preempting and then later
restarting a process. One crucial piece of information for making a well informed
trade-off decision is the possible performance gain if the number of preemptions is
increased, assuming that there are no overhead costs. In Paper II we present a tight
upper bound on the maximal gain of increasing the number of preemptions for any par-
allel program. This means that we compare the minimal makespan for extremal
(worst-case) parallel programs consisting of a set of independent jobs on a multipro-
cessor when allowing different number of preemptions.

In fault tolerant parallel systems, like clusters, the availability is obtained by
failover techniques. In its simplest form cluster availability is obtained by having two
computers, one active and one stand-by. If the primary computer fails, the secondary
simply takes over the work. In order to obtain higher availability, one may want to use
more than just two computers [Pfister, 54]. However, it can be very costly to build a
large cluster system with many stand-by computers. It is often more attractive to fail
over to the computers that already are active in the system, but it is difficult to decide
on which computer the work on the failing computer should be executed. This is par-
ticularly challenging if this decision has to be made statically before the program starts
executing. The goal here is to find a redistribution scheme that maintains high perfor-
mance even when one or more computers go down. In Papers III - VI we present four
different redistribution schemes.

This thesis is divided in two parts. Fig. 1 presents an overview of the thesis as two
sets of papers corresponding to Part I and Part IT and their intersection of common con-
cepts. In both parts we use theoretical techniques that lead to explicit worst-case pro-
grams and scenarios. The correctness is based on mathematical proofs.

In Part I we present performance bounds on the ratio for minimal completion time
of a parallel program executed in two scenario. Scenario one, the ratio for minimal
completion time when processes can be reallocated compared to when they cannot be
reallocated to other processors during their execution time (Paper I). Scenario two,
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Papers I, 11

Papers 111, IV, V, VI

(and VIIL, IX, X1, XII, XIII) (and VII, X)
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Fig. 1. Overview of the papers

when a schedule is preemptive, the ratio for minimal completion time when we use
two different number of preemptions (Paper II). In Section 2 the classification of mul-
tiprocessor scheduling and related work on some bounds and complexity are pre-
sented. In Part IT we discusses the problem of redistribution of the load among running
computers in a parallel system if one ore more computers in the system go down. Here
we deliver four different redistribution algorithms (Papers III, IV, V and VI). In Sec-
tion 3 the classification of the faults and related work in fault tolerance system are pre-
sented.

1.1 Research Questions
In this thesis three main questions are in focus.
Part I: Performance Bounds in Parallel Computing

1. Consider two parallel architectures: a Symmetric MultiProcessor (SMP) with
dynamic allocation and a distributed system (or cluster) with static allocation.

How much shorter can the completion time of a parallel program be on the SMP
compared to the distributed system provided that we use optimal schedules?

2. Consider a multiprocessor with identical processors and a parallel program con-
sisting of independent processes, and an optimal schedule with preemptions.

If the number of preemptions is increased, how large can the gain in completion
time of a parallel program be?

Part II: Load balancing in Parallel Computing

3. Consider a cluster with a number of computers. Consider a worst-case crash sce-
nario, i.e. a scenario when the most unfavorable combinations of computers go down.

How can the load be evenly and efficiently redistributed among the running comput-
ers (using static redistribution)?
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1.2 Research Methodology

Since we are interested in worst case/extreme case scenarios in infinite sets, we can-
not use empirical method. To find the answers to the research questions, theoretical
techniques that lead to explicit worst-case programs are used. The correctness is based
on mathematical proofs (Papers I and II). Furthermore, a number of tests on multipro-
cessor and distributed Sun/Solaris environments have been done to validate and illus-
trate some of the results in Paper I. In Paper II we take advantage of a number theoretic
formula based on the Stern-Brocot tree. Papers III and IV are also based on number
theory. In Paper III we present schemes that are based on so called Golomb rulers.
Golomb rulers have previously been used in rather different context, e.g. radio astron-
omy, (placement of antennas), X-ray crystallography, data encryption, geographical
mapping and in hash-tables [Lundberg et al., 46]. In Paper IV we extend the results
from Paper 11l by adding a new type of ruler, a “modulo ruler”, giving a result that is
valid in more cases than Paper III. In Paper V we again extend the Golomb rulers to
construct the new recovery scheme (trapezium) which give better performance. In
Paper VI we exhaust the cases by calculating the best possible recovery schemes for
any number of crashed computers by a branch-and-bound algorithm.

1.3 Research Contribution
The main contributions in this thesis are:

Part I: The optimal bounds:

+ an optimal bound on the minimal completion time for all parallel pro-
grams with # processes and a synchronization granularity z executed
in the multiprocessor system with static allocation with & processors
and a communication delay ¢, compared to the system with dynamic
allocation with g processors (see Paper I and Section 4.1.1):

H(”z k) q, t, Z) = mlnAH(A9 n, kﬂ q, t) Z) .
Here 4 denotes an allocation of processes to processors, where g,

processes are allocated to the j:th computer. Hence, the allocation is

k
given by the allocation sequence (a, ..., a;) , where z a; =n.
i=1
Furthermore, H(4,n, k, q,t,z) = g(4,n, k,q) +zr(4,n, k, t),

where g(4, n, k, q) = (1/@);max(il, ...,ik)(‘;j . (akj

Ik

n(n— 1)—Zf:1ai(0i— 1)
-t

and r(4,n, k, t) = wn—1)
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The sum is taken over all decreasing sequences / = {i, ..., i;} of

k
nonnegative integers such that Z i =q.
j=1

* an optimal bound on the minimal completion time of a parallel pro-
gram executed in the multiprocessor system with m processors com-
paring the schedules with two different numbers of preemptions, i

and j, where i <j (see Paper II and Section 4.1.2):

.. i i+ j +
G(m, i,j) = 2{ min(m, i +j+1) J
min(m+i+1,2i+j+2) |min(m—j,i+1)
Here the notation comes from the following definition:
. m | _ . (M m, . .
Def: = max| min| —, ..., — ||, where the maximum is
n n
n e 1 c
taken over all sets of integers m,, ..., m, and n,...,n, so that

m+..+m,=m, n+..+n,=n forall m>0 and n, 20

(Lennerstad and Lundberg, [40]).

Part II: The algorithms:
* Golomb Recovery Scheme (see Paper I1I and Section 4.2.1)
* Modulo Recovery Scheme (see Paper IV and Section 4.2.2)
* Trapezium Recovery Scheme (see Paper V and Section 4.2.4)

* Optimal Recovery Scheme (see Paper VI and Section 4.2.3)
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2 Multiprocessor Scheduling (Part I)

In this section we introduce a classification of scheduling problems and present
related work with bounds and complexity for some of them.

A very good taxonomy of task scheduling in distributed computing systems is pre-
sented by Casavant and Kuhl in [8] (see Fig. 2). Here, static means off-line, i.e. when
the decision for a process is made before it is executed, while dynamic means on-line,
i.e. when it is unknown when and where the process will execute during its lifetime. In
Paper I and II we consider a global optimal static scheduling, when we know the infor-
mation of the parallel program in advance.

/\

Local (single processor) Global (multiprocessors)

Static Dynamic

Physically

Optimal Suboptimal Physically Distributed Non-Distributed

Approximate  Heuristic Cooperative ~ Non-Cooperative

. . Optimal Suboptimal
Enumerative Graph Math. Queuing

Theory  Pgmg Theory
Approximate ~ Heuristic

Fig. 2. Task Scheduling Characteristics ([Casavant and Kuhl, 8])

2.1 Classification of scheduling problems

We start with a definition of scheduling developed by Graham, Lawler, Lenstra and
Rinnooy Kan [28]:

Consider m machines M; (i = 1,...,m) that have to process n jobs J; (j = 1,...,n).

“A schedule is an allocation of one or more time intervals on one or more machines
to each job. A schedule is feasible if no two time intervals on the same machine over-
lap, if no two time intervals allocated to the same job overlap, and if, in addition, it
meets a number of specific requirements concerning the machine environment and the
job characteristics. A schedule is optimal if it minimizes a given optimality criterion.”

Furthermore, the authors (Graham et al. [28]) proposed a classification of schedul-
ing problems, which has been widely used in the literature, e.g. Lawler et al. [38],
Blazewicz et al. [4], Pinedo [55]. The classification shows how many problems in
scheduling theory can be if we would look at all combinations. This thesis is limited to
one type of machines and one criterion, i.e. a minimal completion time.
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A classification of scheduling problem is presented as a three-field classification
a|Bly, where o represents the processor environment, B the job characteristics and y
the optimality criterion as follows:

The first field oo = o0, consists of two parameters: o, € {o, P, O,R, O, F,J},
where o (denotes an empty symbol) represents a single processor; P: identical proces-
sors; Q: uniform processors, i.e. the processors with a given speed; R: unrelated pro-
cessors, i.e. the processors with job-dependent speeds; O: dedicated processors: open
shop sequencing, in which each job has to be processed again on each one of the m
processors; there are no restrictions regarding the order of each job; F: dedicated pro-
cessors: flow shop sequencing, in which each job has to be processed on each one of
the m processors with the special order, i.e. first on process one, then on process two,
and so on. After completion on one processor, a job joins the queue at the next proces-
sor; J: dedicated processors: job shop sequencing, each job has its own order to follow;

and o, = k:the number of processors (Pinedo, [55])

In Paper I we describe a scenario of identical machines with different number of
processors, i.e. a set Pk for the parallel architecture with & identical processors and
static allocation, and a set Pg - with ¢ identical processors and dynamic allocation.

Then a; = P.In Paper II we describe a scenario of identical machines with m proces-
sors, so also here o, = P.

The second field B describes the job characteristics. Here we describe only some of
the possible values. B € {o, pmin, prec, tree, res,r;,p; =1}, where o means that
there are no restrictions on the jobs; pmtn means that preemptions are allowed; prec is
precedence relation between the jobs, tree is a rooted tree representation; res is speci-
fied resource constraints; 7; is release dates; p; = 1: each job has a unit processing
requirement (occurs only if a € {0, P, O} ).

In Paper I we do not have any job characteristics, so for both cases (Pk and Pgq)
B € {o} . In Paper II we present the scenario with limited number of preemptions, i.e.
B e {pmtn}.

The last field y describes an optimality criterion. The most commonly chosen are

the maximum completion time or makespan (C,,,,

), the total completion time (Z C ),

or the maximum lateness L . ,

deadline [Graham et al., 28].
In Paper I and II we are interesting in minimizing the makespan, i.e. to minimize the

where a lateness of a task is its completion time minus

maximum completion time, so y = C,, -

Using this notation we can represent the problem of minimizing maximum comple-

tion time on identical parallel machines allowing preemption as Plpmin|C,,,, .
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2.2 Bounds and Complexity on Multiprocessor Scheduling

The problem of scheduling a parallel program on m machines has been shown to be
NP-hard (Garey et al., [21]). Many scheduling problems are easier to solve when we
allow preemptions, e.g. a problem of minimizing maximum completion time (Cp,,x),

without preemptions on two identical processors (P2||C, ) is NP-hard (Karp [33]),

while the problem for preemptive parallel scheduling for more than 2 processors
(P|pmtn|C_, ) is solvable in O(n) time (McNaughton, [50]). However, there is still a

practical question of allowing or not allowing preemptions.
In 1966, Graham [26], using List Scheduling (LS) rule, has proved that:

max

Crax(LS)/ C;ax <2-1/m, where m is the number of processors and C:nax denotes

the maximum completion time for the optimal schedule. The idea of list scheduling is
to make an ordered list of processes by assigning them some priorities. The next job
from the list is assigned to the first available machine. One of the most often used algo-

rithms for solving P||C,  problem is the Longest Processing Time (LPT) algorithm,

which is a kind of list scheduling. Here, the jobs are arranged in decreasing processing
time order and when a machine is available, the largest job is ready to begin process-
ing. The complexity of this algorithm is O(#n log ) and the upper bound is established
for process reallocation and synchronization is neglected. To achieve better perfor-
mance, Coffman et al. [12] introduced another approximation algorithm, called Multi-

fit (MF) with makespan C,, (MF,)/ c

binpacking techniques, where the jobs are taken in non increasing order and each job is
placed into the first processor into which it will fit. This bound was further improved
by Friesen to 1.20 [19], Friesen and Langstone [20] to 1.18 and then by Yue [62] to 13/
11, which is tight. Hochbaum and Shmoys [29] have developed a polynomial approxi-
mation scheme, based on the multifit approach, with the computational complexity

by Graham ([27]): C,..(LPT)/ C:n - ﬁ . However, in LPT algorithm, the cost

<1.22+27". This algorithm is based on

max max —

2
O((n/a)l/8 ) for n processes.

Lennerstad and Lundberg in [39] established an optimal upper bound on the gain of
using two different parallel architecture, with and without migrations of processes,
where the number of processors in both systems are equal. In [41] the result is
extended for a scenario with different number of processors. Paper I is an extension of
those papers, i.e. the cost for communication and synchronization between processors
is included (see Paper I and Section 4.1.1).

A problem of minimizing the makespan with preemptions, P|pmin|C,__ , can be

solved very efficiently with time complexity O(n). The makespan of any preemptive

10
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schedule is at least C;ax = max{maxj{ Pt ’%1 Z pj} (McNaughton, [50]). However,
=1

by the McNaughton rule, no more than m — 1 preemptions are needed in the unlimited
case.
For the scheduling with precedence constraints, i.e. P|prec|C ., Graham’s [26]

(LS)/ C. <2-1/m ) still holds. If the jobs have unit-length,

max —

bound from 1966 (C
the problem P|prec, p=1 |Cmax is NP-hard (Ullman, [60]). However, if the number of

max

processors is limited to 2, then P2 |prec, p,=1 |C nax is solvable in 0(n2) time (Coff-

man & Graham, [13]). Coffman and Garey [11] proved that the least makespan achiev-
able by a non-preemptive schedule is no more than 4/3 the least makespan achievable
when preemptions are allowed.

In 1972, Liu [43] conjectured that for any set of tasks and precedence constraints
among them, running on two processors, the least makespan achievable by a nonpre-
emptive schedule is no more than 4/3 the least makespan achievable by a preemptive
schedule. The conjecture was proved in 1993 by Coffman and Garey [11]. Here the
authors generalize the results to the numbers 4/3, 3/2, 8/5,... i.e. to the numbers
2k/(k+ 1) for some k> 2. The number k depends on the relative number of preemp-
tions available.

Braun and Schmidt [5] proved 2003 a formula that compares a preemptive schedule

ip*
max

the worst case. They generalized the bound 4/3 to the formula

cr /cl <2-2/(m/(i+1)+1).

max max —

. * .
to a schedule with unlimited number of preemptions C-__in

with i preemptions C max

In Paper II we extend the results of Braun and Schmidt [5], by comparing a preemp-
tive schedule with i preemptions to a schedule with j preemptions, where i <;j (see
Paper II and Section 4.1.2).

11
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3 Load Balancing and Fault Tolerance (Part II)

This section presents related work on redistribution the workload in fault tolerance
system and a definition and classification of the faults.

An important issue in a multiprocessor system is how to redistribute the workload in
the case of fault of one or more processors. In that case the load should be redistributed
to the other processors in the system maintaining maximal load balance.

Load balancing problem can be handle by dynamic policies, where transfer deci-
sions depend on the actual current system state, or by static policies that are generally
based on the information of the average behavior of the system. The transfer decisions
are then independent of the actual current system state. This makes them less complex
than dynamic policies [Kameda et al., 32].

A system is fault tolerance “if its programs can be properly executed despite the
occurrence of logic faults” (Avizienis, 1967, [2]). Krishna and Shin [35] define the
fault tolerance as “an ability of a system to respond gracefully to an unexpected hard-
ware or software failure”. Therefore, many fault-tolerant computer systems mirror all
operations, e.g. every operation is performed on two or more duplicate systems in that
sense, that if one fails the other can take over its job. This technique is also used in
clusters [Pfister, 54]. In [Cristian, 14] fault tolerance for distributed computing is
discussed from a wide viewpoint.

Besides hardware failures, the intermittent failures can occur due to software
events. In [Vaidya, 61] a “two-level” recovery scheme is presented and evaluated. The
recovery scheme has been implemented on a cluster. The authors evaluate the impact
of checkpoint latency on the performance of the recovery scheme. For transaction-ori-
ented systems, Gelenbe [22] has proposed “multiple check pointing” approach that is
similar to the multi-level recovery scheme presented in [61]. A mathematical model of
transaction-oriented system under intermittent failures is proposed in [Gelenbe and
Derochete, 24]. Here, the system is assumed to operate in a standard checkpoint-roll-
back-recovery scheme. In [Chabridon and Gelenbe, 9] and [Gelenbe and Chabridon,
23] the authors propose several algorithms which can detect tasks failures and restart
failed tasks. They analyze the behavior of parallel programs represented by a random
task graph in a multiprocessor environment. However, all these algorithms act dynam-
ically.

If a single element of hardware or software fails and brings down the entire com-
puter system we talk about single point of failure (Pfister, [54]). In the thesis we look
at more advanced scenario, where an arbitrary number of faults can occur, i.e. we look
at the system with no single point of failure.

3.1 Fault Model

A failure is “an event that occurs when the delivered service deviates from correct
service”. “The deviation is called error”. “The adjudged or hypothesized cause of an
error is called a fault.” (Avizienis et al., [3]) The events can be presented as in Fig. 3.

12
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§,

Fig. 3. Representation of a fault, error and failure ([3])

Avizienis et al. [3] presents the elementary fault classes according to eight basic
viewpoints: phase of creation or occurrence, system boundaries, phenomenological
causes, dimension, objective, intent, capability and persistence, where each of view-
point consists of two additional viewpoints. If all combinations would be possible,
then it would be 256 different combined fault classes ([3]).

A classification of a fault behaviour of its processors or communication controllers
is the following:

- crash fault - the processor stops computing/transmission messages;

- omission fault - missed message, a processor loses its content;

- timing fault - the message arrives too late or early;

- fail-stop fault - a process/message is stopped from executing, possibly forever;

- Byzantine fault - a processor may do anything (Cristian, [14]).

From the point of view of occurrences, faults can be classified into:

- transient fault - a fault starts at a particular time, remains in the system for some
period and the disappears;

- permanent fault - a fault starts at a particular time and remains in the system until it
is repaired,

- intermittent fault - a fault occurs from time to time (Burns and Wellings, [8]).

Our main focus in Papers III-VI is on permanent crash faults.

3.2 Reliability vs. Availability

Computing and communication systems are characterized by fundamental proper-
ties: functionality, performance, dependability and security, and cost (Avizienis, [3]).
Reliability and availability are two of the five characteristics of dependability. Both are
measured by two components: a mean-time-between-failures (MTBF) and a mean-
time-to-repair (MTTR).

Reliability (R) is the ability of a computing system to operate without failing, while
availability (4) is a readiness for correct service.

Auvailability is defined as a proportion of time that the system is up (Laprie et al.,

MTBF MTTR

37D: 4 = UTBr+ MTTR ~ | ~ MTBE

, if MTBF is very much greater than MTTR.
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A system with 0.999 availability is more reliable than a system with 0.99 availabil-
ity. Furthermore, a system with 0.99 availability has 1 - 0.99 = 0.01 probability of fail-
ure. Hence, a failure is F'= 1 - 4 and a reliability R = 1/(1 - A) (Laprie et al., [37]).

The availability of the system can be measured by a number of 9s, e.g. a system
with 0.999 availability is called three 9s and belongs to class 3. Fig. 4 presents a classi-
fication of the availability of the system converted to an average down time in a given
time period (Pfister [54] and Laprie et al., [37]).

Class /nr of 9s % Available Hours / Year Minutes / Month

2 99,9 87.60 438
3 99,99 8.76 43.8
4 99,999 0.88 4.38
5 99,9999 0.9 0.44
6 99,99999 0.1 0.04

Fig. 4. A classification of availability systems ([54], [37])
The systems of class 4-6 are called high availability systems (Pfister, [54]).
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4 Summarizing of the papers

This section summarize the papers involved in the thesis.

4.1 Partl

4.1.1 Comparing the optimal performance of parallel architectures (Paper I)

This paper extends the results in [Lennerstad and Lundberg, 39] and [Lennerstad
and Lundberg, 42], where the synchronization cost was neglected. Here, a bound on
the gain of using a system with ¢ processors and run-time process reallocation com-
pared to using a system with k processors, no reallocation and a communication delay
t, for a program with # processes and a synchronization granularity z is presented. The
main contribution in this paper is that we handle and validate a more realistic computer
model, where the communication delay ¢ for each synchronization signal and the gran-
ularity z of the program are taken into consideration. We present transformations
which enable us to separate execution and synchronization. Analyzing the parts sepa-

rately and comparing them, we found a formula H(n, k, g, ¢, z) that produces the min-
imal completion time: H(n, k, q,t,z) = minydH(4,n, k, q,t,z). Here A denotes an
allocation of processes to processors, where a; processes are allocated to the j:th com-

puter. Hence, the allocation is given by the allocation sequence (a4, ..., a;), where

k
Zaj = n. Furthermore, the sum is taken over all decreasing sequences
=1

k
I = {i, ..., i} of nonnegative integers such that Z i =q.
j=1

H(A,nk q,t,z) = g(4,n,k,q)+zr(4,n, k, t), where

(A, mk, q) = (1/(:))21:max(il, lk)[‘:] - ["kJ and

3

-- k i(a;—1
r(4,n,k t) = e )n(%z:l_ll)a (a ).t.

The execution part, represented by g(4, n, k, q) , corresponds to the previous results

(Lundberg and Lennerstad [39, 42]). The function g(4, n, k, ¢) is convex in the sense
that the value decreases if the load of a worst case program is distributed more evenly
among the computers. However, the synchronization part, represented by r(4, n, &, t) ,

is concave. This quantity increases if the load of a worst case program is distributed
more evenly. This makes the minimization of the sum H a delicate matter. The type of

allocation which is optimal depends strongly on the value of ¢z . If 7z is small, then the
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execution dominates, and partitions representing even distributions, uniform parti-
tions, are optimal. If 7z is large, then the synchronization dominates, and partitions
where all processes are allocated to the same computer are optimal.

Here is an example of the calculation of the execution part of program P calculated
first by the formula and then using the vector representation.

Letn = 3,9 =2,k =2.Thend = {a,,a5a,+ta,=3} = {(1,2),(2,1)} and
I= {ila 12311+12:2} = {(171)9 (2’ 0)9 (0’ 2)} and then

2(4,3,2,2) = (1/@)[1 (D@ +2@© +2@©] — 4/3,

Using the vector representation of program P with the allocation (1,2) we have:

(ay, ap) =(1,2): (i1, i): max of (i, ip):
1110 (1, 1) 1
101 —»  (1,1) —» 1
0|11 0, 2) 2

2(4,3,2,2) = Z(max of (i, i,))/(nr of rows in vector representation) = 4/3 .

4.1.2 The Maximum Gain of Increasing the Number of Preemptions in Multiprocessor
Scheduling (Paper II)

This paper generalize the results by Braun and Schmidt [S]. We present a tight upper
bound on the maximal gain of increasing the number of preemptions for any parallel
program consisting of a number of independent jobs when using m identical proces-
sors. We calculate how large the ratio of the minimal makespans using i and j preemp-

tions respectively, i <j, can be. We compare i preemptions with j preemptions in the
worst case. We thus allow j from i+ 1 to m — 1, while the problem solved in [5] cor-
responds to j = m—1. In the case m>i+j+ 1, which does not coincide with
j=m-1 unless i=0, we obtain the optimal bound
2(j/G+ 1) ]+ 1)/(|j/(i+1)]+2). For example, excluding one preemption
(i =j—1) can never deteriorate the makespan more than a factor 4/3, but may do so.
This argument cannot be iterated, since different sets of jobs are worst case, depending
on the parameters / and j. In the case m <i+j+ 1 we present a formula and a fast
algorithm based on the Stern-Brocot tree.
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4.2 Partll

In fault tolerant distributed systems it is difficult to decide on which processor the
processes should be executed. When all computers are up and running, we would like
the load to be evenly distributed. The load on some processors will, however, increase
when one or more processors are down, but also under these conditions we would like
to distribute the load as evenly as possible on the remaining processors. The distribu-
tion of the load when a computer goes down is decided by the recovery lists of the pro-
cesses running on the faulty processor. The set of all recovery lists is referred to as the
recovery scheme (RS). Hence the load distribution is completely determined by the
recovery scheme for any set of processors that are down.

The computer science problem is reformulated in the following papers into different
mathematical problems that produce different static recovery schemes. The corre-
sponding mathematical problems with the corresponding recovery schemes turn out to

be the following:
Paper III:
Given a number (n) - find the longest sequence of positive Log RS
integers such that the sum of the sequence is smaller than or
equal to n and all sums of subsequences (including subse- Greedy RS
quences of length one) are unique. Golomb RS
Paper IV and VI
Given a number (n) - find the longest sequence of positive —lModulo RS
integers such that the sum and the sums of all subsequences
(including subsequences of length one) modulo n are unique. Optimal RS
Paper V

Given a number (n) - find the longest sequence

S = (81,83 ..., S,,) of positive integers such that:

a) the sum of the elements in the sequence is less than equal n

b) 1 is an integer number such as: 1> (J8k+9-3)/2,
where k is the number of crashed nodes

¢) the first | crash routes are disjoint

d) the following I(I+1)/2—1 crash routes have at least |
different values compared to the previous crash routes

Trapezium RS
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4.2.1 Using Golomb Rulers for Optimal Recovery Schemes in Fault Tolerant Distrib-
uted Computing (Paper III)

This paper extends the results presented in Lundberg and Svahnberg [47]. Here we
present how the Golomb ruler (a sequence of non-negative integers such that no two
distinct pairs of numbers from the set have the same difference) (Fig. 5) is applied to
the problem of finding an optimal recovery scheme. Golomb rulers are known for
lengths up to 41912 (with the 211 marks). Of these the first 373 (with 23 marks) are
known to be optimal.

11
Fig. 5. The triangle presentation of the OGR 11

The Golomb recovery lists are build as followed:
Let G, be the Golomb ruler with sum » + 1 and let G,(x) be the x:th entry in G,,,

e.g. G, =<1,49,11> and G|, (1) =1, G;5 (2) = 4 and so on. Let then g, = x be the
number of crashed computers with optimal behavior when we have n computers, e.g.
g12 = 4. For intermediate values of k£ we use the smaller Golomb ruler, and the rest of

the recovery list is filled with the remaining numbers up to £-1. For example, by filling
with remaining numbers, the ruler G, gives the list {1,4,9,11,2,3,5,6,7,8,10}.

The sequence referred to Golomb recovery schemes is in this case <1,3,5,2> (i.e.
the differences between the numbers from the list). All other recovery lists are
obtained from this by adding a fixed number to all entries in the modulo sense, i.e. R; =
{(i+1) mod n, (i+2) mod n, (i+3) mod #,..., (i+n-1) mod n}, where R; is the recovery
list for process i. If n = 12 we get: Ry = <1,3,5,2>, R| = <2,4,6,3>, R,= <3,5,7,4> and
o on.

In this paper we present also the greedy algorithm, which is constructed from a
sequence with distinct partial sums. It can guarantee optimal behavior until Llogsz
computers break down, but we can easily calculate it also for large » where no Golomb
rules are known.

4.2.2 Using Modulo Rulers for Optimal Recovery Schemes in Distributed Computing
(Paper 1V)

Paper IV extends the Golomb recovery scheme. In the formulation which can be
handled by the Golomb rulers the wrap-arounds are ignored - i.e. the situations when
the total number of “jumps” for a process is larger than the number of computers in the
cluster. This problem gives a new mathematical formulation of finding the longest
sequence of positive integers such that the sum and the sums of all subsequences
(including subsequences of length one) modulo » are unique (for a given ). This
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mathematical formulation of the computer science problem gives new more powerful
recovery schemes, called Modulo schemes, that are optimal for a larger number of
crashed computers. Fig. 6 presents an example of a modulo-11 sequence with all mod-
ulo differences, that does not exist in the previous case. The recovery lists (and recov-
ery scheme) are constructed in the same way as the Greedy or Golomb recovery lists
(and scheme).

0 1 6 3 10

10
Fig. 6. Modulo sequence for n = 11 with all differences

4.2.3 Extended Golomb Rulers as the New Recovery Schemes in Distributed Depend-
able Computing (Paper V)

A contribution in this paper is that we have presented new recovery schemes, called
trapezium recovery schemes, where the first part of the schemes is based on the known
Golomb rulers, (i.e. the crash routes are disjoint) and the second part is constructed in a
way, where the following crash routes have at least / unique values compared to previ-
ous crash routes. The trapezium recovery schemes guarantee better performance than
the Golomb schemes and are simple to calculate. Fig. 7 compares the number of
crashes of the trapezium scheme (“trapezium”), with the performance of the scheme
using Golomb rulers (“golomb”) as a function of the number of nodes in a cluster ()
up to n = 1024.

Trapezium

MNumbers of crashed computers for which we can guarantee optimality

o 100 200 300 400 500 600 700 800 800 1000
Number of nodes in cluster

Fig. 7. The difference between the trapezium scheme (“trapezium”) and
OGRs scheme (“golomb”)

The goal of this paper was to find good recovery schemes, that are better than the
already known and are easily to calculate also for large ». In Paper V we have found
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the best possible recovery schemes for any number of crashed nodes in a cluster. To
find such a recovery scheme is a very computational complex task. Due to the com-
plexity of the problem we have only been able to present optimal recovery schemes for
a maximum of 21 nodes in a cluster.

4.2.4 Optimal Recovery Schemes in Fault Tolerant Distributed Computing (Paper VI)

In Paper VI we calculate the best possible recovery schemes for any number of
crashed computers. We are giving strict priority to a small number of computers down
compared to a large number. That means, that we select the set of recovery schemes
with optimal worst case behavior when two computers are down, and among these
select recovery schemes that have optimal behavior when three computers are down,
and so on. We define the set R(n, p) of recovery schemes that minimizes the maximal
load for 1,2,...,p computers down in formula:

R(n,p) = {R € R(n)|L(n,i,R)= min L(n,i,P),i=1, ...,p}, where
P € R(n)

L(n, p, R) is a load sequence and defines the worst-case behavior after p crashes when
using the recovery scheme R. The optimal load sequence is denoted by SV.

MV = max(B V), [L D , where BV is a bound vector that contains exactly k
n-—j
entries that equals k forall k>2.

number of crashed computers

number computers in the cluster

Fig. 8. Comparison of the optimal recovery schemes sequences with the
modulo sequences

It is not known if the lower bound MV is tight. In this paper we investigate the tight-

ness of the bound MV by the optimal load sequence SV of R*(n). We present an algo-
rithm with which we calculate the optimal bound SV. In many instances, when we have
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a larger number of crashed computers, SV do not coincide with MV. Fig. 8 shows to
which extent MV is tight. In the grey area MV is tight, since MV = SV here. For larger
values of crashed computers g, MV < SV, so MV is not tight.

5 Future Work

The bounds that are obtained in Part I (papers I and II) are tight within the problem
formulation. However, there is a universe of possibilities to find new formulations of
both more specific and more general practical situations that has no answer yet, but
where the present results may provide a useful foundation for finding answers. Both
Paper I and Paper II are in fact extensions of previously studied (and optimally solved)
problems. Apart from the results themselves, this is the major contribution to the
research domain made by the thesis.

From a mathematical point of view, the results have opened new connections
between parallel computer performance and combinatorics. Golomb rulers have found
new applications, and new combinatorial problems have arisen and been solved. These
problems may be studied and refined as mathematical problems, which then can be
interpreted in a computer setting. The new application of the Stern-Brocot tree is one
example. I believe that it is possible to find more such connections between computer
systems engineering and combinatorics.
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Paper 1

Comparing the Optimal Performance
of Parallel Architectures

Kamilla Klonowska, Lars Lundberg, Hakan Lennerstad and Magnus Broberg
Proceedings of The Computer Journal, Vol. 47, No. 5, 2004

Abstract

Consider a parallel program with n processes and a synchronization granularity z.
Consider also two parallel architectures: an SMP with q processors and run-time real-
location of processes to processors, and a distributed system (or cluster) with k proces-
sors and no run-time reallocation. There is an inter-processor communication delay of
t time units for the system with no run-time reallocation. In this paper we define a func-

tion H(n, k, q, t,z) such that the minimum completion time for all programs with n

processes and a granularity z is at most H(n, k, q, t, z) times longer using the system
with no reallocation and k processors compared to using the system with q processors
and run-time reallocation. We assume optimal allocation and scheduling of processes
to processors. The function H(n, k, q, t, z) is optimal in the sense that there is at least
one program, with n processes and a granularity z, such that the ratio is exactly
H(n, k, q,t,z). We also validate our results using measurements on distributed and

multiprocessor Sun/Solaris environments. The function H(n,k,q,t,z) provides
important insights regarding the performance implications of the fundamental design
decision of whether to allow run-time reallocation of processes or not. These insights
can be used when doing the proper cost/benefit trade-offs when designing parallel exe-
cution platforms.
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1 Introduction

There are many ways to implement computer systems with multiple processors, e.g.
a loosely coupled distributed system consisting of a number of stand-alone computers
[1,2], systems with distributed shared memory [3,4,5], or a tightly coupled SMP. In
some cases, the multiprocessor is shared by many independent programs. However,
one is often interested in improving the performance (i.e. reducing the completion
time) of one parallel program consisting of a number of synchronizing processes (or
threads). When designing multiprocessor systems that support efficient execution of
one parallel program, one is faced with the fundamental design decision of whether to
allow run-time reallocation of a process from one processor to another or if a process
should execute on the same processor during the entire execution. Systems that do not
allow run-time reallocation are generally less complex and thus less costly to build.
The capacity, and thus the cost, of the communication network is also generally higher
in systems that support run-time process reallocation. Allowing run-time process real-
location in multiprocessors with a very large number of processors would be very dif-
ficult and costly. The obvious disadvantage of not allowing run-time reallocation is
that the load may become unbalanced, since some processors may be very busy while
others are idle.

There is consequently no single answer to the question if run-time reallocation
should be allowed or not; it is an engineering decision where a lot of factors have to be
taken into consideration. Allowing run-time reallocation or not is not directly con-
nected to building a tightly coupled SMP or a distributed system, since run-time reallo-
cation is possible (but more costly) on distributed system and in some SMPs we want
to limit, or even eliminate, run-time reallocation in order to improve the hit ratio in the
processor caches. One very important factor when considering to allow run-time real-
location or not is the performance gain of allowing run-time reallocation, and thus
making the load more balanced. It is obvious that the performance gain of allowing
run-time reallocation depends on the quality of the scheduling and allocation policies.
Obviously, systems that do not allow run-time reallocation and use a poor scheduling
and allocation policy will end up with very poor performance. Finding optimal multi-
processor scheduling and allocation policies is an NP-hard problem [6]. There are,
however, a number of good heuristic methods [7,8], and it is thus possible to come
close or even very close to the optimal result for many important cases.

One important question is thus how much performance one will gain by allowing
run-time reallocation provided that we are able to find (almost) optimal scheduling and
allocation algorithms. It is, however, obvious that this gain will depend on the parallel
program that we are interested in. For instance, if we have a multiprocessor with & pro-
cessors there will be no performance gain of allowing run-time reallocation for a pro-
gram with 4k parallel processes that all do the same amount of work (we will place
four processes on each processor and end up with a perfectly balanced load). For some
other programs, there will, however, be a performance gain by allowing run-time real-
location, even if we use the best possible scheduling and allocation algorithms. The
relevant question would thus be how much one can gain at most (for any program) by
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allowing run-time reallocation, provided that we use (almost) optimal scheduling and
allocation. The answer to this fundamental question would provide important input
when we want to balance the additional cost and complexity of allowing run-time real-
location against the performance gain of allowing run-time reallocation. In this paper
we define a function that answers this question for a very wide range of multiproces-
sors and parallel programs.

The paper is organized in the following way. Section 2 presents related previous
results. Section 3 describes definitions of dynamic and static allocation and the differ-
ences between them. In Sections 4 - 7 we make transformations of the program, and
show that the transformations give a worst case program. That is, the program for
which the performance gain of using SMPs compared to distributed systems is maxi-
mal. The optimal allocation of the processes in the worst-case program and the main
result of the paper are presented in Section 7. Section 8§ validates the results using dis-
tributed and multiprocessor hardware, and Section 9 discusses some practical applica-
tions of the result. Finally, in Section 10 we present our conclusions.

2 Previous results

The present report extends the results in [9] and [10]. In those, and all previous,
reports the synchronization cost was neglected. Most distributed systems (and other
systems that do not allow run-time process reallocation) have a significant cost for
inter processor synchronization. By neglecting this cost in the system that does not
allow run-time reallocation of processes, we obtained a too short completion time for
that architecture. This means that the bound on the maximum gain of using an SMP
with run-time reallocation compared to a distributed system (or cluster) with no run-
time reallocation may become too low, i.e. the bound in [9] and [10] is actually not
valid for most distributed systems. The error caused by neglecting the synchronization
cost depends on the synchronization frequency (granularity) of the parallel program,
i.e. in order not to neglect the synchronization cost, also the granularity of programs
need to be taken into account. The formulas in Section 7 (in the present paper) quantify
the error of neglecting the synchronization cost as a function of the real synchroniza-
tion cost in the distributed system and the granularity of the program. Figure 17 (in the
present paper) shows this graphically; based on the results in [9] and [10] we were only
able to produce the top graph in Figure 17.

Considering the synchronization cost and program granularity complicates the
mathematical problem significantly. Optimal programs can still be characterized, but
in this scenario we cannot characterize optimal allocations (which was possible in [9]
and [10]). As a result of this, most of the mathematical proof techniques leading to the
result in this paper are new. Only the proofs in Section 5 could be reused from previous
work, whereas the proofs in sections 4, 6 and 7 are new and original.

In [9] the optimal upper bound on the gain of using distributed systems instead of an
SMP concerns the case where the number of computers in the distributed system
equals the number of processors in the SMP. The scenario also represents static versus
dynamic allocation on the same multiprocessor. In [10] this is extended for cluster
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allocation, different number of processors. Also, optimal bounds for programs inde-
pendent of the number of processes are derived.

In [11], extra information is provided by a test execution of the program. In a situa-
tion with this information, the general bounds are not tight [10]. In [11], tight bounds
are established.

The basic method presented here has proved useful in other contexts. In [12], the
efficiency of cache memories for single processors was studied; tight bounds compar-
ing more flexible with less flexible cache memory organization alternatives were
derived. The final part of the argument used in the cache study is similar to that of the
present report, while a different set of transformations and arguments is needed to
reach the corresponding matrix problem.

In [10,12,13,14] different applications are reported where the mathematical/combi-
natorial part is strongly related to the corresponding part of this report. The reports
[15,16,17] are survey articles.

In previous reports, programs with any synchronization are allowed. However, the
cost of synchronization signals is neglected. In the present report we assume a uniform
cost ¢ for each synchronization signal. The previous cases are represented by the case ¢
=0.

In [18] an optimal bound is described for general synchronization which includes
reallocation costs. That paper concerns parallel programs with a given parallel profile.

Other than the reports [18] and [9,10,11], there are very few general results concern-
ing allocation strategies of parallel programs with arbitrary synchronization. In the
paper [19] by R. L. Graham the cost for process reallocation and synchronization is
neglected. Here so called list scheduling algorithms are considered. This term is used
for dynamic allocation algorithms where, when a processor becomes idle and there are
waiting executable processes, one of the executable processes is immediately allocated
to the idle processor. It is established in [19] that the makespan for a program allocated
with a list scheduling algorithm is never higher than two times the makespan with opti-
mal dynamic allocation.

3 Definitions and main results

3.1 Notation

In the paper we use the following quantities and notations. All will be defined later
in this section.

n: the number of processes in the parallel program P ; k: the number of computers in
the distributed system, i.e the system without run-time reallocation of processes (Fig.
la); g: the number of processors in the SMP, i.e. the system with run-time reallocation
of processes (Fig. 1b); #: the communication cost between computers in the distributed
system (Fig. 2b); z: the granularity of the parallel program P; (a, ..., a;) : an alloca-
tion sequence, the number of processes allocated to computer x is a,;
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Fig. 2. An optimal dynamic (a) and static (b) allocation of a program P executed by
two processors

(V1> +++> Yk —1),2) © @ synchronization sequence, where y; is the number of synchroni-
zations between pairs of processes; 7,(P, g) : the completion time for the program P
with optimal dynamic allocation (Fig. 2a); T,(P, k, t) : the completion time for the pro-
gram P with optimal static allocation (Fig. 2b); T, (P, 4, k, t): T (P, A) : the comple-

tion time for the program P with a certain static allocation 4 (Fig. 2b); g(4, n, k, q) :
the function bounding the completion time of the execution part of a program;
r(4, n, k, t) : the function bounding the completion time of the synchronization part of
a program; H(n, k, q, t, z) : the optimal function bounding the total completion time of
a program, i.e. the main result in this paper.
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3.2 Definitions

This section describes the definitions and shows the differences between dynamic
and static allocation.

We consider a parallel program with n processes. Fig. 2 shows a parallel program P

consisting of three processes P1, P2 and P3 that are executed by two processors.
The execution time of each process equals two. Sequential processing is represented
by a procedure Work. Hence, Work(x) denotes sequential processing for x time units.
For an uninterrupted piece of execution of a process which does not contain any syn-
chronization we sometimes use the term segment. Consequently, a segment of length x
is represented by Work(x).

Processes synchronize with two primitives: Activate and Wait. A process does not
become blocked when it executes an Activate; when it executes a Wait, the process
becomes blocked until the corresponding Activate has been executed. If the corre-
sponding Activate has been executed before the process reaches the Wait, then the pro-

cess executing the Wait does not become blocked. In Fig. 2 we see that process P1
cannot start its execution before P2 has started and activated P1 (Activate(Event 1)
in P2). Then process P2 waits for the signal from P1 to start its execution. This
dependency is represented with the Wait(Event 3) in process P2 and the Acti-

vate(Event_3) in process P1, sometimes called a synchronization signal. A synchroni-
zation signal is thus a command in a process which activates another process.

A parallel program has a well-defined start point in terms of a (possible infinitely
small) piece of code in one process that must be executed before any other code in any
other process is executed. There is also a well-defined end point in terms of a (possible
infinitely small) piece of code in the same process that must be executed after all other
processes have completed their execution. In Fig. 2, process P2 is the process that
contains the (infinitely small) piece of code that is executed before any other code is
executed, and the (infinitely small) piece of code that is executed after all other code
has been executed. This is a very common structure in real parallel programs, where a
main process is responsible for starting up the execution and for making sure that all
processes are finished before the program terminates.

Dynamic allocation means that a process may be executed by different processors
during different time periods. The processes may be transferred between all processors
without limitations. An optimal dynamic allocation is an allocation of processes to
processors for which the completion time of the parallel program is shorter than or
equal to the completion time using any other dynamic allocation. The completion time
for an optimal dynamic allocation for program P with a (SMP) multiprocessor with g
processors is denoted by 7,(P, ¢g). This quantity includes only execution since in the

dynamic case the cost of synchronization signals is zero.

In static allocation a process can only be executed by the processor on which it was
created. In this report, contrary to the previous cases, we do not neglect the time for the
synchronization in the static case. We denote the communication cost for any synchro-
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nization signal by ¢ For static allocation, the completion time is affected by local
scheduling. By local scheduling we mean the way processes which are allocated to the
same processor are scheduled within their own processor. For a certain static alloca-
tion, optimal local scheduling is the local scheduling policy that yields the shortest
completion time. An optimal static allocation is an allocation for which the completion
time using optimal local scheduling is shorter than or equal to the completion time of
any other static allocation, using optimal local scheduling. We denote the completion
time with optimal static allocation for the program P, using a distributed system with
k computers, and a synchronization cost ¢, by T,(P, k, t). This quantity includes both

execution and synchronization times. Execution time will often be referred to as work
time.

The right-hand side of Fig. 2 shows a graphical representation of P and its optimal
dynamic (Fig. 2a; a multiprocessor with one computer containing two processors) and
static allocations (Fig. 2b; a multiprocessor with two computers containing one
processor each).

In dynamic allocation (Fig. 2a), processes may be transferred between all proces-
sors without limitations, e.g. the process P3 is executed on two processors. Here, the
communication cost equals zero, because the processes execute at the same computer.

The work time of each process in the example shown in Fig 2 equals 2. By adding
the work time of all processes in a program disregarding synchronization we obtain the
total work time of that program. The number of synchronization signals in program P
divided by the total work time for a program is called the granularity of the program,

and is denoted by z. In the example of Fig. 2, the granularity z equals % .

3.3 Main results and outline of the paper

Given the parameters n, k, ¢, t and z, we will characterize a set of worst case pro-
grams called complete programs. This we do by starting with an arbitrary program,
and performing successive transformations. In each transformation the program
becomes “more worst case” in the sense that the ratio T4(P, k, )/ T,(P, q) does not

decrease. The final result is the set of complete programs. These programs all have the
same T4(P, k, t)/ T, (P, q) . Since we start with an arbitrary program, it follows that all

complete programs are worst case, since they have maximal T¢(P, k, 1)/ T (P, q) .

An outline of this paper is presented in Fig. 3. We start (Section 4) with some trans-
formations of one program into m copies of this program that allow us to split the pro-
gram into two parts. The first part consists of all execution, and is described in Section
5. The second part, consisting of synchronization only, is described in Section 6. In
Section 7 we combine the results from these parts into a whole program and present a

formula for H(4,n, k, q,t,z) = g(4,n, k,q) +zr(4,n, k, t) . The first term in this
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worst-case program: combining the thick
the thick part - | and the thin parts
: (%) (7)
transformations
N worst-case program: validation
A the thin part (8)
(6) +
discussion
)
conclusions
Fig. 3. Outline of the paper (10)

sum comes from Section 5, and the second from Section 6. The formula
H(n, k,q,t,z) = min,H(A, n, k, q, t, z) bounds the completion time for any program
P with n processes, granularity z and communication cost # by the following inequal-
ity: T(P, k,t)<H(n, k,q,t,2)T, (P, q).

Here T((P, k,t) = min,T (P, k, t, A). The function H(n, k, g, t,z) is optimal in
the sense that for at least some program P: T, (P, k,t) = H(n, k, q,t,2)T P, q) .

T(P,k,t)

TP )

In Section 7 we give a branch-and-bound algorithm to efficiently calculate
H(n, k, q,t,z) from H(4,n,k, q,t,2).

Consequently, for all programs P: H(n, k, q,t,z) =

4 Transforming program P into a new program with a thick and
a thin part

In this section we present the techniques that allow us to transform a program P

into a new program consisting of two parts, one with all execution (also called the
thick part), and the other part with synchronizations only (also called the thin part). In
this section we present two lemmas and three theorems, that will prove that it is valid
to make these transformations.

4.1 Program P’ as m identical copies of program P

In this transformation we construct a program P’ by creating m copies of program

P . All execution in copy x must be completed before copy x+ 1 can start. This
requires no extra synchronization, since it is obtained by concatenating the processes
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with the well defined start- and end-points with each other (see Fig. 4). In Lemma 1,
we show that this transformation does not change the ratio of the completion times
with optimal static allocation compared to optimal dynamic allocation.

Lemma 1: The ratio of completion times with optimal static allocation compared to
optimal dynamic allocation does not change when we switch from P to P'.

Proof: Having m (m > 1) copies of program P, we multiply both quantities T (P, k, ?)
and T,(P, g) by m:

T(P,k,t) m-T(P,kt) T(P', k1)

T(P.q)  m-TAP.q) TAP.q)’

Fig. 4 shows the transformation of the program P into m copies of this program,

denote as P'. Program P (left part in the figure) consists of execution and synchroni-
zation signals.

Program P’
P
m copies,
Program P /
P /
PEIS

Fig. 4. Transformation P into m copies of P

We will later transform these m copies in two parts: one part with synchronization
signals only and one with all execution. Before that, we present another transformation
- the prolongation transformation, where we prolong the processes.
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4.2 Prolongation of the processes

This transformation is essential for the simplification into the set of worst case pro-
grams which we call complete programs. We will see that a convexity property of the
transformation (Theorem 1:) plays a central role.

We transform the program P into P’ by prolongation of the processes. That is, we
prolong each time unit x, x >0 of each process in program P by Ax so that the ratio
A(x/x) is the same for all processes. Program P’ is then transformed into P" in the
same way. That is, after the transformation each time unit x + Ax is prolonged with
Ax . Each Work(x) is replaced by Work(x + Ax) for P' and by Work (x +2Ax) for
P" , where A(x/x) is constant.

This transformation does not affect synchronization.

In the case of dynamic allocation, when the cost of synchronization equals zero,
after prolongation we simply have:

Td(PNa q) - Td(P’a q) = Td(P'i q) - Td(P’ q) =

The situation for static allocation is different. Since the communication cost in this
case is not zero, the differences after prolongation are not always preserved, because
we do not prolong the synchronization signals themselves.

Fig. 5 demonstrates the transformation. For the simplicity of notation we denote in

this section the static completion time by 7,(P,A) (instead of T (P, 4, k, t)), and

Ax
—T (P .
X d( ) ('I)

denote the length of the program by L = min, T (P, A). The difference between P
and P' we denote as AL. That means that the length of the program P’ equals

" = L+ AL. Program P" is created in the same way using the same Ax as in P’.
The difference between P’ and P” we denote as AL’ . Then the length of the program
P" willbe L" = (L+AL)+ AL’

Program P Program P’ Program P”
# A%~ A48
* xHAX Xt2AX
L
L' =LAl L = (L+AL)+AL

Fig. 5. The transformation of the program P by prolongation of the processes
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The convexity property which is formulated in Theorem 2 follows from Theorem 1,
and states that AL < AL'. These theorems are defined later.

In order to discuss the effect of local scheduling separately, we will assume that
there is only one process per processor. We will relax this restriction at the end of this
section.

First we define some terminology:

By a path of a program we define a connected sequence of segments and synchroni-
zation signals. A path starts always at the beginning of the program. By the length of a
path we define the time for all execution and synchronization signals that are included
in the path. By the longest path we define a path with maximum length. By the critical
path we define a longest path with minimum number of synchronization signals. Thus,
when we have two longest paths, then the critical path will be the path with fewer
arrows. For simplicity we use the term “arrow” as a shorter term for synchronization
signal.

Fig. 6 shows a program with four processes on four computers containing four syn-
chronization signals. The right part of the figure shows an outline of two paths. The
left path consists of three segments and two arrows, while the right one, that is longer,
consists of four segments and three arrows. The longer one is of course the critical
path.

Program P the paths

Fig. 6. : The graphical representation of the program P and its paths;
the critical path is the longer one; arr(P) = 3

It is possible that the critical path has no arrows. In that case, the critical path con-
sists of only one process. It is also possible that the critical path changes its way when
we go from P to P’ or from P’ to P”, and in consequence the number of arrows may
also change. As discussed earlier we always assume optimal local scheduling.

First we show that for a prolongation, the number of arrows in the critical path can-
not increase.

Let arr(P) be the number of arrows in a critical path of the program P, and let

arr(P’) be the number of arrows in a critical path of the program P’ (i.e. P after pro-
longation).
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Lemma 2: arr(P) > arr(P’') .

Proof: Suppose that arr(P) = m, (m > 0) and that in the program P there is another
path, that consists of more than m arrows. When we prolong the processes, the path
with more arrows necessarily have less execution. Then this path increases slower than
the critical path. Consequently, a path with more arrows cannot be critical for P’.
Hence: arr(P) > arr(P’').

|

Fig. 7 shows an outline of the transformation with static allocation. The program P
consists of two paths: the first with two segments and one synchronization signal, and
the second path with three segments and two synchronization signals. The second path
is longer and it is a critical path. During the transformation the first path grows faster
and in consequence it is the critical path in program P" . Observe, that in program P’
both paths are equal. In this case the first path with less synchronization signals is the
critical path. The figure presents also: arr(P) > arr(P') and AL <AL'.

Program P Program P’ Program P”

A

AL I
Y

Fig. 7. The prolongation transformation

AL’

Theorem 1: AL<AL'.

Proof: Let £, = y, +arr(E,) - ¢ be the length of path one, where y; is the sum of the
lengths of the segments (execution) in path one, and arr(£,) is the number of arrows
where each has communication cost #. Let £, = y, + arr(E,) - t be the corresponding
length for path two. Furthermore, assume that y, >y, and that path two is the critical

path,ie. £, <E,.
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Let E,' = y,(x+Ax)/x+arr(£,)t and E," = y,(x+Ax)/x+arr(E,)t be the
paths after first prolongation. And let then E,” = y,(x+2Ax)/x +arr(£,;)¢ and
E," = y,(x+2Ax)/x + arr(E,)t be the paths after second prolongation.

We next compare the critical path with any other path during the prolongation.
There are three possible alternatives:
(1) The critical path does not change its trajectory, i.e. £, <E,,
E|'<E, and E," <E,". Then:
AL = E,'-E,
AL' = E,"-E,) = E,'—E, = AL.
(i1) The critical path does change its way after first prolongation,

ie. E,<E,, E\'>E, and E|">E,". Then AL <AL' because
path £, grows faster than £, .

(ii1) The critical path does change its way after second prolongation,
ie. E<E,, E/'<E, and E|">E,". Then, of course,
AL < AL’ because path E| grows faster than E, .

Consequently, in all cases we have: AL <AL'.
|

We now take two copies of the program P’. From the previous section we know

that the transformation to m copies of P guarantees the ratio. According to the prolon-
gation transformation and Theorem 1 we have:

Theorem 2: 2L' <L +L".

Proof2L' = L+AL+L+ALLL+AL+L+AL = L+(L+AL+AL") = L+L".
|

This means that the length of two copies of P’ (after transformation P ) is less than

or equal to the sum of the lengths of P and P". This is a convexity property of the
prolongation transformation.

4.3 From four copies into three new programs

First we will discuss the local scheduling problem.

Let programs P, P’ and P"” be identical programs, except that the length of each
Work in P" is twice the corresponding Work in P’ , and the length of each Work in P
is zero. Consider an execution of P” where the allocation 4 is an optimal local sched-
ule.
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Let Q" be a program where we have merged all processes executing on the same
processor into one process. Fig. 8 shows how processes P2"” and P3" are merged into
process 02" . Let Q' be the program which is identical to Q" with the exception that
the length of each Work time is divided by two. Let O be the program which is identi-

calto Q" and Q' except that all Work times are zero.

Program P’ Program P Program Q™
P’ P2’ P3 - «
AT
- 4

L0 W

Fig. 8. Transforming P”into Q”

From Theorem 2, we know that 27 (Q", 4) < T,(Q,A4) + T,(Q",4). We use the

same allocation 4 for both P and Q" . However, since there are less processes in Q"
we ignore the allocation of non-existing processes in Q" . This means that each pro-
cess in Q" is allocated to a processor of its own. From the definition of Q" we know
that T, (P",4) = T,(Q", A) . Since the optimal order in which the processes allocated

to the same processor (i.e. the optimal local schedule) may not be the same for P’ and
P" we know that T (P',A)<T,(Q',4).

Consider now a program R, such that the number of processes in R is equal to the
number of processes in P, and such that R also has zero Work (i.e. R contains only

synchronizations, just like P ). The number of synchronizations between processes R;
and R; in program R is twice the number of synchronizations between processes P,
and P; in program P . This means that there is always an even number of synchroniza-

tions between any pair of processes in R . All synchronizations in R must be executed
in sequence (see Fig. 9). We know that it is always possible to form such a sequence,
since there is an even number of synchronizations between any pair of processes.

Sequential execution of synchronizations obviously represents the worst case, and
local scheduling does not affect the execution time of a sequential program. We thus
know that 27 (P, A) < T (R, A) and 2T(Q,A)< T (R, 4).

Consequently:

AT(P',A)<4T(Q', A)<2T(Q,A) +2T(Q",A)<T(R,A)+2T,(P", A).

43
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Sy
&~
\>
Ty
Fig. 9. Transforming program P into program R

We have proved the following:

Theorem 3: For any allocation 4 :
AT(P',A)ST(R,A)+2T,(P", 4).

This means that the length of four copies of P’ using allocation A is less than or
equal to the length of the sum of program R and two copies of P" using the same allo-
cation 4 .

The prolongation transformation changes the work time but not the number of syn-
chronizations. Hence the prolongation transformation itself does not preserve the gran-
ularity. However, in the comparison of Theorem 3, both alternatives have the same
granularity.

We will see that Theorem 3 plays an important role in the next section, where we
separate the program into two parts.

4.4 Transforming program P into a program with a thick and a thin part

In this section we describe how to transform m copies of a program P’ into a pro-
gram with one part consisting of synchronization signals only (the thin part), and the

other part consisting of all processing (the thick part).

Assume an arbitrary program P’ . First we create m copies of P’, where m = 2",
for some (large) integer x > 2 (from Lemma 1 we know that the ratio T,(Pk,1)/T (P.q)
does not change). We combine the m copies in groups of four and transform each
group to two programs P” and one program R. From Theorem 3 we know that

AT (P',A)<S TR, A)+ 2T, (P", A) for any allocation 4 . The transformation ends up

with 2°' programs P" and 22 programs R . Again we combine PAR programs

P" in groups of four and use the same technique. This time the transformation ends up
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with 2° programs P"' (with twice the execution compared to P") and PARN pro-

grams R, which we add to the previous 2" ? programs of this type. We repeat this
technique until there are two very thick programs with all execution and
2P 4241 =21 programs R .

The part consisting of the two very thick programs, with a lot of execution and very

little synchronization, is called the thick part. The 2 copies of R, containing
(almost all of) the synchronization, is called the thin part.

Note that by selecting a large enough m = 2", we can neglect the completion time
of the synchronization in the thick part. We will use this fact in the next section. The
granularity z is preserved by the transformation.

The transformation for m = 8 is illustrated in Fig. 10. Program S” represents a
program consisting of two parts: one thin (three programs R ) and one thick (two pro-
grams P""). This transformation allows the completion time for the optimal static allo-
cation to only increase, i.e:

mT (P, k,t) = TS, k, ) ST (S, k, 1) <T(S", k1) .

But in dynamic allocation, where the cost of synchronization equals zero, the com-
pletion time is unaffected during transformation.

mT(PL k1) _ T(S,kt) TS\ k1) _T(S"k1)
mT (P, q) TAS.q) ~ T S.q) ~ TAS".q)

From this point onwards, we will discuss the thin part of the program P” (program

Consequently,

sections with synchronization only) and the thick part of the program P” (program
section with the execution time) separately.

5 The thick part

In this section we discuss the thick part, i.e. the program sections where we may
neglect the synchronization time. We may thus assume that # = 0 when we work with
the thick part. The result of this section is a formula for a function g(4,n,k,q), where A
is an allocation of processes to processors. This function is one of the two key compo-

nents we need in order to obtain our final goal: H(n, k, ¢, t,z) .

5.1 Transforming P into Q

Consider an arbitrary parallel program P with #n processes and a multiprocessor
with ¢ processors and dynamic allocation. In this transformation we add new synchro-
nizations to P in such a way that TP, q) does not increase. T, (P, k, ) may, how-

ever, increase due to the new synchronizations. The new synchronizations guarantee
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Fig. 10. The transformation of m = 8 copies of P’ into a new program with
a thin and a thick part

that, independent of how processes are allocated and scheduled, there cannot be more
than ¢ simultaneously active processes.

The execution time using optimal dynamic allocation is partitioned into m equally
sized time slots in such a way that process synchronizations always occur at the end of
a time slot.
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In order to obtain a new program Q we add new synchronizations at the end of each
time slot. These synchronizations guarantee that no processing done in slot 7
1 < r<m, using the optimal dynamic allocation, can be done unless all processing in
slot ¥ — 1 has been completed. Fig. 11 shows how a program P is transformed into a

new program Q.

Program P Program Q Vector representation of program Q

M-

Fig. 11. The transformation of program P into program Q

i
===

The synchronizations in O form a superset of the synchronization in P, i.e.
T(P.k 1) _T(Q.k 1)

Td(Pa q) B Td(Q7 q) '

We next motivate that the bound is valid under this simplification. Denote for the

T(P,k,t)<T, (0O, k, t). Consequently,

sake of this argument by 7, (0, &, 7) the completion time when each new synchroni-

zation has completion time ¢. By the argument in the preceding section, if we increase
x, the set of new synchronization is not changed, but all other synchronization and exe-
cution is multiplied. Hence the relative weight of the new synchronizations decrease

. Tv t(Qx) ka t) TV(Q’ k! t)
by x, so lim —= = .
xoo T (0 q) TyQ.q)

TG(PJ k’ t) < Tv, t(Qx) k) t)

By the argument of the present transformation, we have <
Y g p Td(P, CI) Td(Qx’ 61)

TP k1) T(Q. k1)
TAP.q) — T«Qq)

By this argument we may neglect the completion time for the new synchronization
occurring in this transform. This allows us to import results from [10]. If the arbitrary
program in the start of the transformations is a complete program, no synchronization
is added. Thus, complete programs fulfill this bound.

In order to simplify the following discussion we introduce an equivalent representa-

for all x. Thus, the inequality follows.

tion of Q, called the vector representation (see Fig. 11). In this representation, each
process is represented as a binary vector of length m, where m is the number of time
slots in Q. This means that a parallel program is represented as » binary vectors. In
some situations we treat these vectors as one binary m x n matrix, where each column
corresponds to a vector and each row to a time slot.
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From now on we assume unit time slot length, i.e. T,Q,q) = m. However,

T,(0O, k, t) 2 m, because if the number of active processes exceeds the number of pro-

cessors on some processor during some time slot, the execution of that time slot will
take more than one time unit.

We handle now programs as a binary matrix. Each column in the matrix represents
one process, and the rows are independent of each other.

5.2 Transforming Q into Q’

When transforming Q into a new program Q' , we start by creating n! copies of 0.
The vectors in each copy are permuted in such a way that each copy corresponds to
one of the n! possible permutations of the n vectors. Vector number v (1 <v<n) in

copy number ¢ (1 < ¢ <n!) is concatenated with vector number v in copy ¢ + 1, thus
forming a new program Q' with n vectors of length #! - m . The execution time from

slot 1+(c—1)m to cm (1<c<mn!) cannot be less than T (Q,k, t). That is,
T,(Q', k, t) cannot be less than n! T (O, k, t) . Since, T,(Q', q) = n!m, we know that
T(Q.kD) _T(QkD _nT(Q kD _T(0.kD
T4Q. ) m nm T TAQ'q)

The n vectors in Q' can be considered as columns in a n!m x m matrix. Reordering

the rows in this matrix affects neither 7,(Q’, k, ) nor T/ Q’, g) . The rows in Q' can

n) equally sized groups of consecutive rows, where all rows in the
q
same group are identical. Each group corresponds to one of the possible permutations
T(Q', k1)

of g ones and n — ¢ zeros. Obviously, the ratio —————— 1is not affected by the fact

TAQ', 9)

be reordered into (

ny . .
) times. This means that program Q' can be col-

that each row is duplicated (n!m)/ (
q

lapsed into a program with (g rows, containing the possible permutations of ¢ ones

and n — g zeros.
From now on we will refer to this collapsed program as Q' .
Fig. 12 shows how two complete programs (Q1 and Q2) are transformed into the

program Q'. It is important to note that all complete programs Q result in the same
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TPk 1) _T(Q' k1)

< . We have now found
TAP,q)  T/[Q' q)

program Q. Therefore, we know that

the worst possible program Q' .

5.3 Allocation properties of the thick part

The completion time is not affected by the identity of the processes allocated to dif-
ferent processors, because if vector vy is allocated on processor 4 and vector v, is allo-

cated on processor B, then moving v; to B and v, to 4 is equivalent to reordering the
rows in Q' . Obviously, reordering the rows does not affect the completion time. Con-

sequently, the completion time of Q' is affected only by the number of vectors allo-
cated to the different processors.

Theorem 4: If there are n; vectors allocated on processor 4 and n, vectors on proces-
sor B, and n, <n,, the completion time cannot increase if we move one vector from

processor B to processor A.

Proof: We order the vectors in Q' in such a way that vectors 1 to »; are allocated on

processor 4 and vectors n, + 1 to n, +n, are allocated on processor B. We are now

going to prove that moving vector number 7, + 1 to processor 4 does not increase the
completion time.

n o
D , the contribution to the comple-

q
tion time from row » will not be affected by moving vector n; + 1 from processor B to

If vector n; + 1 has a zero in slot » (1 < rs(

processor A. Consequently, we have only to consider rows for which the corresponding
slot is one in vector n; + 1. Moreover, if the number of ones in positions 1 to n; is
smaller than the number of ones in positions », + 1 to n, + n,, the contribution to the

completion time from row r will not increase.
Q' contains all permutations. Consequently, for each row r such that position

n;+ 1 contains a one, and there are at least as many ones in positions 1 to »; as in
positions n; +1 to n, + n,, there exists an (n,n,)-permutation »’. An (n,n,)-permu-
tation of row is obtained by switching items i and n, +n,+1—i, (1<i<n;) (see
Fig. 13).

If the completion time from row r increases from 4 to 4+ 1 when we move vector
n; + 1 from processor B to processor 4, there must be / ones in position 1 to 7 in row

r. In that case we know that symmetry of the (1n1,1,)-permutation guarantees that there
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Fig. 12. The transformation of vector representation of program Q by permutation of
processes into the same program Q’
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(2,4)-permutation
Lrfoftfofolofiftlofol1]
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(2,3)-permutation
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Fig. 13. One (2,4)-permutation and one (2,3)-permutation of the same row

are at least 2+ 1 ones in positions n, + 1 to n; + n, inrow r’. Positions n; +n, + 1
to n are identical in 7 and »’. Therefore the completion time of 7’ will decrease with
one when moving vector n, + 1 from processor B to processor 4. Consequently, the

completion time of Q' cannot increase if we move one vector from processor B to pro-

cessor A.
]

As a consequence, an allocation of Q' results in shorter completion time the more
evenly the processes are spread out on the processors. Also the identity of the pro-
cesses is of no importance, and we can thus order the » vectors in some arbitrary order.
In fact, the minimal completion time is obtained by allocating vector number ¢ + ik to

processorc (1<c<k,0<i<|n/k]).

5.4 Calculating the thick part

n .
) X n matrix
q
containing all the possible permutations of ¢ ones and n — g zeros, and explicitly cal-
culate the completion time for this matrix using allocation described in the previous
section. This turns out to be extremely laborious and inefficient, thus making it virtu-
ally impossible to calculate the thick part for reasonably large configurations. How-
ever, we can use the information that complete programs are worst case to express this
calculation in a way which is essentially more efficient (see the following equation).

The most obvious way to calculate the thick part is to generate the (
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Equation 1. Consider parallel programs P with »n processes, k computers in the dis-
tributed system, g processors in the SMP, and an allocation 4 where a; processes are

allocated to the j:th computer. Hence, the allocation is given by the allocation sequence

k
(ay, ..., a;), where Z a; = n. Then:
j=1

g(d4,n, k,q) = (1/(:))21:max(il, s ik)(jlj _— .(c.l’j .

1 Uk
Here the sum is taken over all decreasing sequences / = {i, ..., i,} of nonnega-

k
tive integers such that Z i =q.
j=1

6 The thin part

The result of this section is a formula for a function (4, n, k, t) , where 4 is an allo-
cation of processes to processors. This function is one of the two key components we
need in order to obtain our final goal: H(n, k, ¢, t,z) .

From Section 4 we know that the thin part of a program for which the ratio

TS(P’, ka t) . .. . . . .
m‘ i1s maximized consists of a sequence of synchronlzatlons, 1.€. program R.
d >

From Section 5 we know that the identity of the processes allocated to a certain proces-
sor does not affect the execution time of the thick part. For the thick part we have an
optimal allocation if we manage to distribute the processes evenly among the proces-
sors. In the thin part we would like to allocate processes that communicate frequently
to the same processor. These goals are, as we shall see, to a large extent contradictory.

Let (yl, Y /M) be a synchronization sequence of length l%l) for program
2

with k processes. Entry j in this sequence indicates the number of synchronizations
between a pair of processes. The optimal way of binding processes to processors under
these conditions maximizes the number of synchronizations within the same processor.

We next want to find the worst case synchronization. Consider a copy of the thin
part of the program where we have swapped the communication frequency (the num-
ber of synchronizations between processes) such that process j now has the same com-
munication frequency as process i had previously and process i has the same
communication frequency as process j had previously. In Fig. 14 the original commu-

nication vector for P3 is (6, 2), meaning that there are six synchronization between
P3 and P1 and two synchronizations between P3 and P2. In the copy we have
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swapped the communication frequencies of P2 and P3 and we thus have six synchro-

nizations between P2 and P1 and two synchronizations between P2 and P3.

Program P Program Q
Pl P2 P3 Pl P2 P3

o

VY
\/\ /\/\/\

The communication vectors:
Program P: for P3: (6,2) and for P2: (2)
Program Q: for P3: (2,2) and for P2: (6)
Fig. 14. Making a copy where we have swapped the communication
frequencies of P2 and P3

It is clear that the minimum execution time of the copy is the same as the minimum
execution time of the original version. The mapping of processes to processors that
achieves this execution time may, however, not be the same. For instance, if we have

two processors with a synchronization sequence (2, 1) (i.e. two processes are allo-
cated on one processor and one process is allocated on another processor) we obtain
minimum completion time for the original version when P1 and P3 are allocated to
the same processor, whereas the minimum for the copy is obtained when P1 and P2
share the same processor.

If we concatenate the original (which we call P) and the copy (which we call Q)
we get a new program P’ such that T (P', 4, k, t) < T (P, A4, k, t) + T (O, 4, k, t) for
any allocation 4 (all thin programs take zero execution time using a system with one
process per processor and no communication delay). By generalizing this argument we

obtain the kind of permutation as we had for the thick part (see Fig. 12).
These transformations show that the worst case for the thin part occurs when all

synchronization signals are sent from all n processes n — 1 times - each time to a dif-
ferent process. All possible synchronization signals for 7 processes equals n(n—1)
and all possible synchronization signals for the processes allocated to processor i
equals a,(a;—1). Because some processes are executed on the same processor, the

communication cost for them equals zero. That means that the number of synchroniza-
tion signals in a worst-case program (regarding communication cost) is equal to

n(n-1)-3"_ a(a;-1).
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Consequently, the optimal time for the thin part with the communication cost ¢, and
allocation A4 is:

~1H)-Y* afa,—1
r(A,n, k, t) = n(n )n(%:l_ll)al(al )-t

7 Combining the thick and thin parts

Combining the thick part with the thin part is done by adding the function
g(4,n, k, q) and r(4, n, k, t) , weighted by the granularity, z. Thus, we end up with a
function H(4,n, k, q,t,z) = g(A,n, k,q) tzr(4d,n, k, t) .

Hence, in a program with high z (i.e. high synchronization frequency) the thin path
has larger impact than in a program with low z.

From previous results we know that the thick part is optimal when evenly distrib-
uted over the processors, whereas the thin part is optimal when all processes reside on

the same processor. The algorithm for finding the minimum allocation 4 is based on
the knowledge about the optimal allocation for the thick and thin part respectively.

7.1 Finding the optimal allocation using allocation classes

The basic idea is to create allocation classes, and evaluate them. An allocation class
consists of allocations and separated allocations. Separated allocations are defined as
follows:

* A set of processors with a common allocation for both the thick and thin parts. It is
described in decreasing order. This means that the number of assigned processes to
processor i must be greater than or equal to the number of assigned processes to
processor i + 1.

* In the allocation for the remaining processors for the thick part, the processes are
evenly distributed. The highest number of processes assigned to a processor must
be equal to or less than the last number of assigned processes for any processor in
the common assignment.

* In the allocation for the remaining processors for the thin part, the processes make
use of as few of the remaining processors as possible. The highest number of pro-
cesses assigned to a processor must be equal or less than the least number of
assigned processes for any processor in the common assignment.

Thus a separated allocation is not an allocation, i.e. it does not appear in the minimi-
zation of H(A4, n, k, q, t,z). It is divided in two parts: one which is common for the
thick and thin part, and one where we use optimal allocations for the thick and the thin
part separately. If follows that a separated allocation gives better performance than any
allocation which has no part identical to the common part of the separated allocation.
This observation is fundamental for the branch-and-bound algorithm.
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Fig. 15. Allocation classes

An allocation class consists of all allocations which are related to a separated alloca-
tion by containing its common part. Thus any separated allocation defines a specific
class of allocations.

An example of a separated allocation is shown in Fig. 15. Here the common part
consists of one processor, we have n = 9 processes and in total k£ = 4 processors.
Consider for example Fig 15(a). Here the first part is the common allocation, the upper
part is the thick allocation for remaining 3 processors and the lower part is the thin
allocation for the remaining 3 processors. In Fig. 15(b) we have the totally separated
allocation, with no common allocation at all. Fig. 15(c) shows all possible allocation
classes where the size of the common part is one. The result with separated allocations
is better than (or equal to) any allocation within that class. We take the minimum value
of all the separated allocations in Fig. 15(c) for the over-optimal allocation, and
expand the tree from this point. This procedure is described in the next section.

7.2 The branch-and-bound algorithm

The algorithm for finding an optimal allocation is a classical branch-and-bound
algorithm [1]. We start by the totally separated allocation (Fig. 15(b)). We move one
processor into the common part, and thus create a new subclass of separated alloca-
tions (Fig. 15(c)). We next minimize over these separated allocations. Assume that in
the example of Fig. 15c the class with 5 processors in the common allocation is the
minimum. The new subclass is shown in Fig. 15(d). All separated allocations give a
higher (or equal) value than the separated allocation which is parent to the new class.
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The classes are organized in a tree structure. The minimum is now calculated over all
leaves in the tree, including leaves on branches which previously have been expanded.
By repeatedly selecting the leaf with minimum value and creating its subclass, we will
finally reach a situation where the minimum leaf no longer has any subclass. We have
then found an optimal allocation. If we assume that the classes in Fig. 15(e) and (f)
gives the minimum values we have reached an optimal allocation.

When calculating a class we use the common allocation concatenated with the thick

allocation as input for the function g(4,,,.,) and »(4,,,, t) , where 4,,,;.; is the com-

mon allocation concatenated with the thick allocation and A4,,;, is the common alloca-

tion concatenated with the thin allocation. By adding the results (weighted by z) from
the two functions, we get the value of that leaf (g(4,),;.,) 27 (A1 1)) -

Practical testing has shown that many different types of allocations may be optimal,
depending on the values of n, &, ¢, ¢ and z. This is in contrast with previous applications
presented in [9,10,11], see Section 9.

8 Validation

The results in this paper are based on a theoretical proof leading to a program for
which the ratio T S(P, k,t)/T d(P’ q) is maximal. This part of the result can not be val-

idated since it is impossible to generate all programs and then measure their comple-
tion times and take the maximum ratio for all of them. The correctness of this part of
the result is thus based on the proofs.

It is, however, possible to see if the program that we have proved to be extremal
(worst-case) for the parameters », ¢, and z really results in a value close to H(n,k,q,t,z)
when executed in a real multiprocessor environment. We have done a number of such
tests on multiprocessor and distributed Sun/Solaris environments. We first considered
fat programs defined by three parameters: the number of threads (), the number of
active threads in each time slot (¢) and the amount of work performed in each time slot
(w); w denotes the number of iterations over a vector of length 1024 (each such itera-
tion took approximately 0.1 ms). Using a Sun Enterprise 4000, with 8 processors, these
programs are executed using two scheduling algorithms. First we use standard Solaris
scheduling, where no threads are bound to processors, and then thread number i is
bound to processor (i mod k). This means that if the number of processors (k) is eight
and the number of threads (n) is 20, then threads 0, 8 and 16 are bound to processor
zero. As discussed in Section 5, we know that this is the optimal way to bind the
threads.

The completion time ratio using bound scheduling on k& processors compared to
unbound scheduling on g processors is denoted h(n,kq,w), for a program with »
threads, ¢ active threads in each slot, and slot length w.

We consider the cases when ¢ =k, 1 < k<8, k< n <20 and w = 100, 1000 and
10000 (see Fig. 16). These values of A(n,q,k,w) are compared with the theoretical
bound g(n,k,q,t=0,z) in Fig. 16. The tables show that when w = 1000, » = 18 and k = ¢
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= 8, the completion time using bound scheduling is 1.93 times the completion time
using standard unbound Solaris scheduling. The tables also show that /(#,k k,w) never
exceeds H(n,k k,t=0,z). That is, the measurements indicate that H(n,k,k,t=0,z) is indeed
a valid upper bound. When w increases, 4(n,k,k,w) comes closer to H(n,k,k,t=0,z), and
by selecting a large enough w we can get arbitrarily close to H(n,k k,t=0,z). Conse-
quently, H(n,k,k,1=0,z) is an optimal upper bound when w is large, i.e. H(n,k,k t=0,z) is
an optimal upper bound when z is small (thus reducing the impact of the thin part).

We also did measurements for thin programs. That is, programs consisting of a
chain of threads that synchronize. The test considered a case where » = 8 and the
length of the synchronization chain is 100000. The chain was executed on two differ-
ent environments: a Sun Enterprise 4000, with eight processors (approximated with a
synchronization delay of zero in our model) and a case when eight programs are exe-
cuted on eight identical computers connected with an ethernet. On the SMP we imple-
mented the synchronizations with semaphores and in the distributed systems we sent
one byte UDP messages between the computers.

These measurements shown that the ratio between the execution time in a distrib-
uted environment and the SMP execution time is 1/200, i.e. 0.5%. In our model we
assume that this ratio is zero (since we assume that the SMP execution time of this part
is zero). This means that our model has an error of 0.5% for the thin part of the pro-
gram when comparing these two environments. Since the thin part does not take zero
time to execute on an SMP, the bound is still valid but not quite optimal, i.e. there is a
difference of 0.5% in this case. If the synchronization time in the distributed system
increases (i.e. if # grows), the difference becomes smaller.

We can draw two conclusions from the validations:

 First, the bound seems to be valid for all programs. This means that there are no

programs P for which the ratio 7 < (P, k, t)/T d(P’ q) exceeds the bound.

» Second, the bound is optimal for coarse grained programs. Consequently, there
are coarse grained programs P (i.e. programs with small z) for which the ration

T S(P, k,t)/T d(P’ q) is equal to the bound. The bound is also optimal for sys-

tems with very long synchronization latency (i.e. for large 7).
Consequently, the model is correct for the fat part (since we can make this part arbi-
trarily fat), and the difference for the thin part is small for realistic settings.
Our validations are limited to the Sun/Solaris environment, but we believe that these
two conclusions will hold for other environments as well.

9 Discussion

Fig. 17 shows three graphs corresponding to H(n,k,k,0,10), H(n,k,k,0.0025,10), and
H(n,k,k,0.005,10) for the range 1 < n, k < 50, i.e. ¢ = k in the graphs. We know that
only the product of ¢ and z affects g, i.e. H(n,k,q,t/2,z) = H(n,k,q,t,z/2). The program
related parameters (i.e. #» and z) can easily be obtained from simple profiling tools. If
we have a program with 50 processes and, on average, one synchronization every 400
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time units (z = 1/400 = 0.0025) and want to compare the optimal performance gain of
using a multiprocessor with 10 processors, run-time reallocation of processes and vir-
tually no communication overhead with a system with 10 processors, no reallocation
and a communication delay of 10 time units, we can look at the middle graph in Fig. 17
(z =0.025). The value corresponding to #n = 50 and k = ¢ = 10 is 2.7. This means that
the gain of using the system with reallocation can be at most a factor of 2.7. It is trivial
to see that the maximum gain of using the system with no reallocation is zero, i.e. the
minimum ratio is one.

It is possible to compare systems with different numbers of processes, e.g. a multi-
processor with 10 processors, run-time reallocation of processes and virtually no com-
munication overhead with a system with 20 processors, no reallocation and a
communication delay of 5 time units. The maximum gain of using the smaller system
with reallocation for a program with 50 processes and one synchronization every 400
time units is defined by the value g(50,20,10,5,0.0025) = 2.03. The maximum gain of
using the system with 20 processors compared to the system with 10 processors is triv-
ially a factor of 2. Experiments using real programs, or suites of real programs [20]
cannot capture the extreme cases. Consequently, such techniques cannot answer the
kind of performance comparisons discussed above.

The parameter 7, makes it possible to consider the performance implications of
inter-process synchronization. However, we do not consider the implications of inter-
process communication. This could lead to an underestimation of the execution time
for the distributed system, i.e. the system with no run-time reallocation of processes. In
many applications, communication occurs primarily at the synchronization points, and
in those cases one can increase the value of 7 to include also the (average) extra cost for
inter process communication. Consequently, # would then include the synchronization
overhead and the (average) communication overhead.

We have assumed the reallocation is free on SMPs, i.e. the system with realloca-
tions. This is not completely true since reallocation will increase the number of cache
misses. This effect may cause us to underestimate the execution time on the SMP, thus
making the bound less tight. The evaluations the previous section support this and
show that our bound is not optimally tight (but still valid) for programs with a high
synchronization frequency, and thus also a high reallocation frequency.

10 Conclusions

We have presented a bound on the gain of using a system with g processors and run-
time process reallocation compared to using a system with k£ processors, no realloca-
tion and a communication delay 7, for a program with » processes and a synchroniza-
tion granularity z. This bound is denoted H(n,k q,%z). Based on our multiprocessor
model (defined by £, ¢ and ¢), the bound is optimal in the sense that there is at least one
program with » processes and a granularity z for which the gain is exactly H(n,k,q,t,z).
We have also validated our results using multiprocessor and distributed Sun/Solaris
systems. The conclusions from the validations are that the bound is valid for all pro-
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grams and architectures, and that the bound is indeed optimal when ¢ is large or z is
small.

The function H(n,k,q,t,z) is not trivial, whereas the maximum gain of using k pro-
cessors, no reallocation and a communication delay # compared to a system with ¢ pro-
cessors and run-time reallocation is trivial (k/g). By looking at plots of H(nk,q,t,z)
(e.g. plots like the ones in Fig. 17), computer system architects can obtain important
insights regarding the consequences of some of their fundamental design decisions.
There is a lack of techniques that provide this kind of fundamental insights in the
empirical field of computer architecture. The main contribution in this paper compared
to previous results is that we have been able to handle and validate a more realistic
computer model, where the communication delay # and the granularity z are taken into
consideration.

We have presented transformations which enable us to separate execution and syn-
chronization. Analyzing the parts separately and comparing them, we found a formula
that produces the minimal completion time. A branch-and-bound algorithm was used
to find the optimal result.

The argument leads to the sum H(4,n,k,q,t,z) = g(4,n, k,q) +zr(4d,n,k, t) .
Here the thick part, represented by g(4, n, k, ¢) , corresponds to previous results. The
function g(4, n, k, q) is convex in the sense that the value decreases if the load of a
worst case program is distributed more evenly among the computers. However, the
thin part, represented by (4, n, k, t), is concave. This quantity increases if the load of
a worst case program is distributed more evenly. This makes the minimization of the
sum H a delicate matter. The type of allocation which is optimal depends strongly on
the value of #z. If ¢z is small execution dominates, and partitions representing even
distributions, uniform partitions, are optimal. If 7z is large synchronization dominates,
and partitions where all processes are allocated to the same computer are optimal.
There is an intermediate domain of values of 7z where there are different types of par-

titions which are optimal.

The worst case programs are the same in all scenarios presented in 9. to 11. includ-
ing the present one: complete programs. Optimal allocations, however, differ among
the applications. In the parallel processing applications, uniform allocations are opti-
mal. In the cache memory application, the optimal allocations contains one set arbi-

trary size, and the other k—1 sets are distributed as evenly as possible. These

properties depend on convexity of the load function. In the cache memory application,
the load function is not convex.

References

1. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam, V.,
PVM: Parallel Virtual Machine, MIT press, Boston, 1994

2. MPI Forum, MPI: A message-passing interface standards, International Journal of
Supercomputer Application, 8 (3/4), 1994, pp. 164-416

61



3. Hagersten, E. and Koster, M., WildFire: A Scalable Path for SMPs, in Proceedings
of 5th International Symposium on High Performance Computer Architecture,
IEEE Computer Society, Los Alamitos, Orlando, FL, USA, 9-13 January, 1999, pp.
172-181

4. Laudon, J. and Lenoski, D., The SGI Origin: A ccNUMA Highly Scalable Server, in
Proceedings of 24th Annual International Symposium on Computer Architecture,
ACM, Denver, CO, USA, 2-4 June, 1997, pp. 241-251

5. Lovett, T. and Clapp, R., STING: A cc-NUMA Computer System for the Commercial
Marketplace, in Proceedings of 24th Annual International Symposium on Com-
puter Architecture, ACM, Philadelphia, PA, USA, 22-24 May, 1996, pp. 308-317

6. Garey, M.R. and Johnson, D.S., Computers and Intractability - A Guide to the The-
ory of NP-Completeness, W. H. Freeman and Company, New York, 1979

7. Hou, E.S.H., Hong, R., and Ansari, N., Efficient multiprocessor scheduling based
on genetic algorithms, in Proceedings of 16th Annual Conference of the IEEE
Industrial Electronics Society - IECON'90, IEEE, Vol 11, Pacific Grove, CA, USA,
27-30 November, 1990, pp. 1239-1243

8. Nanda, A.K., DeGroot, D. and Stenger, D.L., Scheduling directed task graphs on
multiprocessors using simulated annealing, in Proceedings of IEEE 12th Interna-
tional Conference on Distributed Computing Systems, IEEE Computer Society,
Yokohama, Japan, 9-12 June, 1992, pp. 20-27

9. Lennerstad, H. and Lundberg, L., An Optimal Execution Time Estimate of Static ver-
sus Dynamic Allocation in Multiprocessor Systems, STAM Journal of Computing,
24 (4), 1995, pp. 751-764

10. Lennerstad, H. and Lundberg, L., Optimal Combinatorial Functions Comparing
Multiprocess Allocation Performance in Multiprocessor Systems, SIAM Journal of
Computing, 29 (6), 2000, pp. 1816-1838

11. Lundberg, L. and Lennerstad, H., Using Recorded Values for Bounding the Mini-
mum Completion Time in Multiprocessors, IEEE Transactions on Parallel and Dis-
tributed Systems, 9 (4), 1998, pp. 346-358

12. Lennerstad, H. and Lundberg, L., Optimal worst case formulas comparing cache
memory associativity, SIAM Journal of Computing, 30 (3), 2000, pp. 872-905

13. Lundberg, L. and Lennerstad, H., Bounding the maximum gain of changing the
number of memory modules in multiprocessor computers, Nordic Journal on Com-
puting, 4, 1997, pp. 233-258

14. Lundberg, L. and Lennerstad, H., Optimal Bound on the Gain of Permitting
Dynamical Allocation of Communication Channels in Distributed Processing,
Acta Informatica, 36 (6), 1999, pp. 425-446

15. Lennerstad, H. and Lundberg, L., Optimal Scheduling Results for Parallel Com-
puting, SIAM News, 27 (7), 1994

16. Lennerstad, H. and Lundberg, L., Combinatorics for Multiprocessor Scheduling
Optimization and Other Contexts in Computer Architecture, Proceedings of the
Conference of Combinatorics and Computer Science (LNCS 1120), Springer Ver-
lag, Brest, France, 15-18 July, 1995, pp. 341-347

62



Paper I: Comparing the Optimal Performance of Parallel Architectures

17. Lennerstad, H. and Lundberg, L., Combinatorial Formulas for Optimal Cache
Memory Efficiency, SIAM News, 29 (6), 1996

18. Lundberg, L., Broberg, M. and Klonowska. K., Evaluating Heuristic Scheduling
Algorithms for High Performance Parallel Processing, in Proceedings of 5th Inter-
national Symposium on High Performance Computing (LNCS 2858), Springer-
Verlag, Tokyo-Odaiba, Japan, 20-22 October, 2003, pp. 160-173

19. Graham, R.L., Bounds on Multiprocessing Anomalies, SIAM Journal of Applied
Mathematics, 17 (2), 1969, pp. 416-429

20. Woo, S., Ohara, M., Torrie, E., Singh, J. and Gupta, A., The SPLASH-2 Programs:
Characterization and Methodological Considerations, in Proceedings of 22nd
International Symposium on Computer Architecture, ACM, Santa Margherita Lig-
ure, Italy, 22-24 June, 1995, pp. 24-36

63






Paper 11







Paper 11

The Maximum Gain of Increasing the Number
of Preemptions in Multiprocessor Scheduling
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Abstract

This paper generalizes the 4/3-conjecture. We consider the optimal makespan
C(P, m, i) of an arbitrary set P of independent jobs scheduled with i preemptions on a
multiprocessor with m processors. We optimally compare the makespan for i and j pre-
emptions, where i <j, in the worst case, i.e. we calculate a formula for the worst case
C(P,m, i)

ratio G(m, i, ) defined as G(m, i,j) = maxC(P, m,j)’

where the maximum is taken

over all sets P of independent jobs.

Keywords: parallel processor scheduling, preemptive scheduling, i-preemptive
scheduling, worst-case analysis, optimization, Stern-Brocot tree
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1. Introduction and related work

In order to take full advantage of the processing capacity of a multiprocessor it is
important to balance the load so that it is evenly spread between the processors. In
order to obtain balance load, a job on one processor may have to be preempted and
then later restarted on another processor. Each preemption allows the schedule to split
a job in two parts which may not run in parallel but on two different processors, this
may allow the makespan to decrease. There are no restrictions on the sizes of the two
parts - a preemption can be made at any point in time.

Due to cache effects and other forms of overhead, there is a cost for preemptions
and then later restarting a job. Consequently, we would like to limit the number of pre-
emptions in order not to suffer too much from such overhead costs. This means that
there is a trade-off; on the one hand we need preemptions in order to obtain a balanced
load, but on the other hand we would like to limit the number of preemptions in order
to minimize the overhead costs. The optimal solution to this trade-off problem depends
on a number of parameters, such as the cost for preempting and then later restarting a
job. One crucial piece of information for making a well informed trade-off decision is
how much we will gain by increasing the number of preemptions, assuming that there
are no overhead costs. This will tell us how much we can gain by introducing more
preemptions. The system designer can then compare that gain to the increased over-
head costs.

Here we are interested in parallel programs consisting of a number of independent
jobs. The program has completed its task when all jobs have terminated, and we are
thus interested in minimizing the makespan of the parallel program.

It is clear that the performance gain, i.e. the reduction in makespan, of increasing
the number of preemptions depends on a number of parameters (even when ignoring
the overhead costs). Three obvious parameters are: the number of processors in the
multiprocessor, the number of preemptions before the increase and the number of pre-
emptions after the increase. It is also clear that the gain will depend on the parallel pro-
gram, e.g. there is obviously no gain in increasing the number of preemptions for a
program consisting of 5 independent jobs when using a multiprocessor with 5 or more
processors.

In this paper we are interested in putting a tight upper bound on the maximal gain of
increasing the number of preemptions for any parallel program. This means that we
compare the makespan for parallel programs consisting of a set of independent jobs on
a multiprocessor when allowing different number of preemptions. We calculate how
large the ratio of minimal makespan using i and j preemptions, i <j, can be, when
using m identical processors. A preemption is at hand if the processing of a job is inter-
rupted and later resumed, possibly on another processor. This ratio has a trivial lower
bound that is 1.

This problem and its predecessors has a long story. In 1972, Liu [13] conjectured
that for any set of tasks and precedence constraints among them, running on two pro-
cessors, the least makespan achievable by a nonpreemptive schedule is no more than

69



4/3 the least makespan achievable by a preemptive schedule. The conjecture was
proved in 1993 by Coffman and Garey [3]. Here the authors generalize the results to
the numbers 4/3, 3/2, 8/5,... i.e. to the numbers 2k/(k+ 1) for some k> 2. The num-
ber k depends on the relative number of preemptions available.

There is also a fundamental bound by Graham from 1969 [7], which is applicable to
an arbitrary set of independent jobs. It states that an optimal schedule with no preemp-
tions has at most the double makespan compared to the makespan with an unlimited
number of preemptions, when using optimal schedules. This is in accordance with the
fact that 2k/(k+ 1) > 2 from below as k — .

Braun and Schmidt proved 2003 a formula that compares a preemptive schedule
with i preemptions to a schedule with unlimited number of preemptions in the worst
case, using a multiprocessor with m processors [2]. By the McNaughton rule, no more
than m — 1 preemptions are needed in the unlimited case. They generalized the bound
4/3 to the formula 2-2/(m/(i+1)+1), which also may be written as
2m/(m+i+1).

In the present paper we generalize the results by Braun and Schmidt. We compare i
preemptions with j preemptions in the worst case, assuming i <j. We thus allow j
from i + 1 to m — 1, while the problem solved in [2] corresponds to j = m — 1. In the
case m>i+j+ 1, which does not coincide with j = m— 1 unless i = 0, we obtain
the optimal bound 2(|j/(i+1)]+1)/(j/(i+1)]+2). For example, excluding
one preemption (i = j— 1) can never deteriorate the makespan more than a factor 4/3,
but may do so. This argument cannot be iterated, since different sets of jobs are worst
case, depending on the parameters i and ;. In the case m <i+j+ 1 we present a for-
mula and an algorithm based on the Stern-Brocot tree.

This paper is organized as follows. In Section 2 we present the problem definition,

notation, and the main results. The results are proven in Section 3. Conclusions are
given in Section 4.

2. Problem definition, notation and main results

2.1. Problem definition

We consider a multiprocessor with m identical processors and a parallel program P
consisting of » independent processes. Of course, P may also be called a set of jobs.
The only valid variable of a job is its execution time (also called length). The goal is to
minimize the makespan of P, i.e. the makespan with an optimal schedule. The minimal
makespan of P on m processors when using i preemptions is denoted C(P, m, i). We
consider two scheduling cases: when the program is optimally scheduled on the multi-
processor using at most i preemptions, and similarly with j preemptions, where we
assume i <j. There is no overhead for process scheduling, context switching or reallo-
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cation. Since we consider scheduling with 7 and j preemptions, we will use notation as
i-scheduling and j-scheduling, i-makespan and j-makespan, and so forth.

For a program P we are interested in how large the ratio C(P, m, i)/ C(P, m,j) can
be. Denote G(m,i,j) = max,C(P, m,i)/C(P, m,j), where the maximum is taken
over all programs P.

Obviously, the ratio C(P, m, i)/ C(P, m,j) is decreasing as a function of i and
increasing as a function of j, if the other variables are constant. These properties hold
also for G(m, i,j).

2.2. Notation and terminology

A program P’ for which C(P',m,i)/C(P',m,j) = max,C(P, m,i)/C(P,m,j),
where the maximum is taken over all programs P, is called an extremal program (or
worst case program). A box schedule is a schedule where all processors start and stop
simultaneously (Fig. la). Furthermore, we say that processors that share a job, before
and after preemption, are related. This gives a partition of the processors in sets, where
a pair of processors are in the same set if they are related, directly or indirectly via
other processors that may form chains of related processors. A set of processors where
all processors are related with each other in this way is called a preemption cluster
(Fig. 1b). If it can be scheduled as a box schedule, it has completion time kx/c, where x
is the mean value of the completion times for the jobs, & is the number of jobs, and ¢ is
the number of processors. A box schedule is possible unless the completion time of
one single process is larger than kx/c [14]. Preemption clusters are always considered
to be scheduled with a box schedule if possible, since this obviously gives minimal
completion time for the cluster. A critical processor is the latest processor to complete
- it completes at the makespan of the program. A set of jobs on a critical processor may
also called critical, as well as a cluster finishing at the global makespan.

a) box schedule b)  cluster  cluster

~— ~=

m m
Fig. 1. An example of a box schedule (a) and a box schedule with preemption clusters

(b). The white rectangles represent unpreempted jobs

We denote the number of jobs of a program by n. The McNaughton wrap-around
rule [14] provides an optimal schedule for m parallel machines using at most m-1 pre-

emptions. This rule simply specifies that the k:th preempted job, 1 <k <m — 1, starts

at the k:th processor and finishes at the (k + 1) :st processor. Such a cluster is called a
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McNaughton cluster. It follows that for a McNaughton cluster with i > 1 preemptions,
i+ 1 processors are involved, and at least i + 2 jobs. A pure McNaughton cluster has

exactly i+ 2 jobs.

An unpreempted job that is scheduled on a processor which has no other jobs will
be called a single job. A tower refers to the jobs scheduled on a processor where all
jobs are unpreempted. A tower consisting of k jobs is denoted by k-tower.

2.3. Main result

The main results are the following:

Theorem 1: For all integers m > 0 and 0 <i <, we have

G(m, i, j) = 2{ min(m, i +j+1) J '
min(m+i+1,2i+j+2) |min(m—j,i+1)

L . . i/(i+1)]+1
If m>i+j+1,the f 1 1 =2L———.
m2i+j , the formula can also be written as G(m, i, j) /T2

m

The quantity L J can be defined combinatorially or by the Stern-Brocot tree (see

n
Section 3). It can also be computed by an algorithm that has linear complexity (see
Theorem 3), which thus also belongs to the main results. It is a specific rational esti-

mate from below of the ratio m/n, which is in the closed interval Q%J, %) .

3. Proofs
3.1. Proof method

We calculate a formula for G(m, i,j) = max,C(P, m, i)/ C(P, m,j) by character-
izing a subset of extremal programs with structure enough to be able to formulate a
formula. This leads to a purely mathematical formulation, which is investigated and

solved in [12].
We start by showing that there are extremal programs that have a box j-schedule.

Lemma 1: (Prolongation) Consider a program P with an optimal j-schedule. We
transform P into a program P’ by prolonging some of the jobs so that all processors are

constantly busy until C(P, m,j) and so that C(P, m,j) = C(P', m,j).

Proof: This change cannot decrease the i-makespan, but may increase it, while the j-

makespan is unchanged.
|
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By this lemma we only need to consider programs which have an optimal i-schedule
which is a box schedule. Unless explicitly stated otherwise, we will normalize the j-
makespan to 1. From this normalization it certainly follows that the sum of all execu-
tion time of the program on the m processors is m. We henceforth consider only such
programs.

3.2. An extremal program P’

Lemma 2: There is a worst case program P’ which has m + i+ 1 jobs, where all jobs
in the same j-cluster have the same size, and where the two smallest jobs are unpre-
empted and scheduled to the critical processor. Thus, the critical processor processes a
2-tower.

Proof: As a part of our proof we temporarily introduce a restriction on the way jobs
are scheduled to processors when using i preemptions. This restriction is defined by an
optimal schedule of the same program using j preemptions. Without loss of generality
we may assume that an optimal schedule using j preemptions consists of ¢ preemption
clusters. Each such cluster consists of one or more processors - the clusters define spe-
cific groups of processors that are relevant also for an i-schedule. This means that there
is a group of processors associated with each preemption cluster. The temporary
restriction on the i-schedule that we introduce is that all jobs that are scheduled on a
processor in group k& (1 <k < ¢) in this optimal j-schedule belong to the same group of
processors in an i-schedule. Through the coming line of discussion and based on previ-
ous results [2] we will obtain the extremal program and an extremal ratio under this
restriction. We will then show that the completion time for this program using i
preemptions is in fact the same whether we apply the restriction or not (by construction
we know that the completion time using j preemptions is always 1), i.e. the ratio for the
extremal program obtained in this way is in fact the same whether we apply the restric-
tion or not. Since a restriction may increase the completion time, but never decrease it,
if follows that the extremal program and ratio that we arrive at using the restriction is
in fact valid also for the general case without any restriction.

We now start the discussion that will lead us to the extremal program using the
restriction. We start by considering an extremal program P with the restriction. Due to
the restriction, the only level of freedom we have when we decide how to schedule the
program is how many of the i preemptions that we will assign to each processor group
(we assume optimal use of the preemptions in each processor group). Since we are
interested in comparing optimal schedules we will of course assign the i preemptions
to the ¢ processor groups in an optimal way. Using this optimal assignment we con-
sider the processor group which contains the processor with the longest completion
time, i.e. the group that limits the completion time of the entire program. Without loss
of generality we assume that this is group 1, that group 1 contains m; processors, and

ji = m;—1 preemptions when using j preemptions. In an i-schedule we denote the

number of preemptions in group 1 by i;. Due to the temporary scheduling restrictions
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we can consider group 1 in isolation from the other groups. From previous results [2]
we know that the extremal (part of) program P that executes on group 1 consists of

n; = m;+i,+1 jobs of equal length of m/n;.

We next remark that if we had moved one of the i}, preemptions from any other pro-
cessor group, group k, say, to processor group 1 (thus obtaining i; + 1 preemption in
group 1), then the completion time of group 1 would decrease (or at least not increase).
However, since we are considering an optimal assignment of preemptions to processor

groups we know that the completion time of group k£ will increase so that it becomes
longer (or at least as long as) the completion time of group 1 using i; preemptions, i.c.

group k will then become the critical part of the program. This means that when i;, > 0,
then the part of program P that runs on group k should be extremal for i, — 1 preemp-
tions. We use this observation below.

We next produce a program P’ which is identical to program P in group 1. We fur-
thermore consider exactly the same preemption distribution among the groups in P’ as
in P. In P’ we know more about the processes in the other groups than in P because we
also assume that group k has n, = m, +i, processes, which all have identical size
within each cluster. I.e., we assume that P’ has the same structure in all groups as in
group 1. We next show that from P being extremal it follows that also P’ is extremal.
For this we need to show that the preemption distribution i, ..., i, which is optimal
for P is optimal also for P’. L.e., if the preemptions are distributed differently for P’,
the completion time cannot be lower.

Consider now that we in P’ move one of the i;, preemptions from processor group k
to processor group 1. Denote the completion time for program P in group & by c¢(P, k),
and the same quantity after a preemption has been moved by ¢’(P, k). Then we know
that ¢(P, 1) = ¢(P',1) (P’ and P are identical in group 1), ¢'(P, k) <c'(P', k) (by
[2]), and ¢(P, 1) <c'(P, k) (the preemption distribution is optimal for P). Hence,
c(P', 1)< c'(P', k), so the preemption distribution is optimal also for P’.

Hence, n, = m; + i, is valid for all processor groups in the extremal program P,
except for group 1, where we have n;, = m,+i; + 1. This means that there are

n = ka-i- Zik-l- 1 = m+i+1 jobs in the extremal program. It also means that

the completion time of this program using the scheduling restriction is simply the sum
of the execution times of the two smallest jobs. If we remove the restriction, we see
that we have a program where there must be at least m + 1 unpreempted jobs, since we
have only i preemptions. Hence, there must be at least one tower with two jobs also
without the temporary scheduling restriction (because we only have m processors). It
is clear that the smallest such tower consists of the two smallest jobs. This means that
the completion time of program P’ cannot be less than that. As a consequence, we can-
not get a smaller completion time for P’ also when we remove the restriction. Since
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removing the restriction may cause the completion time to be lower, it follows that the
program P’ is extremal also without the restriction.

From the way the program is constructed, we then know that we get a completion
time of 2(m/n;) using the optimal schedule for i preemptions, and that the length of

the jobs in group 1 (m;/n) is smaller than or equal to the length of the jobs in any other

group. The two smallest jobs form a critical tower, which is a processor containing
only two jobs, both unpreempted.
The problem of finding an extremal program is thus the problem of finding the pro-

gram with m +i+ 1 jobs, where the two smallest jobs are as large as possible, for

given values on m, j and i.
|

3.3. The formula for G(m, i, j)

We here work with a program P’ as defined above, in order to calculate a formula.
Having m processors and m+i+1 jobs, we can immediately say that
G(m,i,j)<2m/(m+i+1),since m/(m+i+1) is the mean value of the job sizes
(we assume that the j-completion time of P’ is 1), and the two smallest jobs form a crit-
ical tower. We also know that all jobs in the same i-cluster have the same size. The

optimal value of G(m, i,j) is most cases lower than this.
Suppose that an optimal i-schedule of P’ has ¢ clusters. In order to find the worst
case program, we need to distribute the m +i+ 1 jobs and the m processors on the ¢

clusters. This gives ¢ ratios m,/n,,...,m,/n,, where m;+...+m, = m and
n+..+n,=n. We are interested in the smallest of these ratios:
min(my/ny, ...,m./n,), which form the critical tower in the j-schedule. If we choose

a distribution m, ..., m, and n,, ..., n, so that this minimum is maximal, we have a
worst case program. Hence,
P . (M me,
G(m,i,j) = 2max|\ min| —, ..., — ||,
n n,
where the maximum is taken over all sets of integers m, ..., m, and n,, ..., n,,

where all m; >0 and all n, >0, and the number of clusters ¢ remain to be specified.

Also, it is essential to find an efficient algorithm to compute this quantity. This was the
focus of [12]. The paper describes an algorithm that is O(max(n,m)), i.e. it has at most
linear complexity in » and m. Here the following notation is introduced:
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. m . (1 m,. . .
Definition 1. = max|\min| —, ..., — | | ,where the maximum is taken over all
n
[

n 1 c

sets of integers my,...,m, and n,,..,n, So that m;+..+m,6 = m,

n+..+n,=n,allm,>0 andn, z0.

One motivation for this notation is that it is practical. In the minimum
min(m,/n,, ...,m./n,), where m;+...+m, = m and n +...+n, = n, we are

searching for a rational estimate of the ratio m/n from below. The ratio m/n is split in ¢
ratios, and the larger ¢, the cruder estimate we obtain. The starting value is ¢ = 1, where

{mJ =z , and then {mJ is non-decreasing up to the end value ¢ = n, where the
1 h n {c
m

estimate is an integer, the floor function: {mJ = {
n _|n n

J . We do not write the quantity

{mJ with a fraction bar, as {@J since {mJ #* {amJ in general. For example,
n |c n e n ¢ an |c

2| - mm(l %) _1 while 4 = mzn(z 2) -2
5, Yy ¥ 10 > R

Returning to the multiprocessor context, we next try to find the value of ¢ in {mJ
n |c

in terms of m, n, i and j. How many clusters c are worst case? Assume that we have a
large number of processors, so that this number poses no restriction. Then the jobs in a
certain cluster (remember that all jobs in the same cluster have the same size) are as
large as possible if they are as few as possible, i.e. if we in the j-schedule have ¢ =i +
1 pure McNaughton clusters. This means that each cluster has one more job than pro-
cessors. These clusters have the j preemptions distributed among the i + 1 clusters.
Then the smallest jobs are as large as possible if the clusters are as evenly sized as pos-

sible. Hence, some clusters have |j/(i+1)] preemptions, and others have
[j/(i+1)] preemptions. These i + 1 clusters contain |j/(i+1)]+1 or
[j/(i+1)]+1 processors, respectively. Summing the number of processors in the
clusters give in total j + i + 1 processors, so we are presently considering the case
m>i+j+1. Clusters with |j/(i+1)| preemptions have the smallest jobs, from
which the critical tower in the i-schedule is formed. Such a cluster contains
lj/(i+1)|+2 jobson |j/(i+1)]+1 processors.

Furthermore, the i + 1 clusters contain | j/(i+1)]+2 or [j/(i+1)]+2 jobs
respectively, which give in total 2i + j + 2 jobs. We have proved a simpler formula in
thecase m>i+j+1:

Lemma3:If m>i+;+1 we have
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G(m, i,j) = 2{ i+j+1 J _ Lz ]+t
i+1

2i+j+2 Li/7G+1+2°

If m>i+j+1, some processors contain unpreempted jobs in both the i- and j-
scheduling.

If m is smaller than i +; + 1, if m—j <i+ 1, we in the j-schedule reduce the num-
ber of clusters from i + 1 to m - j clusters. This allows all preemptions to be used,
which is required by an optimal schedule. Since » = m + i + 1, the equality

G(m,nj)—-LmJ thalgWescanLj)—-2L n
n c

. We can now summa-
m+i+ 1 |m-;

rize the main result in the following theorem by restating Theorem 1 from Section 2.

Theorem 2: For all integers m > 0 and O0<i<j, we have
G(m,i,j) = 2 min(m,i+j+1)
min(m+i+1,2i+j+2) |min(m—j,i+1)

Lji/Gi+1)]+1
Li/(i+1)]+2°

M m>i+j+1, the formula

can also be written as G(m, i,j) = 2

The value of {mJ can be calculated by the following algorithm. Here x <y sig-
n |c

nifies assignment of the value of y to the variable x.

Algorithm 1 - calculating the value of {mJ .
n

c
1. a<mmodn and b« n.
2. Initialize: | <~ 0, L« 1, r< 1, R« 1, x<b—-a,y<«a.

3. If c>max(x,y) then C = % and go to 7.

[+r
fx = = 7.
4. If x = y then C TR and go to

SIfx<ydol«Il+r, L&« L+R,y<y—x,andgo to3.

6.If x>y dor<I1+r, RL+R,x<x—y,andgo to 3.
7.|™ :{@J+C.
n e n
In the Theorem 3, we import from [12] an algorithm which generates all quantities

LmJ for ¢ = 1,..., n, as the vector F. Suppose that m and » has no common multiple.
n |c
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In [12] it is proved that {mJ always is an ancestor of m/n . Furthermore, the best
n {c

decomposition of m/n in two ratios, where the smallest gives {mJ , consists of the
n

2

two ratios that are parents to m/m in the Stern-Brocot tree (see Fig. 2, e.g.

fJ = min(%,l ). A triple, where the smallest ratio is {mJ , s given from the pair
51 n 3

by decomposing the ratio of the two that belongs to the latest generation, e.g.

15

c

4

VJ = min (2 2 5) This can be iterated further ¢ —2 steps, to derive { J .
3 n

.
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Fig. 2. Stern-Brocot tree with the decomposition of

7] - 229

4

mJ = k. Otherwise, the

Theorem 3: If m/n = k for some integer £, then {
n

sequence LmJ is calculated by the following two algorithms.

n

In the algorithms, the arrow <« is used in three different ways:
1. If x is a number, x <y signifies assignment of the value of y to the variable x.
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2. Ifx is a sequence, 4 or B, x £ »y means insertion of the value y between positions

p and p+1 in the vector x. The vector x has maximal length n, so entries inserted
beyond the length ¢ are ignored. Thus, values to the right of p in the vector x are all
juxtapositioned one step to the right, and the length of the vector x is incremented.
(1)

3. If x is a sequence F, x <—y means appending i copies of the value y after the last
position in x. The length of the vector thus increases by i.

Algorithm 2, part I - constructing A(%)

1. Let d = GCD(m,n). Assign m<«m/d and n<n/d. Also assign

m < mmod n.

2. Initialize: A = (‘%3 B=(0,1), 1«0, L1, re1, Re-1, g = 2,
p=1.
P l+r 4 .
3. Do A<« TR B g and g< g+ 1, and go to the appropriate case 4a, 4b or
4c.
4a Ifm - Lt exit the iteration and go to 5
T IR g0 70 2.
+
4b.1f%<LI+rR,dor<—l+r and R« L+ R and go to 3.
m_ l+r
4c.1f—>L+R,dol<—l+r,L<—L+R and p < p+ 1 and go to 3.
n

S pep+1, g g—1 andExit.

Algorithm 2, part 2 - searching A (%)

1. The algorithm starts with values defined by Algorithm 1, i.e: p, g from 5, d from 1
and A and B from 3. Furthermore, initialize as fallows: F is an empty sequence. Then

x<p-1, F(—% andu<1,ve1,qg«g.
2.q<«q—1.Pickisothat B(i) = q.
3a.lIfqg = 0, ]v(Li—_Z)(O) and exit the iteration, i.e. go to 4.
3b.Ifi<p, F<(_M)A(x), x<x—1,vev+tu.Goto?2.

Jc.Ifi>p, u<v+u.Goto?2

4. If d> 1, copy each value in F into d copies without changing the order. This
increases the length of the vector by a factor of d.
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5. Add {@J to all values in F.
n

6. {mJ = F, where {mJ = F(x).
n n |x

The complexity of the algorithm is O(n).
The algorithm 2 consists of two separate parts. First we construct the ancestor

sequence A(’f) and the corresponding generation information B(%n) . In the second
algorithm we work backwards in the ancestor sequence to construct the appropriate c-

, i.e. the values of {mJ forallc =1,..., n.

values and the sequence {mJ
n n

We end the section by a brief description of the Stern-Brocot tree (Fig. 2). The first
part of the algorithm constructs this tree, and the second part searches backwards in its
branches. This tree is thoroughly presented in [8]. It can iteratively be constructed by

. .. + . .
the “mediant addition™: %@g = Z+ 2 Starting from the ratio sequence (I),% and
producing mediants in intermediant spaces, we get (T)’ %, é , followed by %, %, %, %, é

and TYrYTITT0 and so on, in each step adding a new generation of ratios.
Note that the size order is preserved: all sequences are increasing. The tree is formed
by joining related ratios by edges, and allowing each generation to form a certain level
in the tree. It is proven in [8] that all non-negative ratios occur exactly once in the tree,
and occur always in lowest terms. We have above established the relevance of the

quantity {

mJ for the present multiprocessor scheduling problem. In [12], the rele-

n

m

vance of the Stern-Brocot tree for the quantity { J is discovered, and it is proven
c

n

that the above algorithm gives {mJ .
n

c
4. Conclusions

Preempting a job and restarting it on another processor is rather inexpensive in
some multiprocessor systems, such as shared memory multiprocessors. It can, how-
ever, be very costly and time consuming on other multiprocessor and distributed sys-
tems, and in those cases we want to limit the number of preemptions. Avoiding all kind
of preemption may, however, result in an unbalanced load in the multiprocessor, even
when using the best possible nonpreemptive schedule. Consequently, there is a trade-
off between minimizing the number of preemptions (and thus the amount of overhead)
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and keeping the load reasonable balanced between the processors (or computers) in the
system.

Our results make it possible to exactly quantify one main element in the maximal
performance gain by increasing the number of preemptions. Estimates of the overhead
costs need to be added. The results are easily computable also for massively parallel
multiprocessors, i.e. if m is very large.

5. Discussion

Our results generalize the results by Braun and Schmidt [2]. They look at the maxi-
mum performance gain of introducing m — i — 1 new preemptions in a schedule with i
preemptions running on a system with m processors (computers). We provided a gen-
eral formula that calculates the maximum gain of introducing an additional j preemp-
tions in a schedule with i preemptions using m processors. For instance, the maximum
gain if we introduce one additional preemption in a schedule with one preemption
using m processors can be computed.

Figures below (Fig. 3 and Fig. 4) present the function G with i- versus j-preemptive
makespan of the worst-case program for m = 200 respective m = 400. If i > the value
of G trivially equals one. This can be seen as the low flat area in the pictures. For
m=>i+j+1 we can represent the formula as a formula with the floor functions (see
Lemma 3), so therefore the value of G is constant for all j with
k(i+1)<j<k(2(i+1)—-1), k € N. This explains some of the triangle shaped pla-
teaus in the pictures. For example, for m = 200 and i = 50 the value of G = 1.333 for
50 <j <98. The same value G is for i = 10 and 10 <; < 18. That means that the gain
of increasing the number of preemptions from 50 to 55, or from 50 to 98, or even from
10 to 18 is the same, assuming that there are no overhead costs. For m <i+; we have

the Stern-Brocot Tree formula: G(m, i,j) = 2{ n J . For j = m-1 and
m+i+1 |m-

i =0,...,m-2 the curve represents the results of Braun and Schmidt [2].
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Abstract

Clusters and distributed systems offer fault tolerance and high performance through
load sharing. When all computers are up and running, we would like the load to be
evenly distributed among the computers. When one or more computers break down the
load on these computers must be redistributed to other computers in the cluster. The
redistribution is determined by the recovery scheme. The recovery scheme should keep
the load as evenly distributed as possible even when the most unfavorable combina-
tions of computers break down, i.e. we want to optimize the worst-case behavior. In
this paper we define recovery schemes, which are optimal for a number of important
cases. We also show that the problem of finding optimal recovery schemes corresponds
to the mathematical problem called Golomb Rulers. These provide optimal recovery
schemes for up to 373 computers in the cluster.

87



88



Paper III: Using Golomb Rulers for Optimal Recovery Schemes in
Fault Tolerant Distributed Computing

1 Introduction

One way of obtaining high availability and fault tolerance is to execute an applica-
tion on a cluster or distributed system. There is a primary computer that executes the
application under normal conditions and a secondary computer that takes over when
the primary computer breaks down. There may also be a third computer that takes over
when the primary and secondary computers are both down, and so on. The order in
which the computers are used is referred to as the recovery order, given by a recovery
list. A lot of cluster vendors support this kind of error recovery, e.g. Sun Cluster [14]
MC/ServiceGuard (HP) [9], TruCluster (DEC) [15], HACMP (IBM) [1], and MSCS
(Microsoft) [10,16].

An advantage of using clusters, besides fault tolerance, is load sharing between the
computers. When all computers are up and running, we would like the load to be
evenly distributed. The load on some computers will, however, increase when one or
more computers are down, but also under these conditions we would like to distribute
the load as evenly as possible on the remaining computers.

The distribution of the load when a computer goes down is decided by the recovery
orders of the processes running on the faulty computer. The set of all recovery orders is
referred to as the recovery scheme, i.e. the load distribution in case of one or more
faults is determined by the recovery scheme. The problem of finding optimal (or even
reasonably good) recovery schemes has not been studied before by other researchers.
In the previous paper [8] we have defined recovery schemes that are optimal for some
cases. In this paper we present new recovery schemes that are optimal for a signifi-
cantly larger number of crashed computers. Some of the schemes are based on so-
called Golomb rulers, which have been used in radio astronomy.

2 Problem definition

We consider a cluster with # identical computers. There is one process on each com-
puter. The work is evenly split between these » processes. There is a recovery list asso-
ciated with each process. This list determines where the process should be restarted if
the current computer breaks down. Fig. 1 shows such a system for » = 4. We assume
that processes are moved back as soon as a computer comes back up again. In most
cluster systems this can be configured by the user [9,14,15], i.e. in some cases one may
not want automatic relocation of processes when a faulty computer comes back up
again. The left side of the figure shows the system under normal conditions. In this
case, there is one process on each computer. The recovery lists are also shown; one list
for each process. The set of all recovery lists is referred to as the recovery scheme. The
right side of Fig. 1 shows the scenario when computer zero breaks down. The recovery
list for process zero shows that it should be restarted on computer one when computer
zero breaks down. If computer one also breaks down, process zero will be restarted on
computer two, which is the second computer in the recovery list. The first computer in
the recovery list of process one is computer zero. However, since computer zero is
down, process one will be restarted on computer three. Consequently, if computers
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zero and one are down, there are two processes on computer two (processes zero and
two) and two processes on computer three (processes one and three).

Recovery
wer(] list uter
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to process 0 Comp.
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Fig. 1. An application executing on a cluster with four computers

If computers zero and one break down the maximum load on each of the remaining
computers is twice the normal load. This is a good result, since the load is as evenly
distributed as possible. However, if computers zero and two break down, there are
three processes on computer one (processes zero, one and two), i.e. the maximum load
on the most heavily loaded computer is three times the normal load. Consequently, for
the recovery scheme in Fig. 1, the combination of computers zero and two being down
is more unfavorable than the combination of computers zero and one being down.

Our results are also valid when there are n external systems feeding data into the
cluster, e.g. one telecommunication switching center feeding data into each computer
in the cluster. If a computer breaks down, the switching center must send its data to
some other computer in the cluster, i.e. there has to be a “recovery list” associated with
each switching center. The fail-over order can alternatively be handled by recovery
lists at the communication protocol level, e.g. IP takeover [12]. In that case, redirecting
the communication to another computer is transparent to the switching center.

Many cluster vendors offer not only the user defined recovery schemes considered
here, but also dynamic load balancing schemes in case of a computer going down. The
unpredictable worst-case behavior and relatively long switch-over delays of such
dynamic schemes is, however, unattractive in many (real-time) applications. Also,
external systems cannot use dynamic load balancing schemes when they need to select
a new node when the primary destination for their output is not responding. Conse-
quently, the results presented here are very relevant for systems where each node has
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its own network address. The large shared nothing clusters must know where the job
will go if the current computer crashes. The reason for this is that we make sure that all
necessary data are copied to the computer on which the job will be restarted in the
event of a crash, and for large clusters we cannot copy all data to every node in the
cluster. This means that we must use static schemes for large shared nothing clusters.
Finding good recovery schemes is thus a fundamental problem in distributed and clus-
ter systems.

We assume that the work performed by each of the » computers must be moved as
one atomic unit. Examples are systems where all the work performed by a computer is
generated from one external system or when all the work is performed by one process,
or systems where the external communication is handled by IP takeover [12] (in this
case all external traffic to one network address is rerouted as one atomic unit).

The previous results are summarized in Section 3. In Section 4 we improve the pre-
vious results by defining greedy recovery schemes that are optimal also when a signif-
icantly larger number of computers breaks down. The optimal recovery scheme
derived from Golomb rulers is presented in Section 5. The conclusions are presented in
Section 6.

3 The general lower bound B

We start by introducing some notations. Consider a cluster with » computers. Let
L(nx, {cg,...,cy.1},RS) (n > x) denote the load on the most heavily loaded computer
when computers cg,...,c,.; are down and when using a recovery scheme RS.
L(4,2,{0,1},RS) = 2 for the example in Fig. 1, but L(4,2,{0,2},RS) = 3. Let L(n,x,RS) =
max L(n,x,{cg,...,c,.1}.RS) for all vectors {c,...,c,.1}, i.e. for all combinations of x
computers being down. Consequently, L(n,x,RS) defines the worst-case behavior. For
the recovery scheme in Fig. 1, L(4,2,RS) = 3. The recovery scheme should distribute
the load as evenly as possible for any number of failing computers x. Small values of x
are (hopefully) more common than large values of x. We denote the
{L(n,1,RS),...,.L(n,n-1,RS)} as V(L(n,RS)) Note that VL is a vector of length n-1 since
we disregard from the case when all » computers have crashed.

We say that V(L(n,RS)) is consecutively smaller than V(L(n,RS")) if the entries are
identical up to an index y, and for this index the value of V(L(n,RS)) is smaller than
V(L(n,RS’)). Hence, for some y <n we have

1. L(n,y,RS) < L(n,y,RS’) and
2. L(n,z,RS) = L(n,z,RS’) forall z < y.

If y =1, it is enough that L(n,),RS) < L(n,),RS").

If V(L(n,y,RS)) is consecutively smaller than V(L(#n,),RS’)), we consider RS as a bet-
ter recovery scheme than RS’, e.g. for V' = V(L(n,y,RS)) = {2,2,3,3,3,4,4} and V' =
V(L(n,y,RS’)) = {2,3,3,3,3,3,3} the V' is consecutively smaller than V. The behavior
when few computers are down is thus strongly prioritized compared to when many
computers are down.
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The converse to “V(L(n,),RS)) is consecutively smaller than V(L(n,y,RS’))” is
“V(L(n,y,RS")) is consecutively larger than or equal to V(L(n,y,RS))”. Then either
V(L(n,y,RS)) and V(L(n,y,RS’)) are identical, or V(L(n,),RS)) is consecutively smaller
than V(L(n,),RS")).

Let VL = min V(L(n,RS)), where minimum is taken over all recovery schemes RS.

We have previously defined a lower bound B on VL, i.e. B < VL (B is a vector of
length n-1), and for n < 11, we defined a recovery scheme RS such that V(L(n,RS)) = B
[8]. We refer to such recovery schemes as optimal recovery schemes. We have also
defined recovery schemes that are optimal when at most |_10g2 n| computers break
down.

Next we define bound vectors (BV): A BV of length /=2+3+4+... +k has the follow-
ing sequence: <2,2,3,3,3,4,4,4,4,5,5,5,5,5,....kk,...,k-> (the vector ends with k entries
with value k). For instance, a BV of length 2+3+4+5=14 looks like this:
<2,2,3,3,3,4,4,4,4,5,5,5,5,5>. We can simply calculate the n:th entry in the sequence by

the formula | /2(n + 1)+ 1/2].

We now extend the definition of bound vectors to include vectors of any length by
taking an arbitrary BV and truncating it to the designated length, e.g. a BV of length 12
looks like this: <2,2,3,3,3,4,4,4,4,5,5>.

Theorem 1: VL(i) >[ n/(n-i) | (VL(i) is entry number i in VL).

Proof: If i computers are down, there are i processes which must be allocated to the
remaining n-i computers. The best one can hope for is obviously to obtain a load of [/

(n-i) | processes on the most heavily loaded computer.
|

Theorem 2: BV is consecutively smaller than VL, i.e., BV and VL are identical up to an
index y, and BV (y) < VL(y).

Proof: Because of Theorem 1 we know that BV(n— 1) <n < VL(n— 1) if n> 3. Hence
BV and VL cannot be identical.

We use proof by contradiction. Assume that V'L is consecutively smaller than BV. In
that case there is a y such that BV(x) = VL(x) (x <y) and BV(y) > VL(p).

Obviously, VL(y-1) < VL(y). BV only increases at entries x; = k(k-1)/2, for k =2, 3,
4,...,1e.x=1,x3=3,x4 =6, .... Consequently, the difference between VL and BV
must occur at an entry xy, i.e. y = x;. This means that, VL(x) < BV(x;) = k for some x;.

If k=2 (x; = 1), one computer is down, and obviously VL(1) =2, i.e. VL(1) = BV(1).
Since VL(2) = 2 we know that no two recovery lists start with the same computer. (If
two lists corresponding to processes ¢ and ¢, start with the same computer c3, there
will be three processes on computer c3 if computers ¢ and ¢, break down.)

If k=3 (x; = 3), three computers are down. Since all recovery lists start with differ-
ent computers, there must be at least one pair of recovery lists /; (corresponding to pro-
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cess ;) and /5 (corresponding to process c,) such that computer c5 is first in /; and ¢3
is the second alternative in /,. If ¢, ¢, and the first alternative in /, break down, there
will be three processes on c3. Consequently, VL(3) = 3. Since VL(5) = 3, we know that

no two recovery lists have the same computer as the second alternative. If two lists
corresponding to c¢; and ¢, have the same computer c3 as the second alternative, then

there will be four processes on computer ¢ if computers ¢y, ¢,, the first alternative in
/1 and /, and the computer with c3 as the first alternative break down.
If k=4 (x; = 6), six computers are down. Since all recovery lists start with different

computers and have different computers as the second alternative, there must be at
least one triplet of recovery lists /1, /; and /3 such that computer ¢y is first in /; and the

second alternative in /, and the third alternative in /5. If computers ¢y, ¢;, c3, the first
alternative in /,, the first and the second alternative in /3 break down, there will be four
processes on c4. Consequently, VL(6) = 4. Since BV(9) = 4, we know that no two

recovery lists have the same computer as the third alternative. If two lists correspond-
ing to c; and ¢, have the same computer c3 as the third alternative, there will be four

processes on computer c3 if computers ¢y, ¢;, the first alternative in /; and /, and the
computer with cj as the first alternative break down.

This procedure can be repeated for all k. From this we can conclude that there is no
k such that, VL(x;) < k, where x; = 2+3+4+...+k-(k-1). Consequently, BV is consecu-

tively smaller than VL.
|

Based on theorems 1 and 2, we define B(i) = max(BV(i), |—n/(n—i)—|).
4. Greedy Recovery Schemes

An intuitive recovery scheme (RS) is R; = {(i+1) mod n, (i+2) mod #», (i+3) mod
n,..., (i+n-1) mod n}, where R; is the recovery list for process i. If n = 4 we get: R, =
<1,2,3>, R| = <2,3,0>, Ry= <3,0,1>, and R; = <0,1,2>. The intuitive scheme is not
optimal for » = 4 (in that case B(2) = 2 but L(4,2,{0,1},RS) = 3). For n = 8 we know
that B(5) = 3 but L(8,5,{0,1,2,3,4},RS) = 6. Consequently, the worst-case behavior of
the intuitive scheme is twice as bad as an optimal scheme for » = 8. We have previ-

ously shown that when at most x = Llogsz computers break down VL(i) = B(i) (i £
y
x) [8]. If we (for some integer y > 1) have x = Z i< |_log sz , the difference between
i=2
y
the intuitive scheme and an optimal scheme can be Z i/y (i.e. VL(x) =y) but the load

i=1
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on the most heavily loaded computer in the intuitive scheme may be as high as

y y
xtl=%i+tl=%i.
i=2 i=1

This occurs when computers 0, 1, 2, ..., x-1 are down, e.g. for y = 3 and thus x =
2+3 =5 we get a difference of (1+2+3)/3 = 2 when computers 0,1,2,3,4 are down.

We will now define a recovery scheme called the greedy recovery scheme that can
guarantee optimal behavior also when significantly more than Llogsz computers break
down. We will show that this recovery scheme is optimal for a number of important
cases.

We start by defining Ry, i.e. the recovery list for process zero (N = {1,2,3,...}): r(x)

=min{j € N}, such that for all ay, a,, b;, b, that fulfill the conditions ((1 <a; < b; <x)

bl b2
and (1 <ay < by <x)and ((a, #a,) or (b, #b,))) so that we get Z r(l) # Z r(l)
I=a I=a,

P X
If Z r(l)<n,then Ry(x) = Z r(l), else
=1 =1
Ry(x) = min{j e N—{Ry(1), ...Ry(x—1)}}.
We obtain all other recovery lists from R, by using Ri(x) = (Ry(x) + i) mod n.
In the definition of R we use the step length vector . The important property in the

b
greedy recovery scheme is that all sums of subsequences Z r(l),(1<a<b<x)are

l=a
b, by
unique, i.e. Z r(l) # Z r(/) when (1 <a;<b; <x)and (1 <a, <b,<x)and
I=a [=a,

((a; #ay) or (b # b,)).

From the definition above we see that for large values of # (i.e. n > 289) the first 16
elements in R for the greedy recovery scheme are: 1, 3, 7, 12, 20, 30, 44, 65, 80, 96,
122, 147, 181, 203, 251, 289. For n = 16, Ry=<1, 3,7, 12, 2,4, 5, 6, §, 9, 10, 11, 13,
14, 15>.

We now define a new vector of length x. This vector is called the reduced step
length vector (r’) and it consists of the first x entries in the step length vector , where
x = max(i), such that Ry(i) < n. From the definition of the greedy recovery scheme we
know that all sums of subsequences in " are unique. Table 1 illustrates this for n =97,
resulting in a reduced step length vector of length 10 (10 =x = max(i), such that R(i) <
n=97).

Theorem 3: The greedy recovery scheme is optimal as long as x computers or less
have crashed, where x = max(i), such that Ry(i) <n.
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Entry no. (i) 1 23 45 6 7 8 9 10
Ry 1 3 7 12 20 30 44 65 80 96
Reduced step length vector r” 1 2 4 5 8 10 14 21 15 16

Note that there are only unique values in the trian-
gular matrix below

Sum of subsequences of length 1 starting in positioni {1 2 4 5 8 10 14 21 15 16
Sum of subsequences of length 2 starting in positioni |3 6 9 13 18 24 35 36 31
Sum of subsequences of length 3 starting in positioni |7 11 17 23 32 45 50 52
Sum of subsequences of length 4 starting in position i |12 19 27 37 53 60 66

Sum of subsequences of length 5 starting in position i |20 29 41 58 68 76

Sum of subsequences of length 6 starting in position i |30 43 62 73 84

Sum of subsequences of length 7 starting in position i |44 64 77 89

Sum of subsequences of length 8 starting in position i {65 79 93

Sum of subsequences of length 9 starting in position i {80 95

Sum of subsequences of length 10 starting in position 496

Table 1. All sums of subsequences of the reduced step length vector for n = 97

Proof: Let y (0 <y < n) be the heaviest loaded computer when x computers have
crashed, where x = max(i), such that Ry(7) < n.

When x computers have crashed, process z (0 < z < n) will in the i:th step end up on

1
computer z + z r(j) mod n (1 £i < x). This means that a process that ends up on

j=1
computer y after i steps was originally allocated to computer

(y — Z r'(j)+ n) modn. and  this process has  passed  computers

=1
(y—zi:r’(jﬂn)modn, (J’—Zi:r’(j)’“”)m‘)d”’ (y_zi:r’(j)Jrn)mOdn
z “ =

before it reached computer y. The lists below show the x possible sequences of com-
puters that need to be down in order for an extra process to end up on computer y, i.e. if
computer (y-r’(1)+n) mod » is down one extra process will end up on computer y, if
computers (y-’(1)-r’(2)+n) mod » and (y-r’(2)+n) mod » are down another extra pro-
cess will end up on computer y, and so on.

1.(y— 21: r'(j) +n)mod n

=1
2.(),, i r'(,')+n)mod n,(yf i
i=1 j=2
3.();_ 23: r'(j) + n)mod n ,(y—ji:zl"(]') + I’l)mod n ,(y —]23:31”'(]) + n)mod n

j=1

r'(j)+ n)mod n
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x.(y— Zl r'(g)+ n)mod n ,(y— Z r'(j)+ n)mod n,.., (y— Z r'()+ n)mod n.

j= j=2 j=x

b
From the definition of » we know that all sums of subsequences Z r(l)y,(1<a<b
I=a
< x) are unique. This means that no computer is included in more than one of the lists.
Thus, the worst-case is clearly when the computers in the shortest lists have crashed,

1
e.g. for x = 3 the worst-case occurs when computer: (y— Z r'(j)+ n) mod » have

j=1

2
crashed, and then when computers (y - Z r'(j)+ n) mod n,
j=1

2
(y — Z r'(j)+ n) mod n have crashed. Similarly for x=6 the worst case occurs when
j=2
1
computer: (y - Z r'(j) + n) mod » have crashed, and then when computers

j=1

2 2
(yf Z r'(j)+n)mod n, (yf Z r'(j)+ n) mod n have crashed, and then when
1 j=2

j =

computers (y — 23: r'()+ n) mod n, (y — i r'()+ n)mod n,

Jj=1 j=2

3
(y - Z r'(j)+ n) mod »n have crashed. By comparing this with the proof of Theorem
=3
2 we see that the first x entries in B and V(L(n,RS)) are identical (RS = greedy recovery
scheme, x = max(7) such that Ry(7) < ). The theorem follows.
|

To recapitulate our problem formulation: Given a certain number of computers (n)
we want to find a recovery scheme that can guarantee optimal worst-case load distri-
bution when at most x computers are down, and we are interested in the schemes that
have as large x as possible.

By looking at the proof of Theorem 3, we see that the problem can be reformulated
as: Given a number (n) we want to find the longest sequence of positive integers such
that the sum of the sequence is smaller than or equal to n and such that all sums of
subsequences (including subsequences of length one) are unique.

This problem is similar to the well-known problem described by Golomb in 1977 as
the spanning ruler [2]. The spanning ruler with » marks and length L measures every
distance from 1 to L, as a distance between two marks on the ruler, in at most one way.
The interesting combinatorial problem is to determine the shortest spanning ruler for
each n. A dual problem is to determine the longest covering ruler with n marks and
length Z, which measures every distance from 1 to L, as a distance between two marks
on the ruler, in at least one way. Both of these problems have long histories in the com-
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binatorial literature [6]. Gardner [4] termed these objects as “Golomb rulers”, which
have been widely adopted. The Golomb rulers are used in a variety of areas such as
radio astronomy (placement of antennas), X-ray crystallography, and myriads of other
fields such as data encryption and geographical mapping.

5 Golomb Rulers

The Golomb ruler (the spanning ruler) is a sequence of non-negative integers such
that no two distinct pairs of numbers from the set have the same difference. These
numbers are called marks and correspond to positions on a linear scale. The difference
between the values of any two marks is called the distance. The shortest Golomb rulers
for a given number of marks are called the Optimal Golomb Rulers (OGRs) [3]. The
search for OGRs becomes more difficult as the number of marks increases. It is known
as an NP-complete problem [13]. The optimality for 19 marks was proved computa-
tionally by Dollas et al.[4]. OGRs for 20, 21, 22 and 23 marks were produced by a
worldwide-distributed effort on the Internet [7, 18]. The problem for a large number of
marks is still open. The known OGRs are presented in a table in Appendix A.

An example of the representation of OGR with four marks is shown in Fig. 2. It is
possible to measure the distances: 1, 2, 3, 4 as 1+3, 5, 7 as 5+2, 8 as 3+5, 9 as 1+3+5,
10 as 3+5+2 and 11 as 1+3+5+2, but we cannot measure the distance 6.

Optimal Golomb Ruler

1 3 3 2
Fig. 2. The ruler presentation of the OGR with four marks

The Golomb rulers can also be presented as a triangle, where each number repre-
sents the difference between a specific pair of numbers. Fig. 3 shows an example with
four marks. The first order (over the line) represents the marks along a line such that
each pair of marks measures a unique linear distance. In the second row are the dis-
tances measured between marks placed two apart on the ruler. A ruler with m marks
has m — 1 first order differences, m — 2 second order differences, and so on, up to a sin-
gle m — 1 order difference. Thus, by a & order difference we mean a difference of marks
that are & positions from each other.

Fig. 3. The triangle presentation of the OGR
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Golomb rulers are usually characterized by their absolute distances, rather than dif-
ferences. The difference sequence is the sequence of first order differences (the first
row under the line in the diagram above). The above ruler would be 1-4-9-11 as abso-
lute distances (sometimes this is written as 0-1-4-9-11, but the leading zero is often
dropped) and 1-3-5-2 as differences. In this paper we use the differences notation for
Golomb recovery schemes. However, we use absolute distances notation for Golomb
recovery lists. In Appendix A we present a table with 23 OGRs. For example, the cur-
rently best-known 23-mark ruler characterized by the differences is the following: 0-3-
4-10-44-5-25-8-15-45-12-28-1-26-9-11-31-39-13-19-2-16-6.

We reformulate the problem in the present paper: Given a number (n) we want to
find the longest sequence of positive integers such that the sum of the sequence is
smaller than or equal to n and such that all sums of subsequences (including subse-
quences of length one) are unique. Since this problem is equivalent to the problem of
finding Golomb rulers, we can use the results about Golomb rulers. However, optimal
sequences for large numbers are still not known.

A recovery list is obtained by adding the values of the sequences — it is the sequence
of partial sums. The first part of the recovery lists consists of the Golomb rulers, i.e.
the first x entries for the largest x such that the sum of the optimal sequence of length x
is smaller than ». The remaining part of the recovery list is filled with the remaining
numbers (computers) up to n-1. Let G, be the Golomb ruler with sum »# + 1 and let
G,(x) be the x:th entry in G, e.g. G1,=<1,4,9,11> and G, (1) =1, G}, (2) =4 and so
on. Let then g, = x be the number of crashed computers with optimal behavior when
we have n computers, e.g. g1, = 4. For intermediate values of £ we use the smaller

Golomb ruler, and the rest of the recovery list is filled with the remaining numbers up
to k-1. For example, by filling with remaining numbers, the ruler Gy, gives the list
{1,49,11,2,3,5,6,7,8,10} and Gg gives the list {1,4,10,12,17,2,3,5,6,7,8,9,11,13,14,
15,16}. Thus, for n = 14 we use G, to obtain the list {1,4,9,11,2,3,5,6,7,8,10,12,13}.

Table 2 shows that the difference, in terms of the number of crashed computers for
which we can guarantee an optimal load distribution, is at most one for n = 35, e.g.
using recovery schemes that are based on the optimal Golomb rulers sequence we are
able to guarantee optimal load distribution for 6 crashed computers in the interval 26 =
n =30, whereas we can only guarantee optimal load distribution for 5 crashed comput-
ers for this interval when using the greedy approach. For the interval 31 = n = 34 we
are able to guarantee optimal load distribution for up to 6 crashed computers for both
the recovery scheme based on the optimal Golomb sequence as well as for the recov-
ery scheme based on the greedy sequence.

In Fig. 4 we compare the performance of the scheme using Golomb rulers (golomb)
with the performance of the greedy recovery scheme (greedy) and the performance of
the (old) recovery scheme (org) as a function of the number of computers. The perfor-
mance is defined as the number of crashes that we can handle while still guaranteeing
an optimal load distribution. Fig. 4 shows that the behavior of the Golomb rulers
scheme is better for large values of », e.g., for » = 100 the Golomb ruler guarantees
optimal behavior even if 11 computers break down, while the greedy scheme guaran-
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Length of Sum of Sum of
sequence |Optimal Golomb Sequence [optimal  |[Greedy Sequence greedy
X sequence sequence
1 1 1 1 1

2 1,2 3 1,2 3

3 1,3,2 6 1,2,4 7

4 1,3,5,2 11 1,2,4,5 12

5 1,3,6,5,2 17 1,2,4,5,8 20

6 1,3,6,8,5,2 25 1,2,4,5,8,10 30

7 1,3,5,6,7,10,2 34 1,2,4,5,8,10,14 44

8 1,4,7,13,2,8,6,3 44 1,2,4,5,8,10,14,21 65

9 1,5,4,13,3,8,7,12,2 55 1,2,4,5,8,10,14,21,15 30

10 1,3,9,15,5,14,7,10,6,2 72 1,2,4,5,8,10,14,21,15,16 96

11 24,185113,12,13,7,1,9 |85 12,45.8,10,1421,15,1626  [122

Table 2. Comparing the optimal sequences with the greedy sequences

tees optimal behavior if 10 computers break down and the old version can only guaran-
tee optimal behavior as long as at most 6 computers break down. For » = 1000 we can
guarantee optimal behavior for up to 34 crashed computers using the Golomb rulers
scheme, 26 crashed computers using the greedy scheme, whereas the old scheme only
guarantees optimal behavior up to 9 crashed computers. For » = 373 we can guarantee
optimal behavior for up to 22 crashed computers using the Golomb rulers scheme. For
larger # it is not known whether the corresponding Golomb rulers are optimal or not.
The curve absolute represents Perfect Golomb Rulers, when no distances are omitted
(see definition of “Perfect Golomb Rulers “ in [4]). No scheme can pass this border,
and we do not know how close one can actually come to this upper bound.

6. Conclusion

In many cluster and distributed systems, the designer must provide a recovery
scheme. Such schemes define how the workload should be redistributed when one or
more computers break down. The goal is to keep the load as evenly distributed as pos-
sible, even when the most unfavorable combinations of computers break down, i.e. we
want to optimize the worst-case behavior which is particularly important in real-time
systems.

We consider # identical computers, which under normal conditions execute one pro-
cess each. All processes perform the same amount of work. Recovery schemes that
guarantee optimal worst-case load distribution, when x computers have crashed are
referred to as optimal recovery schemes for the values » and x. A contribution in this
paper is that we have shown that the problem of finding optimal recovery schemes for
a system with n computers corresponds to the mathematical problem of finding the
longest sequence of positive integers such that the sum is smaller than » and the sums
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Fig. 4. The “performance” difference between the OGRs scheme (‘golomb'),
greedy version of the recovery scheme (‘greedy’) and the old version of the
recovery scheme (‘org’)
of all subsequences are unique, called the Golomb rulers. It is hard to define an effi-

cient algorithm that finds the longest sequence with these properties.

We have previously obtained recovery schemes that are optimal when x < [ log, 7]
[8]. However, in this paper we have defined a greedy recovery scheme that is optimal
when a significantly larger number of computers are down, and we have presented a
new recovery scheme, the Golomb rulers scheme, which is optimal for an even larger
number of crashed computers. For large » the difference in terms of the number of
crashed computers for which we can guarantee optimality can be significant. For
instance, for » = 1000 the Golomb rulers scheme guarantees optimality for almost four
times as many crashed computers compared to the old scheme, i.e. 34 crashed comput-
ers vs. 9 crashed computers. Compared to the greedy recovery scheme it is only 1.3
times better (34 crashed computers vs. 26 crashed computers). (Fig. 4)

The advantage with the greedy algorithm compared to the Golomb rulers is that we
can easily calculate a sequence with distinct partial sums also for large » where no
Golomb rules are known. Golomb rulers are known for lengths up to 41912 (with the
211 marks) [17,18,19]. Of these the first 373 (with 23 marks) are known to be optimal.
Our recovery schemes can be immediately used in commercial cluster systems, e.g.
when defining the list in Sun Cluster using the scconf command. The results can also
be used when a number of external systems, e.g. telecommunication switching centers,
send data to different nodes in a distributed system (or a cluster where the nodes have
individual network addresses). In that case, the recovery lists are either implemented
as alternative destinations in the external systems or at the communication protocol
level, e.g. IP takeover [12].
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8. Appendix A: Optimal Sequences

In Table 2 we present the Optimal Golomb Rulers for #n = 22 (known as n =23 if we
count zero). The quantity m is the number of inequivalent rulers of length of the
sequence. It’s interesting to see that for » =4 and n = 10 we have two OGRs, for n =5

we have four OGRs, and for » = 6 we have five OGRs [3,4,6,17,19]

Length of [Sum of |m Sequence of Marks
sequence [sequence
n)
1 1 1 1
2 3 1 1,2
3 6 1 1,3,2
4 11 2 1,352
3,1,5,2
5 17 4 1,3,6,2,5
1,3,6,5,2
1,7,3,2,4
1,7,4,2,3
6 25 5 1,3,6,8,5,2
1,6,4,9,3,2
2,1,7,6,5,4
2,4,3,5,10,1
3,1,8,6,5,2
34 1 1,3,5,6,7,10,2
44 1 1,4,7,13,2,8,6,3
55 1 1,5,4,13,3,8,7,12,2
10 72 2 1,3,9,15,5,14,7,10,6,2
1,8,10,5,7,21,4,2,11,3
11 85 1 2,4,18,5,11,3,12,13,7,1,9
12 106 1 2,3,20,12,6,16,11,15,4,9,1,7
13 127 1 4,2,14,15,17,7,18,1,8,3,10,23,5
14 151 1 4,16,10,27,2,3,14,24,11,12,13,8,1,6
15 177 1 1,3,7,15,6,24,12,8,39,2,17,16,13,5,9
16 199 1 5,2,10,35,4,11,13,1,19,22,16,21,6,3,23,8
17 216 1 2,8,12,31,3,26,1,6,9,32,18,5,14,21,4,13,11
18 246 1 1,5,19,7,40,28,8,12,10,23,16,18,3,14,27,2,9,4
19 283 1 1,7,3,57,9,17,22,5,35,2,21,15,14,4,16,12,13,6,24
20 333 1 2,22,32,21,5,1,12,34,15,35,7,9,60,10,20,8,3,14,19,4
21 356 1 1,8,5,29,27,36,16,2,4,31,20,25,19,30,10,7,21,39,11,12,3
22 372 1 3,4,10,44,5,25,8,15,45,12,28,1,26,9,11,31,39,13,19,2,16,6

Table 3. The known Optimal Golomb Rulers
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Paper IV

Using Modulo Rulers for Optimal Recovery
Schemes in Distributed Computing

Kamilla Klonowska, Lars Lundberg, Hakan Lennerstad, Charlie Svahnberg
Proceedings of the 10th International Symposium PRDC 2004, Papeete, Tahiti,
French Polynesia, March 2004

Abstract
Clusters and distributed systems offer fault tolerance and high performance

through load sharing. When all computers are up and running, we would like the load
to be evenly distributed among the computers. When one or more computers break
down the load on these computers must be redistributed to other computers in the clus-
ter. The redistribution is determined by the recovery scheme. The recovery scheme
should keep the load as evenly distributed as possible even when the most unfavorable
combinations of computers break down, i.e. we want to optimize the worst-case behav-
ior. In this paper we define recovery schemes, which are optimal for a larger number of
computers down than in previous results. We also show that the problem of finding
optimal recovery schemes for a cluster with n computers corresponds to the mathemat-
ical problem of finding the longest sequence of positive integers for which the sum of
the sequence and the sums of all subsequences modulo n are unique.

Keywords: fault tolerance, high performance computing, recovery schemes,
Golomb rulers, modulo sequence
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1 Introduction

One way of obtaining high availability and fault tolerance is to execute an applica-
tion on a cluster or distributed system. There is a primary computer that executes the
application under normal conditions and a secondary computer that takes over when
the primary computer breaks down. There may also be a third computer that takes over
when the primary and secondary computers are both down, and so on. The order in
which the computers are used is referred to as the recovery order, given by a recovery
list. Most cluster vendors support this kind of error recovery, e.g. the nodelist in Sun
Cluster [9], the priority list in MC/ServiceGuard (HP) [3], the placement policy in Tru-
Cluster (DEC) [2], cascading resource group in HACMP (IBM) [4], and node prefer-
ence list in Windows Server 2003 clusters (Microsoft, earlier called MSCS) [7].

An advantage of using clusters, besides fault tolerance, is load sharing between the
computers. When all computers are up and running, we would like the load to be
evenly distributed. The load on some computers will, however, increase when one or
more computers are down, but also under these conditions we would like to distribute
the load as evenly as possible on the remaining computers.

The distribution of the load when a computer goes down is decided by the recovery
orders/lists of the processes running on the faulty computer. The set of all recovery
orders/lists is referred to as the recovery scheme. Hence the load distribution is com-
pletely determined by the recovery scheme regardless of the number of computers that
are down. We consider recovery schemes consisting of recovery lists of the same struc-
ture in the sense that one list is obtained by adding 1 to the entries in the previous list,
modulo the number of computers (7). This can be viewed as having the computers
connected in a ring, and a certain recovery scheme corresponds to a certain set of
jumps between computers. The jumps are the same wherever we start. We use the term
“wrap-around” when the total sum of jumps for a process exceeds the number of com-
puters. Then a process has passed the initial computer in the ring configuration.

The problem of finding optimal (or even reasonably good) recovery schemes has
not been studied before [6]. The outline of this problem is presented in Figure 1. The
first mathematical problem formulation does not include “wrap-arounds”. These
recovery schemes are presented in details in [5] and [6]. “Log” algorithm is an optimal
recovery scheme where at most Llogsz computers break down in a cluster with n

computers [6]. Here “optimal” means that the maximal number of processes on the
same computer after k crasches is BV(k). The function BV(k) provides a lower bound
for any recovery scheme (see [6] and Section 3). “Greedy” and “Golomb” schemes
(presented in [5]) are optimal for a larger number of computers than “Log”. The
Golomb schemes give optimality for a larger number of computers down than the
Greedy scheme. Both consider the formulation where “wrap-around” is not taken into
account.
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Computer science problem formulation

Given a certain number of computers (n) - find a recovery scheme that can guaran-
tee optimal worst-case load distribution when at most x computers are down. The
schemes should have as large x as possible.

Previous mathematical problem for- New mathematical problem
mulation formulation

Given a number (n) - find the longest Given a number (n) - find the longest
sequence of positive integers such that the sequence of positive integers such
sum of the sequence is smaller than or equal that the sum and the sums of all sub-
to n and all sums of subsequences (including sequences (including subsequences
subsequences of length one) are unique. of length one) modulo n are unique.

Log Greedy Golomb Modulo

Fig. 1. Outline of the problem formulation

In this paper we optimize also when wrap-around occurs. This is a sharper mathe-
matical formulation of the computer science problem, and gives new recovery
schemes, called modulo schemes, that are optimal for a larger number of computers
down in the original computer science problem. IL.e. these results represent state-of-
the-art in the field.

2. Problem definition

We consider a cluster with » identical computers with one process on each com-
puter. The work is evenly split between these # processes. There is a recovery list asso-
ciated with each process. This list determines where the process should be restarted if
the current computer breaks down. The set of all recovery lists is referred to as the
recovery scheme. Figure 2 shows such a system for » = 4. We assume that processes
are moved back as soon as a computer comes back up again. In most cluster systems
this can be configured by the user [3,9,10], i.e. in some cases one may not want auto-
matic relocation of processes when a faulty computer comes back up again. The left
side of the figure shows the system under normal conditions. In this case, there is one
process on each computer. The recovery lists are also shown; one list for each process.
The set of all recovery lists is referred to as the recovery scheme. The right side of Fig-
ure 2 shows the scenario when computer zero breaks down. The recovery list for pro-
cess zero shows that it should be restarted on computer one when computer zero
breaks down. If computer one also breaks down, process zero will be restarted on com-
puter two, which is the second computer in the recovery list. The first computer in the
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recovery list for process one is computer zero. However, since computer zero is down,
process one will be restarted on computer three. Consequently, if computers zero and
one are down, there are two processes on computer two (processes zero and two) and
two processes on computer three (processes one and three). If computers zero and one
break down the maximum load on each of the remaining computers is twice the normal
load. This is a good result, since the load is as evenly distributed as possible. However,
if computers zero and two break down, there are three processes on computer one (pro-
cesses zero, one and two), i.e. the maximum load on the most heavily loaded computer
is three times the normal load. Consequently, for the recovery scheme in Figure 2, the
combination of computers zero and two being down is more unfavorable than the com-
bination of computers zero and one being down. We are interesting in the worst-case
behavior.

Our results are also valid when there are n external systems feeding data into the
cluster, e.g. one telecommunication switching center feeding data into each computer
in the cluster. If a computer breaks down, the switching center must send its data to
some other computer in the cluster, i.e. there has to be a “recovery list” associated with
each switching center. The fail-over order can alternatively be handled by recovery
lists at the communication protocol level, e.g. IP takeover [8]. In that case, redirecting
the communication to another computer is transparent to the switching center.

Many cluster vendors offer not only the user defined recovery schemes considered
here, but also dynamic load balancing schemes in case of a computer going down. The
unpredictable worst-case behavior and relatively long switch-over delays of such

R«
o ecovery mputer ()
mputer () list
Comp. 1
Input/Output | Comp. 2|
to process 0 Comp. 3
Recovery
mputer 1| list omputer |
Comp. 0 Input/Output «—»| -
Input/Output @ Comp. 3 to process 0 @
to process 1 Comp. 2| Input/Output «—»|
to process 1
Recovery
omputer list omputer
Comp. 1
Input/Output | Comp. 0 Input/Output «—»|
to process 2 Comp. 3| to process 2
R«
o seovery mputer 3,
mputer 3, list
Comp. 0|
Input/Output | Comp. 1 Input/Output «—»|
to process 3 Comp. 2| to process 3

Fig. 2. An application executing on a cluster with four computers
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Fig. 3. Load distribution in a telecommunication system when one
computer in the cluster crashes

dynamic schemes is, however, unattractive in many (real-time) applications. Also,
external systems cannot use dynamic load balancing schemes when they need to select
a new node when the primary destination for their output is not responding (see Figure
3). Consequently, the results presented here are very relevant for systems where each
node has its own network address. The large shared nothing clusters must know where
the job will go if the current computer crashes. The reason for this is that we make sure
that all necessary data are copied to the computer on which the job will be restarted in
the event of a crash, and for large clusters we cannot copy all data to every node in the
cluster. This means that we must use static schemes for large shared nothing clusters.
Finding good recovery schemes is thus a fundamental problem in distributed and clus-
ter systems.

We assume that the work performed by each of the » computers must be moved as
one atomic unit. Examples are systems where all the work performed by a computer is
generated from one external system or when all the work is performed by one process,
or systems where the external communication is handled by IP takeover [8] (in this
case all external traffic to one network address is rerouted as one atomic unit).

The case when there are a number of processes on each computer, and these pro-
cesses can be redistributed independently of each other is discussed in Appendix A.

The results are based upon general results which are summarized in Section 3. In
Section 4 we present previously used recovery schemes, the greedy and Golomb
recovery schemes. The modulo-m schemes are defined in Section 5 and compared with
the Golomb schemes in Section 6. Section 7 contains conclusions of the use of modulo
rulers.
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3. Previous work

We start by introducing some notations. Consider a cluster with » computers.

Let L(n,x, {cg,....cx.1},RS) (n > x) denote the load on the most heavily loaded com-
puter when computers cy,...,c,.; are down and when using a recovery scheme RS.

Let L(n,x,RS) = max L(nx,{cg,...,C..1},RS) for all vectors {c,...,c,.1}, i.e. for all
combinations of x computers being down. Consequently, L(n,x,RS) defines the worst-
case behavior. The recovery scheme should distribute the load as evenly as possible for
any number of failing computers x. Small values of x are (hopefully) more common
than large values of x.

Let V(L(n,RS)) represent {L(n,1,RS),...,L(n,n-1,RS)}. Note that VL is a vector of
length n-1 since we disregard from the case when all » computers have crashed.

We say that V(L(n,RS)) is consecutively smaller than V(L(n,RS’)) if the entries are
identical up to an index y, and for this index the value of V(L(n,RS)) is smaller than
V(L(n,RS’)). Hence, for some y < n we have

1. L(n,y,RS) < L(n,,RS’) and
2. L(n,z,RS) = L(n,z,RS’) for all z < y.

If y =1, it is enough that L(n,),RS) < L(n,),RS").

If V(L(n,y,RS)) is consecutively smaller than V(L(n,y,RS’)), we consider RS as a bet-
ter recovery scheme than RS’, e.g. for V' = V(L(n,y,RS)) = {2,2,3,3,3,4,4} and V'’ =
V(L(n,y,RS")) = {2,3,3,3,3,3,3} the V' is consecutively smaller than V. The behavior
when few computers are down is thus strongly prioritized compared to when many
computers are down.

The converse to “V(L(n,),RS)) is consecutively smaller than V(L(n,y,RS’))” is
“V(L(n,y,RS")) is consecutively larger than or equal to V(L(n,y,RS))”. Then either
V(L(n,y,RS)) and V(L(n,y,RS’)) are identical, or V(L(n,),RS)) is consecutively smaller
than V(L(n,y,RS")).

Let VL = min V(L(n,RS)), where minimum is taken over all recovery schemes RS.

In [6] we defined a lower bound B on VL, i.e. B < VL (B is a vector of length »-1) in
a way that the i:th entry in B is: B(i) = max(BV(i),[n/(n—1i)1]). BV is the bound
vectors of length [ = 2+3+4+.. +k, defined as: {2,2,3,3,3,4,4,4,4,5,5,5,5,5,.. .,k k,....k},
where the z:th entry in the sequence is equal to |_A/2(n +1)+ 1/2J .

We presented also recovery schemes RS for » < 11 such that V(L(n,RS)) = B. They
are refered as optimal recovery schemes when at most |_log2nJ computers break down.
In [6] we presented new recovery schemes - improved recovery schemes, called
also greedy recovery schemes, which are optimal for a larger number of important
cases. They are consecutively smaller than the schemes described in [6]. We also
showed that the problem of finding optimal recovery schemes corresponds to the
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mathematical problem of finding sequences of integers with minimal sum and for
which all sums of subsequences are unique.

In [5] another class of recovery schemes were presented: the Golomb schemes.
They are consecutively smaller than the greedy schemes. The advantage with the
greedy algorithm compared to the Golomb schemes is that we can easily calculate a
sequence with distinct partial sums also for large », where no Golomb sequences, also
called rulers, are known. The disadvantage with Golomb schemes is that the sequences
are known only for lengths up to 41912 (with the 211 marks), which means that for a
cluster with 41912 computers the work will be distributed evenly if 212 computers
break down. Only the first 373 Golomb rulers (with 23 marks) are known to be optimal
[11,12,13].

4. Greedy and Golomb Recovery Schemes

We will now describe Greedy and Golomb recovery scheme. These recovery
schemes are optimal for a larger number of important cases, but the results do not
cover load balancing when wrap-around occurs.

We start by defining R, i.e. the recovery list for process zero: (x) = min{j € N, },

such that for all ay, a,, by, b, that fulfill the conditions (1 <a; < by <x)and (1 <a, <

bl b2
by <x) and ((ay # ap) or (b; # b,)) we get Z r(l)+# Z r(l).
l=a l=a,

If > r(l) <n, then Ry(x) =" r(l), else Ry(x) = min{j € Ny — {Ro(1),....Ro(x-
=1 =1
1)}}. (n is a number of identical computers in a cluster)
All other recovery lists are obtained from Ry, by using R(x) = (Ry(x) + i) mod n.
In the definition of R we use the step length vector r. The important property in the

b
greedy recovery scheme is that all sums of subsequences Z r(l),(1<a<b<x)are

l=a
bl b2
unique, i.e. Z r(l) # Z r(/) when (1 <a;<b;<x)and (1 <ay<b,<x)and((a; #
I=a I=a,

ap) or (by # by)).

From the definition above we see that for large values of » (i.e. n > 289) the first 16
elements in R, for the greedy recovery scheme are: 1, 3, 7, 12, 20, 30, 44, 65, 80, 96,
122, 147, 181, 203, 251, 289. For n = 16, Ry= {1, 3,7, 12, 2,4, 5,6, 8, 9, 10, 11, 13,
14, 15}.

In [6] we have proved that the greedy recovery scheme is optimal as long as x com-
puters or less have crashed, where x = max(i), such that Ry(7) < m.
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A special case of the greedy recovery scheme is a sequence called the Golomb ruler
with » marks, which is defined as a sequence of positive integers

0 =d,<d,<...<d, such thatall (@ differences d; —d,;, with i <j are distinct. The

shortest Golomb rulers for a given number of marks are called Optimal Golomb Rulers
(OGRs).

A Golomb recovery scheme for a cluster with j computers is obtained from the
Golomb recovery list, which contains of two parts. The first part consists of an optimal
Golomb ruler with the sum less or equals j and the second part is filled with the
remaining numbers up to j-1.

Let GRy ; be the Golomb recovery list for process zero in a cluster with j computers.

It contains an optimal Golomb ruler with the sum less than or equals j and the remain-
ing numbers up to j-1. For instance for processor number zero in a cluster with 12
computers we have: GR ,={1,4,9,11,2,3,5,6,7,8,10}. All other recovery lists are

obtained from GRy ;, by using GR; (x) = (GR, ;(x)+i)mod(j+1) forall i<j.
0, i,j 0,/

The special case of the OGR is a perfect Golomb ruler, which exists where there are

n . .
2) , occurring in any order.

That means, that there is no “gap” in the triangle representation. Golomb et al. [1] have
proved that there are no perfect Golomb rulers when n > 4.

In the formulation which can be handled by Golomb rulers wrap-arounds are
ignored — i.e. the situations when the total number of jumps for a process is larger than
the number of computers in the cluster. The following formulation takes this into
account: Given a number (n) we want to find the longest sequence of positive integers
such that the sum and the sums of all subsequences (including subsequences of length

exact (@ differences (the consecutive integers from 1 to (

one) modulo n are unique.

5. Modulo Recovery Scheme

A modulo-n sequence is a sequence of positive integers {a,} for n >0, where no
two distinct pairs {a; a;}, {a;, a;} fori>jand k> [ of the numbers from the sequence
have the same difference modulo #, for all #>I(/+1)/2 + 1, where / is the length of
the sequence. For example, for / =4, {1,6,3,10}, {2,1,6,9} and {3,7,9,8} are examples
of sequences modulo-11. Figure 4 shows an example of a modulo-11 sequence with all
modulo differences. (the first zero is not counted to the length of the sequence)

A modulo sequence is used as the first values of a modulo recovery list for com-
puter number zero in a cluster with » computers. The rest of the recovery list is filled
with the remaining numbers up to #-1.
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Fig. 4. Modulo sequence for / = 5 and n = 11 with all differences

Let MR , be the modulo recovery list for process zero in a cluster with # computers
numbered from zero to n-1. Then for n» = 11 (and thus / = 4) we have: MR,
={1,6,3,10,2,4,5,7,8,9}, e.g. the first part in MRy 1 is a modulo-11 sequence for length
4 and the rest of MRy 1| is the remaining numbers up to n-1. That means that if the
computer number zero breaks down, then the process should be restarted first on com-
puter one, followed by computer six, followed by computer three and so on. The jumps
from the crashed computers are equal to the differences from the modulo sequence.

The modulo recovery scheme is obtained by the modulo recovery list for process i
in a cluster with » computers: MR, , = {(i + MR ,,(1)) mod n, (i+ MRy ,(2)) mod n, (i +
MRy ,,(3)) mod n,...,(i + MRy ,(n-1)) mod n}, where MR, (i) is the i:th entry in the
MRy ,,- For instance, for n = 4 we have: MR, = {1,3,2}, MR, ,, = {2,0,3}, MR, , =
{3,1,0}, and MR; , = {0,2,1}.

The number of computers in the cluster determines which different modulo scheme
to use. For instance, for the clusters with 11, 12, 13, 14, 15, 16, 17 (z) computers we
use modulo schemes with length 4 modulo 11. The recovery lists for particulary com-
puters are build as follows: MR;, = {(i + MR, (1)) mod z, (i+ MR ,(2)) mod z, (i +
MRy ,(3)) mod z,...,(i + MR ,(n-1)) mod z}, where MR, (i) is the i:th entry in the
MR .. For instance, for z = 5 we have: MR, .= {1,3,2}, MR, , = {2,4,3}, MR, , =
{3,0,4}, MR3 . = {4,1,0}, and MR; .= {0,2,1}.

Figure 5 presents an example of recovery list in a cluster with 11 computers when
computer zero has crashed.

Theorem 1: The modulo recovery scheme is optimal as long as x computers or less
have crashed, where x = max(i), such that MRy (i) < n.

In the following proof, all numbers modulo » are any of the positive integers 0, 1,...,
n - 1, denoting computers enumerated in this way.
Proof: Let y (0 <y < n) be the heaviest loaded computer when x computers have
crashed, where x = max(i), such that M, (i) <n.
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o 1 2 3 4 5 6 7 8 9%
|9999@999999

Z

A
M,()=7

Fig. 5. Modulo-11 recovery list for process zero

When x computers have crashed, process z (0 < z < ) will in the i:th step end up on

computer (z + Z r(j )) mod n (1 <i<x). By r(j) we denote the steps from the crashed
j=1

computers, which are the differences in the modulo sequence. This means that a pro-

cess that ends up on computer y after i steps was originally allocated to computer

(y — Z r(j)j mod #; and this process has passed computers (y — Z r(j)j mod 7,
=1 ji=2

(y - Z r(j)] mod#, ..., (y — Z r(j )] mod 7 before it reached computer y. The lists
ji=3 j=i

below show the x possible sequences of computers that need to be down in order for an

extra process to end up on computer y, i.e. if computer (y-7(1)) mod #» is down one

extra process will end up on computer y, if computers (y-r(1)-7(2)) mod » and (y-r(2))

mod 7z are down another extra process will end up on computer y, and so on.

1. (y— 21: r(i)) mod n

i=1

2. (y— ZZZ r(i)) mod #, (y— 22: r(i)) mod n
i=1 =
3 3 3
3. (yf ,»er(l)) mod 7, (yf Z r(z)) mod 7, (yf Z r(z)) mod n

i=2 i=3
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X. (y— i r(i)) mod n, (y— Z r(i)) mod n, ..., (y— Z r(i)) mod 7.

i=1 i=2 i=x
From the definition of modulo sequence we know that all sums of subsequences
modulo 7 are unique. This means that no computer is included in more than one of the

lists. Thus, the worst-case is clearly when the computers in the shortest lists have
1
crashed, e.g. for x = 3 the worst-case occurs when computer: (y - Z r(i )) mod » have

2 2
crashed, and then when computers (y - Z r(i)) mod 7, (y - Z r(i )) mod » have
i=1 i=2
1
crashed. Similarly for x = 6 the worst case occurs when computer: (y - Z r(i )) mod

i=1
2 2
n have crashed, and then when computers (y — Z r(i )) mod », (y - Z r(i )) mod »

i=1 i=2

3 3
have crashed, and then when computers (y - z r(i)) mod 7, (y - z r(i )) mod 7,
i=1 i=2
3
(y - Z r(i)) mod » have crashed.
i=3
We see that no computer is included into more than one of the x first lists. Based on

the previous results we know that the scheme is optimal as long as no computer is
included in two such lists. The theorem follows.

6. Golomb schemes vs. modulo schemes

A modulo sequence can be defined as a special case of a Golomb ruler with / marks

d,, d,, ..., d;, with the property that all (9 differences (dj - d;) mod n are distinct, for
i <Jj, and that all differences (dj - d;) mod n are non-zero. Since there are (9 differ-

ences, we necessarily have n > (Q + 1. A modulo sequence with exact (9 distinct

differences is called a perfect modulo ruler. Exhaustive searches indicate that there are
no perfect modulo rulers when /> 5.

In Table 1 modulo and Golomb sequences are compared. The sequences are equal
for small clusters. We are able to guarantee optimal load balancing for a larger number
of crashed computers if we use modulo sequences than Golomb sequences, which
means that Golomb schemes are consecutively larger than modulo schemes, and are
staying close to the BV vector for more crasches. For example, in the case of 76 com-
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Length of[Modulo Sequence m [Optimal Golomb Ruler n
sequence
X
I I 21 2
2 1.3 41,3 4
3 1,4,6 7 11,46 7
4 1,6,3,10 IT [1,4,9,11 12
5 1,3, 717,12 18 [1,4,10,12,17 I8
6 1,3,23,7,17,12 24 11,4,10,18,23,25 26
7 1,5,7,18,27,30,15 31 [1,4,9,15,22,32,34 35
8 1,4,30,15,38,17,22,10 40 (1,5,12,25,27,35,41,44 45
9 1,4,48,33,9,50,25,39,19 51 [1,6,10,23,26,34,41,53,55 56
10 1,5,49,58,15,18,39,41,47,12 62 |1,4,13,28,33,47,54,64,70,72 73
11 1,5,43,34,55,65,71,14,41,73,58 |76 [2,6,24,29,40,43,55,68,75,76,85 86
12 1,6,78,47,20,24,45,74,57,17,8,87 | 92 (2,5,25,37,43,59,70,85,89,98,99,106 | 107

Table 1. Comparing modulo sequences with optimal Golomb sequences
m = number of computers in a cluster that we can guarantee optimality
using scheme modulo m;
n = number of computers in a cluster that we can guarantee optimality
using Golomb scheme;

puters in a cluster, modulo sequences guarantee optimal behavior in the case of 11
crashes, while Golomb rulers only guarantee optimality for 10 crashes.

We remark that so called circular rulers are sometimes mentioned in the literature.
These are not identical to modulo rulers, since circular rulers consider the differences

(d;- dj) mod n for all i and j. Here there are in total n? differences which are required to

be distinct.

Consequently, Golomb schemes are not the best schemes, since modulo schemes are
proved to be better. If we consider all differences of a Golomb sequence, there are
unavoidable gaps if n > 4 (no perfect rulers). Modulo sequences have fewer gaps,
which allows optimal behavior for fewer computers. Optimal behavior is defined in
Section 3.

On Figure 6 we compare the performance of the modulo scheme (modulo) with the
performance of the scheme using Golomb rulers (golomb) and the performance of the
greedy recovery scheme (greedy) as a function of the number of computers. The per-
formance is defined as the number of crashes that we can handle while still guarantee-
ing an optimal load distribution. All of the schemes have the same behavior up to
seven computers in a cluster. For larger number of computers the behavior of the mod-
ulo scheme is better than Golomb or greedy schemes, e.g., for » = 100 the modulo
scheme guarantees optimal behavior even if 12 computers break down, while the
Golomb scheme guarantees optimal behavior if 11 computers break down and the
greedy scheme guarantees optimal behavior if 10 computers break down.
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7. Conclusions

In many cluster and distributed systems, the designer must provide a recovery
scheme. Such schemes define how the workload should be redistributed when one or
more computers break down. The goal is to keep the load as evenly distributed as pos-
sible, even when the most unfavorable combinations of computers break down, i.e. we
want to optimize the worst-case behavior which is particularly important in real-time
systems.

We consider # identical computers, which under normal conditions execute one pro-
cess each. All processes perform the same amount of work. Recovery schemes that
guarantee optimal worst-case load distribution, when x computers have crashed are
referred to as optimal recovery schemes for the values » and x. A contribution in this
paper is that we have shown that the problem of finding optimal recovery schemes for
a system with » computers corresponds to the mathematical problem of finding the
longest sequence of positive integers such that the sum and the sums of all subse-
quences (including subsequences of length one) modulo » are unique. No efficient
algorithm that finds the longest sequence with these properties is known.

We have previously obtained recovery schemes that are optimal when a larger num-
ber of computers are down, but they do not cover load balancing when wrap-around
occurs [6].

With modulo sequences we minimize the maximum load also in the event of wrap-
arounds. Modulo sequences allow optimal behavior for a larger number of crashed
computers than Golomb and greedy sequences. For example, in the case of 92-107
computers in a cluster, modulo-m sequences guarantee optimal behavior in the case of

[— modulo
golomb
- greedy |

Mumber of crashed computers
fior which we can guarantee cptimality

0 10 0 30 40 50 60 70 80 20 100
Number of computers

Fig. 6. Performance difference between the Golomb,
greedy and modulo scheme
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12 crashes, while Golomb rulers only guarantee optimality for 11 crashes, and greedy
scheme for 10 crashes.

The advantage with the greedy algorithm compared to other schemes is that we can
easily calculate a sequence with distinct partial sums also for large » where no Golomb
and modulo sequences are known. Golomb rulers are known for lengths up to 41912
(with the 211 marks) [11,12,13]. Of these the first 373 (with 23 marks) are known to be
optimal while modulo rulers are known only for 13 marks. Modulo sequences are
known only up to 92 computers in a cluster.

Our recovery schemes can be immediately used in commercial cluster systems, e.g.
when defining the list in Sun Cluster using the scconf command. The results can also
be used when a number of external systems, e.g. telecommunication switching centers,
send data to different nodes in a distributed system (or a cluster where the nodes have
individual network addresses). In that case, the recovery lists are either implemented
as alternative destinations in the external systems or at the communication protocol
level, e.g. IP takeover [8].
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Appendix A: Non-Atomic Loads

Hitherto, we have considered the case when all work performed by a computer
must be moved as one atomic unit. Obviously, there could be more than one process on
each computer and these processes may in some cases be redistributed independently
of each other, and in that case there is one recovery list for each process. In this appen-
dix we consider the case where there are p processes on each computer. We assume
that the workload is evenly split between the processes.

Previous studies show that, if there is a large number of processes on each com-
puter, the problem of finding optimal recovery schemes becomes less important [6].
The reason for this is that the intuitive solutions become better. Consequently, the
importance of obtaining optimal recovery schemes is largest when p is small compared
to n. In the main part of this paper, we have obtained results for p = 1. The techniques
used for obtaining those results are also useful when we consider p > 1.

We now define bound vectors of type p. The bound vectors discussed in Section 3
were of type one, i.e. p = 1. A bound vector of type p is obtained in the following way
(the first entry in the bound vector is entry 1):

1. t=p;i=1;j=1r=1v=1
Ifr=1thent=r+1;r=jv=v+lelse r=r-1
Let entry 7 in the Bound vector of type p have the value #/p
i=i+l
Ifv=pandr=1thenj=;+1;v=0
Go to 2 until the bound vector has the desired length.

SANRANE e

A bound vector of type two looks like this (note that the load on each computer is
normalized to one when all computers are up and running): {3/2,4/2,4/2,5/2,5/2, 6/2,
6/2,6/2,7/2,7/2,7/2,8/2, 8/2, 8/2, 8/2,9/2,9/2,9/2,9/2,10/2,...

A bound vector of type three looks like this: {4/3, 5/3, 6/3, 6/3, 7/3,7/3, 8/3, 8/3,9/
3,9/3,9/3,10/3, 10/3,10/3, 11/3, 11/3, 11/3, 12/3...

A bound vector of type four looks like this: {5/4, 6/4, 7/4, 8/4, 8/4, 9/4, 9/4, 10/4,
10/4, 11/4, 11/4, 12/4, 12/4, 12/4, 13/4,...

We now extend the definition of VL to cover not only the case when p = 1, but also
the case when p > 1. Consequently, VL(x) (1 <x < n) denotes the maximum number of
processes divided with p (in order to normalize the original load to one) on the most
heavily loaded computer when using an optimal recovery scheme and when x comput-
ers are down, not only when p = 1 but also when p > 1.

Based on p and » we now define B in the following way: B(i) = max (entry i in the
bound vector of type p, [ pn(n—1i)1/p).

When p =2 and n =12 we get: B = {3/2,4/2,4/2,5/2,5/2, 6/2, 6/2, 6/2,7/2, 12/2,
24/2}%.

For p < n, we have previously defined a recovery scheme - the p-process recovery
scheme - that is optimal as long as at most |_10g2 Ln/pﬂ computers break down [6]. We
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call it p-process because we consider the case where there are p processes on each
computer when all computers are up and running.

We now define the modulo p-process recovery scheme. The scheme is defined
when p < n (remember that optimal recovery schemes are most important when p is
small compared to #). We will show that this recovery scheme is optimal also when
significantly more than |_10g2 L n/p ] computers break down. In fact, the results pre-
sented in Section 5 correspond to the case when p = 1.

Let M, be the modulo scheme for some » and M (k) be k entry in M. Let then M;;
denotes the modulo recovery list for process j (0 <j < p) on computer i (0 < i <n). We
define M; ; based on My, i.c. the recovery scheme for process zero in the single-process
recovery scheme defined in Section 5.

If Mo(k) + jLn/p ] < n, then M; (k) = (Mo(k) + i + jLn/p ]y mod n, else M; (k) = (M(k)
+i+ Jtn/pj + 1) mod n, where M; ;(k) denotes integer number £ in the lists for process

on computer i.
The table below shows the recovery lists when n =11 and p = 2.

Moo 1,6,3,10
My, 6,084
My | ZTAD
M, 7193
My 3851
M, 82,106
My | 4962
My 9.3.0.7
My 510,73
My, 104138

Theorem 2: Let MRS,, denote the modulo p-process recovery scheme for » computers
with p processes on each computer, and let B be a bound vector of type p. In that case
the first entry in V(L(n,RS,)) is equal to B(1), the second entry in V(L(n,RS,)) is equal
to B(2), the third entry in V(L(n,RS,)) is equal to B(3), ..., the x:th entry in V(L(n,RS,))
is equal to B(x), where x = max(i), such that Ry(7) < Ln/p.

Proof: The proof is similar to the proof of Theorem 1. As in that proof, all numbers
modulo 7 are any of the positive integers 0, 1,...,n - 1.

Let y (0 < y <n) be the heaviest loaded computer when x computers have crashed,
where x = max(i), such that Ry(i) < |_n/pJ The lists below show the x*p possible
sequences of computers that need to be down in order for an extra process to end up on
computer y.

1.1 (y— zl:r(i)) mod »

i=1

1.2 (y— Zz: r(i)) mod », (y— ZZ: r(i)) mod n

i=1 i=2
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l.x (y—zx: r(i)) mod 7, (y— Z r(i)) mod #, ..., (y—_i r(i)) mod n

i=1 i=2 i=x

2.1 (y— 21: r(i) — Ln/pj) mod 7

i=1

2.2 (y— 22: r(i)— Ln/pj) mod n, (y - Zz: r(i)— Ln/pj) mod n

i=1 i=2

2x (yf Zx“ r(i) — I_n/pj) mod n, (yf i r(i)— I_n/pj) mod #, ...,

i=1 i=2

(yf z r(i)— I_n/pj) mod n

1=X

p.1 (y— zl:r(i)—(p— I)Ln/pj) mod n
=1
2

p.2 (y— > r(i)—(p- I)Ln/pj) mod 7, (y— 22: r(i)—(p—- l)I_n/pJ) mod n

i=1 i=2

pX (y— Zx: r(i)—(p— l)Ln/pJ) mod 7, (y— Zx: r(i)—(p— l)I_n/pJ) mod #, ...,

i=1 i=2
(y - Zx: r(i)—(p— 1)|_n/pj) mod 7.
i=x
Since x = max(i), such that Ry(7) < Ln/pJ, we see that no computer is included into
more than one of the lists one to x. By looking at the proofs of Theorem 4 and Theorem
3, we see that the bound is optimal as long as no computer is included in two such lists.

The theorem follows.
]
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Abstract

Clusters and distributed systems offer fault tolerance and high performance through
load sharing. When all computers are up and running, we would like the load to be
evenly distributed among the computers. When one or more computers break down the
load on these computers must be redistributed to other computers in the cluster.

The redistribution is determined by the recovery scheme. The recovery scheme
should keep the load as evenly distributed as possible even when the most unfavorable
combinations of computers break down, i.e. we want to optimize the worst-case behav-
ior.

We have previously defined recovery schemes that are optimal for some limited
cases. In this paper we find a new recovery schemes that are based on so called
Golomb rulers. They are optimal for a much larger number of cases than the previous
results.

Keywords: high performance computing, clusters, fault tolerance, recovery
scheme, Optimal Golomb Rulers, load balance.

125



126



Paper V: Extended Golomb Rulers as the New Recovery Schemes in
Distributed Dependable Computing

1 Introduction

Load balancing and availability are important in online distributed dependable sys-
tems. Krishna and Shin define fault tolerance as “an ability of a system to respond
gracefully to an unexpected hardware or software failure” [13]. Many fault-tolerant
computer systems mirror all operations, e.g. every operation is performed on two or
more duplicate systems so that if one fails the other can take over its job. In [2] fault
tolerance for distributed computing is discussed from a wide viewpoint. An advantage
of using clusters, besides fault tolerance, is load sharing between the computers [15].

One can handle this problem dynamically, where transfer decisions depend on the
actual current system state. A problem with dynamic policies is that they are rather
unpredictable. The other way is to use static policies that are generally based on the
information of the average behavior of the system. Here, the transfer decisions are
independent of the actual current system state. That makes them less complex and
more predictable than dynamic policies [7].

The problem studied in this paper is: how to evenly distribute the load among the
running computers, when one or more computers in a cluster go down? We consider
static redistribution of work.

There is a primary computer that executes the application under normal conditions
and a secondary computer that takes over when the primary computer breaks down.
There may also be a third computer that takes over when the primary and secondary
computers are both down, and so on. When all computers are up and running, we
would like the load to be evenly distributed. The load on some computers will, how-
ever, increase when one or more computers are down, but also under these conditions
we would like to distribute the load as evenly as possible on the remaining computers.
The distribution of the load when a computer goes down is decided by the recovery
lists of the processes running on the faulty computer. The set of all recovery lists is
referred to as the recovery scheme. Hence the load distribution is completely deter-
mined by the recovery scheme regardless of the number of computers that are down.

Most cluster vendors support this kind of error recovery, e.g. the nodelist in Sun
Cluster [17], the priority list in MC/ServiceGuard (HP) [5], the placement policy in
TruCluster (DEC) [4], cascading resource group in HACMP (IBM) [6], and the node
preference list in Windows Server 2003 clusters (Microsoft, earlier called MSCS) [14].

The problem of finding optimal (or even reasonably good) recovery schemes has
been studied in [8,9,10]. In this paper we calculate the recovery schemes, that guaran-
tee load balance for larger number of computers in a cluster and are simply to calcu-
late. The work considers the worst case scenario which is very relevant in real-time
systems.

The problem formulation is presented in Section 2. Our previous research on this
problem is described in Section 3. In sections 4 and 5 we present our main results. The
conclusions are presented in Section 6.
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2. Problem formulation

We assume that the work performed by each of the » computers must be moved as
one atomic unit. This is a very common scenario including cases when:

* the work performed by a computer is generated from one external system (in this
case the recovery schemes are implemented in the external systems as second,
third, fourth,... alternative destinations (alternative cluster nodes) in case the pri-
mary, secondary,... destination goes down);

* there is one network address for each computer and we use IP takeover (or similar
techniques);

+ all the work performed by a computer is done by one process or a group of related
processes that share local resources and thus must be moved as one unit.

In [11,12] we discuss the case when there are a number of independent processes on
each computer. The results presented here can be easily generalized to the case with a
number of independent processes on each computer using the same technique as in the
previous papers [11,12].

Consider a cluster with » identical nodes, which under normal conditions execute
one process each. All processes perform the same amount of work. We will find a
recovery scheme for the cluster that determines where the process should be restarted
if its current node goes down. The recovery scheme should keep the load balanced in a
cluster when even the most unfavorable combination of nodes go down. The recovery
scheme should also be possible to calculate for large » in polynomial time.

A recovery scheme R consists of n recovery lists - one list per process. Let S be a

sequence of distances, i.e. a sequence of positive integers S = (s, Sy, ..., S, _1) >
where ZJI S (i=1,...,n-1) is the distance between the crashed node and the node on
which the process should be restarted in the i:th step. Let then R, be a recovery list for
process 0 (executing on computer 0). The recovery list R, we construct from the
sequence S: Ry = (0,8, 8, + 8y, 8 +8,+85, ...,8,+...+s5,_1).

(we come back to this in Section 4.4)
When one node in a cluster is down, the load on the most loaded node in a cluster

(let us call it node Z) will contain two jobs: its own and the job from the node Z -, .

When two nodes in a cluster are down, there are two possibilities. If the two first
numbers in the sequence are equal (s, = s,), the load on Z can contain three jobs: its

own, from node Z — s, and from node Z— (s, +s,) . This situation is presented on Fig.
la). The nodes Z—s, and Z— (s, +s,) are the crashed nodes. The second possibility
is when two first numbers in a sequence are different (s, #s,) . In that case, Z can con-

tain only two jobs: its own and from the node Z—s, or from Z— (s, +s,). This situa-
tion is presented on Fig. 1b).
Consequently, the worst-case load on Z is less when s, # 5, than when s; = s,.
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Fig. 1. The scenario with three crashed nodes a) when s = s, b) when s, # s,

Fig. 1b) also shows the situation when three nodes in a cluster are down and s, # s, .
Then the load on Z can contain three jobs: its own and from nodes Z—s, and

Z— (s, +5,). Note, that in this case node Z —s, is also a crashed node.

The worst-case for three crashed nodes is when the first three numbers in a
sequence are equal, i.e. s, = s, = s5. In that case, Z will contain four jobs: it’s own

and from nodes Z—s,, Z— (s, +5,) and Z—(s; + s, +53).

We are interesting in finding a recovery scheme, where, in the worst-case scenario,
the load on the node Z is minimum.

3. Previous research

In [12] the authors initiate the problem of finding a recovery scheme that can guar-
antee optimal worst-case load distribution when at most k£ computers are down. The
schemes should have as large k as possible. The authors present and prove the Log
algorithm, that generates the recovery schemes that guarantee optimality where at
most |_log2nJ computers go down. Optimal means that the maximal number of pro-

cesses on the same computer after k crashes is MV(k), where the function MV(k) pro-
vides a lower bound for any static recovery scheme. The function MV is described later
in Section 4.1.

Another algorithm, called Greedy, is presented in [11]. This algorithm generates the
recovery schemes that give optimality for a larger number of cases than the Log algo-
rithm, (i.e. Greedy guarantees optimality also when more than Llogsz computers go

down.). The Greedy algorithm is based on the mathematical problem of finding the
sequence of positive integers such that all sum of subsequences are unique and mini-
mal. It is simple to calculate the Greedy algorithm even for large n. The recovery list
for process zero, executing on computer number zero, consists of two parts. The first
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part is a sequence from the Greedy algorithm, and the second part is filled with the
remaining numbers. The other lists are obtain from the first list by adding one in the
modulo sense (as described in Section 2 in the present paper). The recovery scheme
consists of all recovery lists.

A special case of the Greedy algorithm is an algorithm called Golomb, described in
[9]. The name of this algorithm comes from the Golomb ruler (called also the spanning
ruler), which is a sequence of non-negative integers such that no two distinct pairs of
numbers from the set have the same difference. These numbers are called marks and
correspond to positions on a linear scale. The difference between the values of any two
marks is called the distance. The shortest Golomb rulers for a given number of marks
are called the Optimal Golomb Rulers (OGRs) [3]. The search for Optimal Golomb
Rulers becomes more difficult as the number of marks increases. It is known as an NP-
complete problem [16]. The problem of finding OGRs for a large number of marks is
still open. An example of the representation of OGR with four marks is shown in Fig.
2. It is possible to measure the distances: 1; 2; 3; 4 as 1+3; 5; 7 as 5+2; 8 as 3+5; 9 as
1+3+5; 10 as 3+5+2 and 11 as 1+3+5+2, but we cannot measure the distance 6.

Optimal Golomb Ruler

1 3 5 2
Fig. 2. The ruler presentation of the OGR with four marks

The Golomb rulers can also be presented as a triangle, where each number repre-
sents the difference between a specific pair of the numbers. Fig. 3 shows an example
with four marks (same example as in Fig. 2).

0 1 4 9 11

9 10
11
Fig. 3. The triangle presentation of the OGR

In the Golomb rulers the wrap-arounds are ignored, i.e. the situations when the total
number of “jumps” for a process is larger than the number of computers in the cluster.
(a “jump” is a distance between a crashed node and a node on which the process
should be restarted). Including the wrap-arounds gives a new mathematical formula-
tion of finding the longest sequence of positive integers such that the sum and the sums
of all subsequences (including subsequences of length one) modulo n are unique (for a
given n). This mathematical formulation of the computer science problem gives new
more powerful recovery schemes, called Modulo schemes, that are optimal for a larger
number of crashed computers than the Golomb schemes [10].

All these algorithms (Log, Greedy, Golomb and Modulo) guarantee optimality for a
certain number of crashed computers in a cluster. In [8] we calculate the best possible
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recovery schemes for any number of crashed computers. Due to the computational
complexity of the problem, finding such a recovery scheme is a very complex task. We
are only able to present the optimal recovery scheme for a maximum of 21 computers
in a cluster (n <21).

Here we present new recovery schemes that are based on the Optimal Golomb Rul-
ers but guarantee optimal behavior for a much larger number of crashed nodes.

4. Recovery schemes

4.1. The lower bound MV

The function MV(k) is a lower bound for any recovery scheme:

MV(k) = max(BV(k), [..Z.’_I_CD <L(n k,R) for all k=1,2,...,p [12]. Here
n —

L(n,k R) is the load on the most loaded computer in the cluster with » computers using

the recovery scheme R, when the most unfavorable combination of & computers are
down. The vector BV is increasing and contains exactly k entries that equals & for
k>2. The j:th entry in the BV equals I_A/2(]'+ 1)+ 1/2J. Hence,
BV =(2,2,3,3,3,4,4,4,4,5,...). The numbers increase by one at the L(-l--zt—l-)

entryforlZl,i.e.BV(l(lz;l)) =1/+1.

Definition 1. We say that a recovery scheme is optimal for q crashed nodes if it is tight
up to g with the bound vector MV, i.e. L(n, k,R) = MV(k) fork =1, ...,q.

For two crashed nodes in a cluster MV(2) = 2. As long as s, #5s, the recovery

scheme is optimal for two crashed nodes. When s, = s, the recovery scheme is not

optimal.
4.2. The sequence S

Definition 2. By a crash route C; we define a sequence: <(s;+sy+...+s;), (SoF...5;),...,
s;>. The j:th entre in the sequence C; we denote by C; ;.

Then there are the following crash routes:
crash route C;: 51,

crash route Cy: (s17153), 57,
crash route C3Z (S1+S2+S3), (S2+S3), 53, ie. C3,2 = (52+S3).

The problem of finding a sequence that is optimal up to & crashed nodes we formu-
late as follows:
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Find a sequence S = (s, s, ..., s,,) of positive integers such that:

. . . k
1. the sum of the elements in the sequence is less than equal n, i.e. Zi _,Sisn

2. 1= L—NSICJ;“J (we come back to this in Section 5)

!
3. the first | crash routes are disjoint, i.e. ~  C, = &, (i.e. the number of unique
k=1
!

Y Cy
k=1

values equals: = 1(12;1) )

4. the following l(l; D_ I crash routes have at least | unique values compared to the

y—1
Cy“uk:lck

I(1+1)

previous crash routes, i.e. <y-lforl<y< —

4.3. Example of the sequence

Let n =19 and §=<1,3,2,5,2,5>. We present the sequence and its crash routes as a
triangle (see Fig. 4). The bold numbers are all different. The first three crash routes
(C={1}; C,={4.,3}; C5={6,5,2}) are disjoint. In the following crash routes there are at
least 3 unique values. It is simple to calculate that for / = 3 the number of crashed
nodes is smaller than 9. Thus this sequence should be optimal up to at least 8 crashed
nodes.

Fig. 4. Triangle representation of the sequence

Fig. 5 presents an outline when using the sequence <1,3,2,5,2,5>. The load on Z
increases by one when all nodes from the crash route are down. In this example the

load on Z increases when Z—-C, | = Z—1 is down, the nodes from the crash route
Cyie. Z-Cy |y = Z-4 and Z-C, , = Z-3, the nodes from the crash route C3,
ie. Z-Cy =2-6,Z-C3, =2-5,Z—-C; 5 = Z-2, and the nodes from the
crash route; C,4. After nine crz;shed nodes the loaél on Z increases by four (four crash

routes). If in the crash route C4 only two nodes would crash, then the load on Z would
increase only by three. From the bound vector we know that M¥V(9) = 4, so the scheme
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will be not optimal for nine nodes in our example. However, MV(8) = 4 and that the
scheme guarantee optimality for 8 crashed nodes.

3

1
I AT
3 2 5

Fig. 5. Example of using a sequence <1,3,2,5,2,5>. Here the load on Z after 9 crashes
equals 5. N.B. crash routes C5 and C,4 share computer Z-5

Theorem 1: A recovery scheme constructed in a way when the first C, crash routes

l(l; D have at

for 1 <x </ are disjoint and the following C), crash routes for /<y <

. . . Y
least / unique values compared to previous crash routes (i.e.|C, N Uk . Cl<sy-1)

+/—1 nodes crash.

guarantees optimality when at most %*1)

Proof: First we will show that if the first C, crash routes for 1 <x </ are disjoint

. . +
then the recovery scheme guarantees optimality as long as Z(ITI) nodes from these

crash routes have crashed. Let Z (0 < Z < n) be the heaviest loaded node when x nodes
have crashed.
When x nodes have crashed, process z (0 < z < n) will in the i:th step end up on a

i
node z + Z s; (1 <i<x). It means that a process that ends up on node Z after i
=1

steps was originally allocated to a node Z— Z s; and this process has passed the
=1

following nodes Zfz A z Sis s Zfz S; before it reached node Z.
=2 =3 =i

It means that the process passed all the nodes Z—C, ., forall j = 1, ..., i, where C; J

ijo
is a crash route for the i:th entry in the sequence S and the j:th entry in the crash route.
The lists below show the x possible sequences of the nodes that need to be down in

order for an extra process to end up on the node Z, i.e. if node Z — s, is down one extra
process will end up on node Z, if nodes Z— (s, +s,) and Z—s, are down (and

s, #8, ) another extra process will end up on node Z, and so on.
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.Z-s, =2-C,
2.Z—(51%89),2-5y=2-Cy,Z-Cy,
3.Z—(sytsyt83), Z-(s,%583), Z=53=2-C3 1, Z-C;3 5, Z-Cy 5

X X X
X. Z—zj:lsj,Z—zjzzsj,...,Z—Zj:xsj =Z-Ci .., Z-C, .

The first / crash routes are disjoint. It means that no node is included in more than
one of the lists. Thus, the worst case is clearly when the nodes in the shortest lists have

crashed, e.g. for k= 3 the worst case occurs when the node from the crash route Z - C,
has crashed, and then when the nodes from the crash route Z— C, have crashed. It
means that after three crashes the load on the node Z has three jobs. The lower bound
MV(3) = 3, so the optimality follows. Similarly for £ = 6 the worst case occurs when
the nodes from Z—C,, Z—- C, and Z— C; have crashed. It means that six nodes have

crashed and the work on the node Z is four. The lower bound MV (6) = 4 and the

optimality follows.
The number of different nodes in the crash routes is equal to

1+2+3+...+1 = 1I(l+1)/2 and consequently for £k = /(/+1)/2 the worst case

occurs when the nodes from Z-C,, Z—C,,.., Z—C, have crashed. Because
MV(l(lz;l)) — +1, the optimality follows.

The crash route Cj;; has / unique values compared to the previous crash routes, i.e.
it has one value that is included in one of the previous crash routes. This means, that
the process from node Z— C;, |, will pass / new nodes to end up on the node Z and one
node that is already down.

When only /-1 nodes crash from the crash route Cy., then the process from node

Z—C,;,, donot end up on the node Z and the load on Z will be still /+ 1. The opti-

mality is guaranteed because M V(Z-(-%—D +/- l) =/+1.

Analogically, / — 1 nodes from the crash route Cy,, can crash to guarantee optimality

for ZQ—-%F—D + /-1 crash nodes, because Cy, has / unique values compared to the

previous crash routes and two values that are included in the previous crash routes.

+ . . .
It needs l 3 D_ [ crash routes with /unique values compared to the previous crash
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routes to still guarantee optimality for L l;_r D +/—1 crash nodes.

Thus the recovery scheme when the first / crash routes are disjoint and the following

+ . .
AUV [ crash routes have at least / unique values compared to previous crash routes

guarantees optimality when at most %*1) +/—1 nodes crash.

4.4. Regular recovery scheme

In this paper we mainly consider regular recovery schemes, when all lists have the
same structure, based on one recovery list (R, ). The recovery list R, we construct
from the sequence of distances S:

Ry =(0,8,8 +8y8 t8,+85 ..,8+...+5,_1).

Then the recovery schemes are constructed as fallows:

R, = {(ry+i)modmn, ..., (r,+i)mod n} for 0<i<n, where r, = s, + ... +s,; is
the i:th position in the vector Ry, .

For example, for » = 6 we have following regular recovery scheme given by the
vector: R, = (0,1,3,5):

Ro: 1,3,5

R1:2,4,0

Ry:3,5,1

R3:4,0,2

R4:5,1,3

R5:0,2,4

where R; is a recovery list for computer number i. Here, the sequence § = <1,2,2>.

The first zero in a vector R, remains a computer’s number. For a clarity when

describing recovery lists, we omit the computer’s number.
The set of regular recovery schemes with length » (n computers) is denoted by
R(n). There are clearly (n—1)! different such sequences with n computers, so

R(n)| = (n—1)!.
4.5. Example of the recovery scheme based on the sequence

Letn =19 and § =<1,3,2,5,2,5>. Then a recovery list based on this sequence is: R
=<0,1,4,6,11,13,18>. This recovery scheme is optimal for 8 crashed nodes.
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Fig. 6 shows a triangle with a recovery list and all differences between the numbers
in the list. All the bold numbers are different.
0 1 4 6 11 13 18
1 3 2 5 2 5
4 5 7 7 17
6 10 9 12
1 12 14
13 17
18

Fig. 6. The difference triangle

We see, that the first three crash routes are disjoint. (C;={1}; C,={4,3};
C3={6,5,2}) and in the rest of the crash routes there are at least / = 3 unique values.
I(1+1) iy

2

The bold numbers in a triangle build a kind of trapezium. Therefore the new
schemes constructed in this way we will call the trapezium schemes.

Thus, this sequence is optimal up to at least —1 = 8 crashed nodes.

5. Trapezium recovery schemes vs. Golomb recovery schemes

The first / crash routes in the trapezium recovery scheme are called the Golomb rul-
ers [1,3]. The Golomb recovery scheme is a regular recovery scheme. For » nodes in a

cluster we build a recovery list R, by using the known Golomb ruler with the sum less

or equal to n, and the rest of the recovery list is filled with the remaining numbers up to
n-1, e.g. for n = 12 we have the list <1,4,9,11,2,3,5,6,7,8,10>.

The trapezium recovery schemes are based on the Golomb rulers and filled with the
numbers that construct the new crash routes. The trapezium recovery schemes give the
better optimality than the Golomb schemes.

In Table 1 the load balancing of the trapezium and Golomb schemes are compared.
The optimal load balancing is guaranteed for a larger number of crashed nodes if we
use the trapezium sequences than the Golomb sequences, which means that trapezium
schemes are staying close to the MV vector for more crashes. For example, in the case
of 127 computers in a cluster, the trapezium sequences guarantee optimal behavior in
the case of 21 crashes, while Golomb rulers only guarantee optimality for 13 crashes.

Table 1 shows some examples of the sequences. For intermediate values of & we use
either the smaller sequence or we can simply find a new trapezium sequence using the
nearest Golomb ruler and build new crash routes. For example, if the number of nodes
in a cluster is 15 then using the sequence with the sum 5 the optimality is guaranteed
for 4 crashes. Examples of the trapezium sequences are presented in Table 2.
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number of nodes in a
cluster = sum of the

max number of
crashes using trape-

number of nodes in a
cluster = sum of the

max number of
crashes using Opti-

trapezium sequences| zium sequences Optimal Golomb |mal Golomb Rulers
Rulers

5 3 6 3

16 6 17 5

41 10 44 8

73 15 72 10
127 21 127 13
201 28 199 16
305 36 283 19
390 45 372 22

Table 1. Comparing t

he trapezium sequences with the optimal Golomb sequences

Figure 7 compares the performance of the trapezium scheme (“trapezium”), with
the performance of the scheme using Golomb rulers (“golomb”) as a function of the
number of nodes in a cluster (7) up to n = 1024. The performance is defined as the
number of crashes that we can handle while still guaranteeing an optimal load distribu-
tion when the most unfavorable combination of computers crash. There are no big dif-
ferences between the schemes for small #n. For larger » the behavior of the trapezium
scheme is much better than Golomb schemes, e.g., for » = 100 the trapezium scheme
guarantees optimal behavior when 15 nodes break down, while the Golomb scheme
guarantees optimal behavior if 10 computers break down. The larger steps in the trape-
zium curve are because k and / are depend on each other, i.e.

(-1

+1-1
5 l

<k<

E

g

Tor

MNumbers of crashed computers for which we can guarantee optimality

I+,
2

400

500

/-1 (see also Section 4.2).

Trapezium

800 700 800 900

Number of nodes in cluster

Golomb

1000

Fig. 7. The “performance” difference between the trapezium scheme (“trapezium”)
and OGRs scheme (‘golomb")
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The sum |Examples of the trapezium sequences
of the
sequence

5 1,2,2

16 1,3,2,6,1,3

41 1,3,5,2,6,6,6,3,3,6

73 1,3,6,2,5,13,1,9,2,3,8,5,6,3,6

127  [1,3,6,8,5,2,20,6,5,1,10,12,2,4,3,5,11,5,10,1,7

201 |1,3,5,6,7,10,2,24,3,11,2,20,2,2.8,6,2,19,2,6,6,2,13,10,2,14,6,7

305 [1,4,7,13,2,8,6,3,28,14,3,1,17,3,18,10,2,7,9,3,18,9,7,9,3,9,18,3,8,8,4,13,2,14,3,18

390 [1,5,4,13,3,8,7,12,2,36,1,5,4,13,3,8,7,12,2,36,1,5,4,13,3,8,7,12,2,36,1,5,4,13,3,8,7,
12,2,36,1,5,4,13,3
566 1,3,9,15,5,14,7,10,6,2,40,22,8,3,19,15,7,4,26,3,6,3,12,26,2,1,10,14,11,10,10,11,18,
2,4,14,17,4,9,15,20,1,10,6,7,15,23,8,8,15,1,21,1,10,2
708 |2,4,18,5,11,3,12,13,7,1,9,48,2.4,18,5,11,3,12,13,7,1,9,48,2,4,18,5,11,3,12,13,7,1,0.4
8,2,4,18,5,11,3,12,13,7,1,9,48,2,4,18,5,11,3,12,13,7,1,9,48,2,4,18,5,11,3
987 [2,3,20,12,6,16,11,15,4,9,1,7,69,2,24,5,19,1,24,9,31,2,7,1,16,18,16,5,16,3,30,9,7,1,1
4.44.3.10,17,7,11,6,12,13,6,21,21,1,28,1,20,4,17,7,1,5,19,18,16,5,8,13,30,10,6,26,
10,11,9,16,29,1,10,7,25,2,19,7
1175 |4,2,14,15,17,7,18,1,8,3,10,23,5,56,4,2,14,15,17,7,18,1,8,3,10,23,5,56,4,2,14,15,17,
7,18,1,8,3,10,23,5,56,4,2,14,15,17,7,18,1,8,3,10,23,5,56,4,2,14,15,17,7,18,1,8,3,10,
23,5,56,4,2,14,15,17,7,18,1,8,3,10,23,5,56,4,2,14,15,17,7,18
1559 |4,16,10,27,2,3,14,24,11,12,13,8,1,6,95,3,45,5,13,18,18,18,17,19,6,13,6,15,31,4,13,1
5,2,23,34,10,7,14,12,18,10,6,28,11,6,14,33,20,2,9,12,22,9,25,9,1,5,35,15,8,20,19,1,1
6,21,16,11,31,9,6,19,12,2,30,17,15,23,2,3,14,14,9,8,29,1,17,32,8,2,33,5,23,13,9,6,
21,18,22,8,23,5,14,18,7,22
Table 2. Examples of the trapezium sequences

6. Discussion and conclusions

In many cluster and distributed systems, the designer must provide a recovery
scheme, which define how the workload should be redistributed when one or more
computers break down. The goal is to keep the load as evenly distributed as possible,
even when the most unfavorable combinations of computers break down.

We consider a cluster with » identical nodes, which under normal conditions exe-
cute one process each. All processes perform the same amount of work. Recovery
schemes that guarantee optimal worst-case load distribution, when k computers have
crashed are referred to as optimal recovery schemes for the values » and .

The recovery schemes presented here can also be used in clusters with a number of
independent processes on each computer. This is discussed in [11] and [12].

A contribution in this paper is that we have presented new recovery schemes, called
trapezium recovery schemes, where the first part of the schemes is based on the known
Golomb rulers, (i.e. the crash routes are disjoint) and the second part is constructed in a
way, where the following crash routes have at least / unique values compared to previ-
ous crash routes. The Golomb recovery schemes are presented in [9]. The trapezium
recovery schemes guarantee better performance than the Golomb schemes and are
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simple to calculate. For small number of nodes in a cluster there is no big difference
between these schemes. But for a larger number of nodes the behavior of the trapezium
recovery scheme is much better than the Golomb schemes (which are the current state-
of-the-art), e.g., for » = 201 the trapezium scheme guarantees optimal worst-case
behavior for 28 crashes, while the Golomb scheme can only guarantee this for 16
crashes.

The goal of this paper was to find good recovery schemes, that are better than the
already known and are easily to calculate also for large ». In previous work [8] we
have found the best possible recovery schemes for any number of crashed nodes in a
cluster. To find such a recovery scheme is a very computationally complex task. Due to
the complexity of the problem we have only been able to present optimal recovery
schemes for a maximum of 21 nodes in a cluster.

The trapezium recovery schemes can be immediately used in commercial cluster
systems, e.g. when defining the list in Sun Cluster using the scconf command. The
results can also be used when a number of external systems, e.g. telecommunication
switching centers, send data to different nodes in a distributed system (or a cluster
where the nodes have individual network addresses). In that case, the recovery lists are
either implemented as alternative destinations in the external systems or at the commu-
nication protocol level, e.g. IP takeover [15].
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Optimal Recovery Schemes in Fault Tolerant
Distributed Computing

Kamilla Klonowska, Lars Lundberg, Hakan Lennerstad, Charlie Svahnberg
Acta Informatica, 41(6), 2005

Abstract

Clusters and distributed systems offer fault tolerance and high performance through
load sharing. When all n computers are up and running, we would like the load to be
evenly distributed among the computers. When one or more computers break down,
the load on these computers must be redistributed to other computers in the system.
The redistribution is determined by the recovery scheme. The recovery scheme is gov-
erned by a sequence of integers modulo n. Each sequence guarantees minimal load on
the computer that has maximal load even when the most unfavorable combinations of
computers go down. We calculate the best possible such recovery schemes for any
number of crashed computers by an exhaustive search, where brute force testing is
avoided by a mathematical reformulation of the problem and a branch-and-bound
algorithm. The search nevertheless has a high complexity. Optimal sequences, and
thus a corresponding optimal bound, are presented for a maximum of twenty one com-
puters in the distributed system or cluster.

Keywords: distributed systems, recovery scheme, failure, load balance, integer
sequences
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1 Introduction

One way of obtaining high availability and fault tolerance is to execute an applica-
tion on a cluster or distributed system. There is a primary computer that executes the
application under normal conditions and a secondary computer that takes over when
the primary computer breaks down. There may also be a third computer that takes over
when the primary and secondary computers are both down, and so on. Another advan-
tage of using distributed systems or clusters, besides fault tolerance, is load sharing
between the computers. When all computers are up and running, we would like the
load to be evenly distributed. The load on some computers will, however, increase
when one or more computers are down, but also under these conditions we would like
to distribute the load as evenly as possible on the remaining computers. The distribu-
tion of the load when a computer goes down is decided by the recovery lists of the pro-
cesses running on the faulty computer. The set of all recovery lists is referred to as the
recovery scheme. Hence the load distribution is completely determined by the recovery
scheme for any set of computers that are down. The problem of finding optimal (or
even reasonably good) recovery schemes has been studied in [16,17]. In the present
paper we calculate the best possible such recovery scheme for all #.

Most cluster vendors support this kind of error recovery, e.g. the nodelist in Sun
Cluster [27], the priority list in MC/ServiceGuard (HP) [12], the placement policy in
TruCluster (DEC) [11], cascading resource group in HACMP (IBM) [14], and node
preference list in Windows Server 2003 clusters (Microsoft, earlier called MSCS) [22].

In [5] fault tolerance for distributed computing is discussed from a wide viewpoint.
Load balancing and availability are specially important in fault tolerant distributed sys-
tems, where it is difficult to predict on which computer the processes should be exe-
cuted. This problem is NP-complete for the larger number of computers [30].

Krishna and Shin define the fault tolerance as an ability of a system to respond
gracefully to an unexpected hardware or software failure [18]. Therefore, many fault-
tolerant computer systems mirror all operations, e.g. every operation is performed on
two or more duplicate systems in that sense, that if one fails the other can take over its
job. This technique is also used in the clusters [23].

One can handle this problem dynamically, where transfer decisions depend on the
actual current system state. The other way is to use static policies that are generally
based on the information of the average behavior of the system. Here, the transfer deci-
sions are independent of the actual current system state. That makes them less complex
and more predictable than dynamic policies [15].

Besides hardware failures, the intermittent failures can occur due to software
events. In [29] a “two-level” recovery scheme is presented and evaluated. The recov-
ery scheme has been implemented on a cluster. The authors evaluate the impact of
checkpoint latency on the performance of the recovery scheme. For transaction-ori-
ented systems, in [7], Gelenbe has proposed “multiple check pointing” approach that is
similar to the multi-level recovery scheme presented in [29]. A mathematical model of
transaction-oriented system under intermittent failures is proposed in [9]. Here, the
system is assumed to operate in a standard checkpoint-rollback-recovery scheme. In
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[3] and [8] the authors propose several algorithms which can detect tasks failures and
restart failed tasks. They analyze the behavior of parallel programs represented by a
random task graph in a multiprocessor environment. However, all these algorithms act
dynamically.

Our results are also valid when there are n external systems feeding data into the
cluster, e.g., one telecommunication switching center feeding data into each of the »
computer in the cluster. If a computer breaks down, the switching center must send its
data to some other computer in the cluster; i.e., there has to be a recovery list associ-
ated with each switching center. The fail-over order can alternatively be handled at the
communication protocol level, e.g. IP takeover [24]. In that case, redirecting the com-
munication to another computer is transparent to the switching center.

Many cluster vendors offer not only the user defined recovery lists considered here,
but also dynamic load balancing schemes when a node goes down. The run-time over-
head and unpredictable worst-case behavior of such dynamic schemes may, however,
be unattractive in many applications. More importantly, external systems do generally
not have access to the internal state of the cluster, and can thus not use dynamic load
balancing schemes when they need to select a new node when the primary destination
for their output is not responding.

The problem area and formulation are presented in Sections 2 and 4. Our previous
research on this problem is described in Section 3. In Section 5 we present main
results. The tightness of the lower bound presented in [16,17] is investigated in Section
6. In the same section we describe the algorithm of finding optimal sequences. The
conclusions are presented in Section 7.

2 Problem area

In this section we present a model explaining terminology used in this paper.

In Appendix A we discuss the case when there are a number of independent pro-
cesses on each computer. However, until then we assume that the work performed by
each of the » computers must be moved as one atomic unit. This is a very common sce-
nario including cases when:

+ the work performed by a computer is generated from one external system;

* there is one network address for each computer and we use IP takeover (or similar
techniques);

+ all the work performed by a computer is done by one process or a group of related
processes that share local resources and thus must be moved as one unit.

Some computer networks, such as hypercubes [1,10], restricts the communication
paths in the system, so that a message from computer 4 to computer B may in some
cases have to be routed through a computer C (or D,...). However, many bus-based
systems, e.g. systems using an ethernet [13], allow direct communication between any
pair of nodes in the cluster [26]. We assume that it is possible to restart a job on any
computer in the cluster (or redirect a communication channel in the case of external
systems feeding data to the cluster).
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We consider a fully connected distributed system or a cluster with » identical com-
puters. During normal operation there is one process on each computer. The work is
evenly split between these n processes. Each process has a recovery list, which deter-
mines at which computer the process is to be restarted if the current computer breaks
down. If that computer is down, the process is transferred to the next computer in the
list, and so on. We assume that processes are moved back as soon as a computer comes
back up again. In most cluster systems this can be configured by the user [12,27,28],
i.e. in some cases one may not want automatic relocation of processes when a faulty
computer comes back up again.

The process at computer i, 0 <i<n -1, is transferred to computer x; ; if computer
i goes down. If also computer x; | goes down, or is down before computer i goes
down, the same process is transferred to computer x; , and so on. Generally, if all the
COMPULers x; y, X; 5, ..., X; ;_ are down, and computer x; j is up, the process that was
initially at computer / is at computer x; ;. Figure 1 shows an example of relocation of
the process from computer 0. The computers 0, 1 and 6 are down. Consequently, the
process from computer 0 is on the computer X3 = 3.

Ieﬁeueueﬁeﬁeﬁeﬁeﬁeﬁeﬁ;j

X =6

X 7V /V/V\ g4 A A
| u%ueueﬂgﬁeueueueﬂ

X, = Xp3=3

N =2 /
X XEEEE XEEES)
\J7

Xe1 =

Fig. 1. A transfer of a process from computer 0
We call the sequence x; |, X; 5, ..., X; ;. arecovery list for computer i to x; ;- In

our example the chain for computer 0 starts with <1,6,3,...>.
A set of n recovery lists is called a recovery scheme. A general recovery scheme R
has thus the following appearance:

0 X0 15X0,25 s X0, p— 1
Loy X0 Xy 1
Pl X, g Xy 1 e Xy g
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In order to avoid directing a process to a computer that we know has crashed, all
entries in a recovery list need to be distinct.
We mainly consider regular recovery schemes. Then all lists have the same struc-

ture, given by a vector R = (0, R, R,, ..., R, ), as follows:
0:(RLRy, ....,R,_ D

1: (R, +1,Ry+1,.. R, +1)

n—

n-l1: (R +n—-1,R,+n—-1,..,R

mod 7.

._1 T n—1) where all numbers are calculated

We denote the first computer by R, = 0 and all computers x,; by R; for

i = 1,...,n—1. Note that a process initially at computer 0 is at computer R; after
crashes.

For example, for n = 6 we have following regular recovery schemes given by the
vector R = (0,1,3,5,4,2):

0:1,3,5,4,2
1:2,4,0,5,3
2:3,5,1,0,4
3:4,0,2,1,5
4:5,1,3,2,0
5:0,2,4,3,1.

b

The set of regular recovery schemes with length » (n computers) is denoted by R(#n).
There are clearly (n—1)! different such sequences with » computers, so

R(n)| = (n—1)!.
3 Previous research

In previous work we have presented algorithms that give recovery schemes which
are optimal for a number of crashed computers.

In [20] the problem of finding a recovery scheme that can guarantee optimal worst-
case load distribution when at most x computers are down is presented for the first
time. The schemes should have as large x as possible. We present and prove the Log
algorithm, which generates the recovery schemes that guarantee optimality where at
most Llogsz computers go down. Here optimal means that the maximal number of

processes on the same computer after k crashes is BV(k), where the function BV(k) pro-
vides a lower bound for any static recovery scheme. BV is by definition increasing and

contains exactly k entries that equals k for all £>2 . The j:th entry in the vector BV

equals I_A/2(j+ 1)+ 1/2J . Hence,
BV(p) = <2’293’3’39434’494’5’5’5’595’6’"'>'
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In [16] we present two other algorithms, Greedy algorithm and the Golomb scheme.
These algorithms generate the recovery schemes that give better optimality than Log
algorithm, (i.e. better load balancing). The Greedy algorithm is based on the mathe-
matical problem of finding the sequence of positive integers such that all sum of subse-
quences are unique and minimal. It is easy to calculate the Greedy algorithm even for
large n. The recovery list for computer number zero consists of two parts. The first part
is a sequence from the Greedy algorithm, and the second part is filled with the remain-
ing numbers. The other lists are obtain from the first list by adding one in the modulo
sense. The recovery scheme is then a scheme consisting of all recovery lists.

The Golomb scheme is a special case of the Greedy algorithm. The name of this
algorithm comes from the Golomb ruler [2,6]. The mathematical formulation has been
changed into looking after the longest sequence of positive integers such that the sum
of the sequence is smaller than or equal to » and all sums of subsequences (including
subsequences of length one) are unique, where # is the number of computers in a clus-
ter. The Golomb recovery lists are formulated such as the Greedy recovery lists: for £
computers in a cluster we build a recovery list for computer zero by using the known
Golomb ruler with the sum less or equal to £, and the rest of the recovery list is filled
with the remaining numbers up to k-1, e.g. for k=12 we have the Iist
<1,4,9,11,2,3,5,6,7,8,10>. All other recovery lists are obtain from the first one by add-
ing one in the modulo sense.

The Golomb schemes give optimality for a larger number of computers down than
the Greedy scheme. However, finding (and proving) optimal Golomb schemes
becomes exponentially more difficult as the number of computers (#) increases
[32,33]. Therefore, for large n we can easily calculate a sequence with distinct partial
sums with the Greedy algorithm, where no Golomb sequences are known.

In [17] we optimize the problem by taking into account the wrap-around scenario:
process being sent backwards or passing by the initial computer. This corresponds to
the new mathematical problem of finding the longest sequence of positive integers for
which the sum of all subsequences are unique modulo #. This mathematical formula-
tion of the computer science problem gives new more powerful recovery schemes,
called modulo schemes, that are optimal for a larger number of crashed computers in
the original computer science problem. L.e. these results represent state-of-the-art in
the field. The modulo recovery scheme is formulated such as the Greedy and Golomb
recovery schemes.

Characteristics and discussion of some examples of schemes are presented in Sec-
tion 5.4.

4 Problem formulation
In this section we first define a load on the most heavily loaded computer after p

crashes. Then we are looking after optimal recovery schemes by choosing the schemes
that minimize this load.
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4.1 Worst case load

Let L(n,p,J,R) (n>p) denote the load on the most heavily loaded computer
when p computers J = {jj, ..., j,} are down, and when using the recovery scheme R.

Let L(n,p,R) = max,L(n,p,J,R) for all vectors J = {j,,...,j,}, i.e. for all
combinations of p computers being down. L(#n, p, R) defines the worst-case behavior
after p crashes. We often regard L(n, p, R) as a sequence in the variable p and call it a
load sequence.

For example, if p = 3 we may have: L(n, {1,2,3},R) = (2,2,3), for (n>p)
and the recovery scheme R. It means, that if one computer is down, the load on the
most loaded computer is equal to 2, when two computers are down, then the load is

also equal to 2, but when three computers are down, then the load on the most loaded
computer equals 3 (in the worst-case scenario).

4.2 Consecutive load balancing

When load balancing, we are giving strict priority to a small number of computers
down compared to a large number. We call this consecutive load balancing, which we
next formulate mathematically.

We define the set R(n, p) of recovery schemes that minimizes the maximal load for
1,2, ..., p computers down in formula:

R(n,p) = {R € R(n)|L(n,i,R)= min L(n,i,P),i=1, ...,p}.
P e R(n)
Since L(n, 1, R) = 2 for any scheme R, we have R(n, 1) = R(n), i.e. all schemes
minimize the maximal load when only one computer is down. Then the maximal load

on the most loaded computer equals two. When two computers are down, the load on
the most loaded computer may be two or three. Because we are looking after mini-

mum, the schemes that give load three are canceled, and R(#, 2) contains all recovery
schemes where this load is two.

Now, among the schemes in R(n,2) we choose the schemes that minimize the load
on the most loaded computer when three computers are down, to form the set R(n, 3).
Thus by definition: R(n,3) c R(n, 2).

Thus, the set R(n, 3) contains the recovery schemes that minimize the load where

we give priority to the performance when two computers are down over three comput-
ers down. This is consecutive load balancing, which we next define in general.

In general we form R(n, p + 1) from R(n, p) by choosing the recovery sequences

in R(n, p) which has minimal L(n, p+ 1, R). Hence, R(n, p) is non-empty for all
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p=1,..n-1, and we have the inclusion R(n,p+1)cR(n,p) for all
p=1..,n-1.

Note that there might exist recovery schemes R ¢ R(n,p) so that
L(n,p,R)<L(n,p,R") for all R" € R(n,p). Then L(n, i, R)>L(n,i,R") for some
R' € R(n, p) and i < p. This is a consequence of the consecutive load balancing.

The sequence L(nm, 1,R),L(n,2,R),...,L(n,n—1,R) 1is identical for all
R € R(n, n—1). This optimal load sequence is denoted by SV.

The table below shows some examples of the sequences modulo 6. There are 5! pos-
sible sequences.

the sequences p=1|p=2{p=3|p=4|p=5
R1=1{0,1,3,542} 2
R2=10,1,3,5,2,4} 2
2

2

R3 =1{0,3,1,4,2,5}
R4 =1{0,2,4,1,5,3}
R5 =1{0,2,4,1,3,5} 2
Table 1. Examples of the sequences mod 6

LI W N | DN
W| W K[ W W
B W B B W
QN N O N O

These sequences are accepted when one computer is down (belongs to R(6,1)). For
two crashed computers the sequences R4 and RS are excluded, the remaining belong to
R(6,2). For three crashes R3 is excluded, and for four crashes R2 is excluded. In conse-
quence, the optimal sequence in this example is R1. If we look only on the sequences

R3 and R4 then we have that R4 ¢ R(6,4) in spite of the fact that
L(6,4,R4) < L(6,4,R3),because for p = 2 we have L(6,2,R4)>L(6,2,R3).

4.3 Optimal recovery schemes

The sequences in R(n, p) are sometimes referred to as p-optimal sequences.

Definition 1. The set R*(n) = R(n,n—1) is the set of consecutively optimal recovery
schemes.

The main aim of this paper is to describe the sets R*(n) for all » and its load
sequence SV. By comparison with the previous work in this field as described initially
in Section 3, such a description would exhaust this problem formulation.

Let MV = max(B V), [LD . For all R e R(n) it is proven in [20] that
n-j
MV <L(n,j,R) forallj = 1,2,...,p.
It is not known if the lower bound MV is tight. In this paper we investigate the tight-
ness of the bound MV by the optimal load sequence SV of R*(n). We present an algo-
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rithm with which we calculate the optimal bound SV. In many instances, when we have
a larger number of crashed computers, SV do not coincide with MV.

5 Main results

In this section we present a method to reach the maximum load on the worst-case
behavior after p crashes.

5.1 Computer chains

Calculation of optimal sequences becomes feasible by the following formulation of
the problem in chains and unions of chains. To study the load balancing, we switch
perspective to the point of view of a computer y that receives processes from several
crashing computers.

A chain is a subsequence x; |, X, ,, ..., x; ; of arecovery list L,(y) that end at com-

puter y,i.e. y = x, ;. It thus represents the path that the i:th process (the process on the
i:th computer) takes to end up at computer y. The variable j denotes the number of

crash steps to y. If y = x; ;, we say that process i has distance j to computer y. Since

ij>

the entries x; ; are distinct for each fixed i in each regular recovery list, there exists

J
exactly one process with distance j, for all 1 <j < n. We may then order the chains by
increasing distance to y:

L, = {y1,1},
LZ = {yz,layzyz}a

Ly v = nr0Vn1,0 5 Yn-1n-1}-

In this section all recovery schemes and chains are counted in modulo sense.

There can not be two chains of the same length, since that would imply that the pro-
cesses were originated at the same computer.

We summarize: Each chain represents a way for a process to be transferred to the
computer y by subsequent computer crashes. Each entry in the chains represents a
computer that goes down.

A regular recovery list gives the chains:

{y =R} (mod n),
{yfRzayf(szRl)} (mOd I’Z),
{y—R3,y—(R3—Rl),y—(R3—R2)} (mod n),

=R, ,y-(R, ;=Ry),....y=(R, | =R, ,)} (modn)
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We may alternatively describe a regular recovery scheme R = {0, R, ...,R,_;}
by the differences » = {r, 7y, ..., ¥,_,} . We define

ry = R, (mod n),

ry = Ry — R, (mod n),

ry = Ry —R, (mod n),

r,_1 =R, ,—R,_ | (modn).

and thus
R, = r| (mod n),

R, = r; +r, (mod n),
R

The regular recovery schemes are then given by:

w1 = rtryt . +r,_ | (modn).

O: {r,rytryritry+ry,..,ry+...+r,_ |} (modn),

L {r 1, +ry+1,.,r+...+r, +1} (modn),

n-l:{ri+n-1,..,r+...+r, +n-1} (modn).

The chains of computers ending at y are as follows:
{y—ri} (modn),
{y=(ry+ry),y—ry} (modn),

= +trytr),y—(ry+rs),y—r;} (modn),

n—1

-+ tr, ), y=(ry ytr, ), y—r, ;) (modn).

The properties we are interested in are more easily studied in the following version:
C, = {ry} (modn),

C, = {rtry,ry} (modn),

Cy = {r trytry,r,+r;,ry} (modn),

g ={rnt..+r

bees Py ot r,_1,r,_1} (modn).

n—
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5.2 An example of a sequence

For n=7 a regular recovery list for computer 0 @ is:
{Ro, R, Ry, ...,Rg} = {0,1,4,6,2,3,5}, described by differences (mod 7) r:
{riryr,_y = {1,3,2,3,1,2}.

The chains of computers ending at y are then as follows: {y—1}mod 7,
{y-4,y-3}tmod 7, {y—6,y—5,y—2} mod 7, and so on. The studied sequences
are: C; = {1}, C, = {4,3}, C; = {6,5,2} and so on. Hence, we present the dif-

ferences diagonally from down to up in a triangle on Fig. 2.
0 L4 -6 2 3 5

Fig. 2. The difference triangle for n = 7.

5.3 Normal sequences

The requirement that the entries in R = {0, R, ...,R,_,} are distinct transforms

for the differences » = {r,r,,...,7,_;} into the requirement that all consecutive

partials sums are non-zero (mod n):

b
Definition 2. A sequence r = {r, ¥y, ..., ¥,_,} is normal if Z r;#0(mod n) for all

i=a

1<a<b<n-1.

Lemma 1: R has distinct entries <> r is normal.

J k
Proof: We have R, = R;, 0<k<j<n-—1, if and only if Zrl. = Zri(mod n),
i=1 i=1
J
which is true if and only if Z r; = 0(mod ») . The lemma is proved.
i=k+1
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Hence, if any consecutive partial sum is n, then R, = R; for some i # ;. Note also
that the modulus is one more than the length of the difference sequence. For example
sequences of 1:s only are normal, r = {1,1,1,...}, corresponding to
R ={0,1,2,...}. As we have noted before, there are (n—1)! different normal

sequences of length n» — 1. Only normal sequences give useful recovery schemes.

5.4 Examples: Golomb, greedy and modulo sequences

As we will see below, for optimality in terms of load balancing, we will need that as
b
many as possible of the partial sums Z r; are not only non-zero, but also distinct. A

1=a
Golomb sequence is a sequence where all consecutive partial sums are distinct, and,
preferably, the total sum is minimal (see [16]). Golomb sequences are however not
constructed for the modular scenario which we consider in this paper. Furthermore, in
this scenario the minimal sum is irrelevant. Golomb sequences are presented here
since they are important in a neighboring scenario, and as examples of recovery
schemes.

The first Golomb sequences are

g=12

g'=11.3,2

2 =1{1,3,52}

g=1{1,3,6,5,2}

g =1{1,3,6,8,5,2}

with corresponding sum sequences:
G*=10,1,3}

G*=1{0,1,4,6}

G>=1{0,1,4,9,11}

G°=1{0, 1,4, 10, 15, 17}

G'=1{0,1,4,10, 18,23, 25},

taken modulo the length gives the sequences
{0, 1, 0} (mod 3)

{0, 1, 0,2} (mod 4)

{0,1,4,4, 1} (mod 5)

{0, 1, 4,4, 3,5} (mod 6)

{0,1,4,3,4,2,4} (mod 7).

Hence, none of these Golomb sequences are normal (the sum sequences do not have

distinct entries). As remarked before, Golomb sequences are not constructed for the
modular scenario of this paper. However these sequences can be completed into nor-
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mal sequences by adding computers and thus increasing the length and the modulo, for
example as follows:

C3=140,1, 3,2} mod 4

c*=10,1,4,6,2,3,5 mod 7

C>=1{0,1,4,3,5, 2} mod 6

c®=10,1,4,10,3,5,2,6,7,8,9, 11} mod 12

C7=1{0,1,4,10,2,7,9,3,5,6,8, 11,12, 13, 14, 15} mod 16.

We mention another sequence that has distinct partial sums {1, 2, 4, 8, 16, 32,...} -
the Log sequence. This sequence is not very dense. The last entry is large, hence it
needs to be completed by many entries possibly giving a large number of non-distinct
partial sums. Therefore we often want to minimize the size of the last entry.

Another construction of a sequence with distinct partial sums is the greedy sequence
(see [19]). This is rapid to generate and is more dense than the Log sequence. Also for
these sequences we apply the procedure of filling the sequence with remaining com-
puters. We start by defining G, (i.e. the recovery list for process zero):

g(x) = min{j € N, }, such that for all a,, a,, b,, b, that fulfill the conditions

(1<a,<b,<x), (1<a,<b,<x) and ((a, #a,) or (b, #b,))

h] b2
weget 3 g()# 3 g().
I=a I=a,

If 3" g(/) <n,then Go(x) = Y g(/),else
I=1 I=1

Gy(x) = min{j e N, — {Gy((1), ..., Go(x— 1))} } .

From the definition above we see that for large values of » (i.e. n > 289) the first 16
elements in G, for the greedy recovery scheme are:

1,3,7,12,20,30,44,65,80,96,122,147,181,203,251,289.

Then for n =16, Gy= {1,3,7,12,2,4,5,6, 8,9,10,11,13,14,15}.

The modulo sequences ([17]) are, like Golomb sequences, different for different
number of computers - they do not build upon the same initial values. The sum of ele-
ments is insignificant in this kind of sequence.

Examples of the first modulo sequences are:

m>={1,2} mod 3

m*={1, 4,6} mod 7

m ={1,6,3,10} mod 11
m®=1{1,3,7,17, 12} mod 18
m’ ={1,3,23,7,17, 12} mod 24.
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5.5 Load balancing by chains

As discussed before, each sequence (ry,...,r,_;) defines n—1 chains:
Ci={r+...trprn+. . +r,..,r}t,i=1..,n-1.
Let us consider the most loaded computer. If we, for example, pick three chains Cil ,

C, ,and C, , it will require |Ci v, v, | crashes to obtain the processes y; |,
3 1 2 3 1

iy?
Vip and Vi, 1 On computer y (see Section 5.1), by crashing all computers in the lists
C,,C, ,and C, .

1> Th 3

Obviously, if the lists are not disjoint, so that |Ci1 vC Ci3| is not a disjoint

union, there are some computers whose crash give multiple effect in transferring pro-
cesses to 3, and the number of crashes needed is smaller. Thus, after |Cf1 vVl

crashes we obtain 1 +|{i, i, i3}| = 4 processes on y.

In general we have the following:
Theorem 1: Let / = {i,,...,i,} (for s >0) be a certain set of processes which all are

transferred to computer y if all computers in \U C; go down. For a recovery scheme R

iel
and if p crashes occur, we have L(n,p,R) = 1+ mgx{i = I;VL|\U C; Sp}.
1 iel
Proof: In general, the set \U C; corresponds to the case that [\U C,| = p computers
iel iel

go down. In order to compute the worst case we have to investigate all unions \U C;
iel
with U C;

iel

<p.Then we have 1 +s processes on the same computer.

We next rephrase the problem slightly for the sake of the algorithm.

There are in total 2" ' — 1 possible unions of the sets C, ..., C,,_, . We denote the

n

unions by U; = U C;, where j = 1, ..., 2"~ ', As described, each union U; has two
iel

properties which are interesting for our purposes: the number of sets s;, and the num-

ber of distinct elements p;. The number s; is sometimes called the depth of the union
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U;, and the number p; is called the size of U;. We may reformulate the definition

UG

iel

L(n,p,R) = 1+ max{z =|1]; VI, <p} in terms of size and number of sets:

L(n,p,R) = {max(1+s,); VU; p;<p}.

The 2" ' =1 unions U C, are generated from C,, ..., C

iel

.1 by successively add-

ing sets to previously generated unions. We can arrange the (n—1)! sequences
(0,R,, ..., R, ) together with all possible subsequences of shorter length in a rooted
tree, where two sequences are related if they are identical except that the last entry is
missing in one of them. Hence, (0,R,,...,R,) and (0, P,, ..., P;) are related if
R, = P, foralli = 1,...,min(k, /) and |k—1 = 1. The empty sequence is the root

in the tree, and all recovery schemes are the leaves. We call this tree the sequence tree
(see Fig. 3).

n=>5 /\\
sy AN AN

{R05R17R25R3’R4} = {07 15 23 4’3}

01 2 4 3 {rior,ry,ryg = {1,1,2,4}
DI —a-ma=n2n.6=- 63,
4 2 C, = 1{3,2,2,4}
3 and 2" '~ 1 = 15 possible unions:

C,Cy Cy, Cp, CLuCyu Gy U Cy,

ClulC,, Cluls, CiulC,, C,ul,, C,uCy,
CyuC,, CLuC,uC,, CLulC,u(y,
CluCyu(C, CuCyuCy.

Fig. 3. Example of a sequence tree for n =15
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In principle, we thus need to investigate all 2"~ "1 possible unions for each of the

(n—1)! sequences. However, there are several ways to exclude large sets of
sequences and unions. The following lemma gives a condition with low complexity
that categorizes a large class of sequences as non-optimal. The lemma first requires a
definition.

Definition 3. We say that BV is tight up to q if there is a recovery scheme R so that
L(n,i,R) = BV(i) fori = 1,...,q.

Lemma 2: Suppose that BV is tight up to ¢g. Then all partial sums of 7 up to BV{(q) need
b
to be distinct if R is n-optimal recovery scheme. In other words, the numbers Z r; for

i=a

allaand b, 1 <a<b<BV(q), are distinct.

Proof: Suppose the contradiction, i.e. that two partial sums are equal, say at row i and
j. Assume that i > . Then we would after i(i +1)/2—1 crashes obtain i+ 1 proc-

esses on the computer with heaviest load. This contradicts the optimality of R.
|

This means that we can start with the previously calculated modular sequences (see
[17]). We say that such sequences satisfy the modular condition. If a modular sequence
has distinct subsequences up to m numbers in the sequence, these m initial numbers
can be used as the start of the sequence, and there remains (n —m —1)! sequences to
investigate for optimality.

6 Tightness of MV

We here investigate for which values of » and g the bound MV is tight. The tight
bound is called SV. The tightness of M} may follow from a previously generated
sequence. Thus, if we have one recovery scheme that follows MV up to ¢, we can dis-
card all recovery schemes where not all partial sums up to ¢ are distinct.

The following algorithm finds all consecutively optimal recovery schemes. If there
is a previous sequence which has p-optimality, we immediately can cancel the investi-
gation of a sequence which does not have p-optimality. Then also an entire branch of
the sequence tree, the branch which has identical initial sequence, may be removed.
This is a consequence of the consecutive load balancing.

Furthermore, by Lemma 2 and the modular condition, a large class of non-optimal
sequences may be removed. If a sequence is found to be non-optimal, the search con-
tinues at a neighboring branch.
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6.1 Algorithm

In the algorithm, the sequences 4 and B belong to the set of all possible permuta-
tions of integer numbers from 1 to # that fulfills the modulo condition (see Lemma 2).

Let p,(4) = min {p;:VU,} for all unions U; with depth d (the depth is the number

of sets in the union).

1. Let 4 be a sequence that satisfies the modulo condition and calculate p (4)<p (B)
foralld=1,..,n-1;
2. while (the set of remaining sequences satisfying the modulo condition is non-empty)
do begin
3. Let B be a sequence that satisfies the modulo conditions that not yet has been con-
sidered;
4. Letd=1;
5. while d < n do begin
a) if p(4) < p,(B) then begin
break and goto 2); /I B is canceled
end;
b) if p(4) = p4(B) then begin
d=d+1; // check the next depth
goto 5)
if p(4) > py(B) then begin
A=B; /I A 1s canceled
calculate p y4) <pyB)foralld=1,.., n-1;
break and goto 2);
end;
end;
end;
6. SV =<p(A), pr(A), ..., p,,.1(A)>, where SV is the optimal sequence vector.

The figures below (Fig. 4, 5 and 6) show the relation between the bound vector MV
and the optimal vector SV for n equal to 10, 15 and 20. For a lower number of crashes,
the bound vector MV is tight, but not for a larger number. For example, for n = 10
MYV is tight up to seven crashes (Fig. 4). For eight crashes the difference between MV
and SV is one. This means that it does not exist a recovery scheme for ten computers
with behavior as MV for any number of crashes up to eight crashes.

In a distributed system with 15 computers (Fig. 5) the bound MV is tight up to eight
crashes. Surprisingly, MV is not tight for nine crashes, but it is tight again for ten
crashes.

For 20 computers in a distributed system the bound is tight up to thirteen crashes
(Fig. 6). The bound MV is trivially tight when » — 1 computers break down (d = n - 1).
Then all processes are at one computer.
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n=10

number of crashed computers on the most loaded computer

number of crashed computers

Fig. 4. SV vector versus MV vector for n =10

n=15

2

nurnber of crashed computers on the most loaded computer
@

z 4 & 8 10 12 14
number ef crashed computers

Fig. 5. SV vector versus MV vector for n =15

n=20

8
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CJ

=
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=
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-

number of crashed computers on the most loaded computer
2

r

2 4 [ 8 10 12 14 16 18
number of crashed Oﬁmpmfs

Fig. 6. SV vector versus MV vector for n =20

To show the differences between MV and SV we first present a graph of bound vec-
tors MV (see Fig. 7) for distributed systems consisting of up to 21 computers. The fig-
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ure presents the load on the most loaded computer when g computers in a distributed
system go down.

* 3 = 3

]

the load on the most loaded computer
=

B 2 @ o

10

15 -
nurmber of 10 15 number of
crashed computers 5 20 computers in a cluster

Fig. 7. Bound vectors MV up to 21 computers in a distributed system

In Fig. 8 we present the minimal load on the most loaded computer for various num-
ber of computers that break down, i.e. the vectors SV.

the load on the mest loaded computer
H

i [
15 = 10
10 : 15 number of
number of 5 20 computers in a cluster
crashed computers

Fig. 8. Vectors SV up to 21 computers in a distributed system

Fig. 9 shows the performance difference between SV and MV for all » up to 21. For
n <9 the bound MV is tight for any number of crashes (we consider a maximum of »
- 1 crashes). The max number of crashed computers where SV coincide with MV is pre-
sented in Tab. 2. The table shows also examples of the optimal sequences.

Fig. 10 shows to which extent MV is tight. In the grey area MV is tight, since MV =
SV here. For larger values of crashed computers g, MV < SV, so MV is not tight. This
area is the same as the area in Fig. 8 where the difference between MV and SV is zero.
It follows that the area cannot be further extended. The line on the figure is a result of
the best modulo sequences presented in [17].
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48

number of
0 crashed
computers

12

10
number of computers in the cluster B g

number of crashed computers

number computers in the cluster

Fig. 10. Comparison of the optimal recovery schemes sequences with
the modulo sequences

7 Discussion and conclusions

In many distributed systems and clusters, the designer must provide a recovery
scheme. Such schemes define how the work load should be redistributed when one or
more computers break down. The goal is to keep the load as evenly distributed as pos-
sible, even when the most unfavorable combinations of computers break down, i.e. we
want to optimize the worst-case behavior. This is particularly important in real-time
systems.

Hardware fault tolerance techniques can be divided into fault detection and fault tol-
erance [24]. Different techniques are used to examine fault detection and there is a
broad body of research in that area (e.g. [4,21,25,31]). The fault detection problem is
outside the scope of this paper.

We consider » identical computers that execute one process each. All processes per-
form the same amount of work. Recovery schemes that guarantee optimal worst-case
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b max number of
:; Irlr(l) deers crashed nodes where Examples of optimal sequences
ISV coincide with MV
i 3 0,1,3,2
5 4 0,1,3,2,4
6 5 0,1,3,5,4,2
7 6 0,1,4,6,2,3,5
8 7 0,1,3,7,5,6,2,4
9 8 0,1,3,7,5,2,8,6,4
10 7 0,1,5,3,2,9,7,8,4,6
11 7 0,1,6,3,10,2,4,5,7,8,9
12 8 0,1,4,9,11,6,3,2,5,7,8,10
13 8 0,2,7,6,3,10,5,1,4,8,9,11,12
14 8 0,6,1,5,3,11,2,4,7,8,9,10,11,13
15 8 0,1,6,8,4,11,2,3,5,7,9,10,12,13,14
16 8 0,1,6,8,4,11,2,3,7,5,9,10,12,13,14,15
17 8 0,1,6,8,4,13,2,3,7,5,9,10,11,12,14,15,16
18 11 0,2,11,8,3,7,5,1,4,6,9,10,12,13,14,15,16,17
19 12 0,1,8,12,6,3,11,2,4,5,7,9,10,13,14,15,16,17,18
20 13 0,1,8,13,4,10,7,6,2,3,5,12,11,9,16,14,15,17,18,19
21 13 0,1,9,11,7,14,3,2,5,6,8,10,12,13,15,16,17,18,19,20

Table 2. Optimal sequences

load distribution, when x computers have crashed, are referred to as optimal recovery
schemes for the values » and x. In this paper we present an algorithm that gives opti-
mal recovery schemes for any number of crashes. The complexity of the algorithm is
exponential.

Optimal recovery schemes are computed for up to 21 computers. We also compare
the results to the previously presented lower bound MV [20]. The results show that for
up to nine computers, SV = MV for any number of computers down, so in this interval
the bound MV is tight. For more than nine number of computers, MV is tight only when
a few number of computers go down. Comparing with the results in [17], the perfor-
mance difference expressed by the difference between SV and MV is larger than
expected.

This paper provides an exhaustive solution of the pre-problem formulation of static
fault tolerance. Optimal sequences are calculated, i.e. sequences that give optimal load
distribution for any number of crashed computers. The problem formulation is very
natural for the scenario of static recovery schemes.

In order to use these schemes one must have some mechanism for detecting when a
computer fails. This can be done in different ways, e.g. using heartbeat or liveness
chains [24] or by ordinary time-outs in the case of external system feeding data into a
node in the cluster. Failure detection is often handled by the cluster software, and the
optimal recovery schemes can in those cases be directly used in the nodelist in Sun
Cluster [27], the priority list in MC/ServiceGuard (HP) [12], the placement policy in
TruCluster (DEC) [11], cascading resource group in HACMP (IBM) [14], and the
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node preference list in Windows Server 2003 clusters (Microsoft, earlier called MSCS)
[22].

There is clearly a slowdown caused by the overhead associated with reloading a
task (process) on a new node after a failure. The fact that we are using static recovery
schemes (and not dynamic ones), can to some extent decrease this problem. When
using static schemes we know on which computer the process should be restarted in
recovery list by continuously propagating the current state of the process to the next
node in the chain, and thus reducing the time for reloading the process in case of a fail-
ure. This is not possible when we use dynamic schemes since, in that case we do not
know on which node the process should be restarted.
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Appendix A: Non-Atomic Loads

Hitherto, we have considered the case when all work performed by a computer must
be moved as one atomic unit. Obviously, there could be more than one process on each
computer and these processes may in some cases be redistributed independently of
each other, and in that case there is one recovery list for each process. In this appendix
we consider the case where there are p processes on each computer. We assume that
the workload is evenly split between the processes.

Previous studies show that, if there is a large number of processes on each com-
puter, the problem of finding optimal recovery schemes becomes less important [19].
The reason for this is that the intuitive solutions become better. Consequently, the
importance of obtaining optimal recovery schemes is largest when p is small compared
to n. In the main part of this paper, we have obtained results for p = 1. The techniques
used for obtaining those results are also useful when we consider p > 1.

We now define bound vectors of type p. The bound vectors discussed in Section 4.3
were of type one, i.e. p = 1. A bound vector of type p is obtained in the following way
(the first entry in the bound vector is entry 1):

1. t=p;i=1;j=Lr=1v=1
Ifr=1thent=r¢+1;r=j;v=v+lelse r=r-1
Let entry i in the Bound vector of type p have the value #/p
i=i+l
Ifv=pandr=1then;j=;+1;v=0
Go to 2 until the bound vector has the desired length.

SANRANE e

A bound vector of type two looks like this (note that the load on each computer is
normalized to one when all computers are up and running): {3/2, 4/2,4/2,5/2,5/2, 6/2,
6/2,6/2,7/2,7/2,7/2,8/2,8/2,8/2,8/2,9/2,9/2,9/2,9/2, ...}

A bound vector of type three looks like this: {4/3, 5/3, 6/3, 6/3, 7/3, 7/3, 8/3, 8/3, 9/
3,9/3,9/3,10/3, 10/3, 10/3, ...}

A bound vector of type four looks like this: {5/4, 6/4, 7/4, 8/4, 8/4, 9/4, 9/4, 10/4,
10/4, 11/4, 11/4,12/4, 12/4, ...}

Based on p and » we now define BV in the following way: BV (i) = max (entry i in
the bound vector of type p, [ pn/n—il/p).

When p =2 and n =12 we get: BV = {3/2, 4/2,4/2,5/2, 5/2, 6/2, 6/2, 6/2,7/2, 12/2,
24/2}.

For p < n, we have previously defined a recovery scheme - the p-process recovery
scheme - that is optimal as long as at most | log ,| #/p | | computers break down [20].
We call it p-process because we consider the case where there are p processes on each
computer when all computers are up and running.

We now define the modulo p-process recovery scheme. The scheme is defined when
p < n (remember that optimal recovery schemes are most important when p is small
compared to #). We will show that this recovery scheme is optimal also when signifi-
cantly more than | log ,[ n/p ] | computers break down.
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Let R, be the oprimal recovery scheme for some » and R((k) be k entry in R,. Let
then R; ; denotes the optimal recovery list for process j (0 < < p) on computer i (0 <
< n). We define R;; based on Ry, i.e. the recovery scheme for process zero in the sin-
gle-process recovery scheme defined in Section 6 (Table 2).

If Ry(k)+jln/pl<n, then R, (k) = (Ry(k)+i+jLn/p]ymodn, else
R; (k) = (Ro(k)+i +jln/p|+n) mod n, where R; j(k) denotes integer number & in
the lists for process j on computer i.

The table below shows the recovery lists when » = 11 and p = 2.

Roo 1,6,3,10,2,4,5,7,8,9
Ro. 6,0,8,4,7.9,10,1.2,3
Rio 2,7.4.03,5,6,89,10
Ry, 7.1,9,5,8,10,0.2.3.4
R0 3,8,5,1,4,6,7.9,10,0
I3 8,2,10,6,9,0,1,3,4,5
Rso 4.9,6,2,5,7.8,10,0,1
s, 9,3,0,7,10,1,2,4,5.6
Rao 5,10,7,3,6,8.9,0,12
Ra; 10,4,1,8,0,2,3,5,6,7
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This thesis consists of two parts: performance
bounds for scheduling algorithms for parallel pro-
grams in multiprocessor systems, and recovery
schemes for fault tolerant distributed systems
when one or more computers go down.

In the first part we deliver tight bounds on the
ratio for the minimal completion time of a parallel
program executed in a parallel system in two sce-
narios. Scenario one, the ratio for minimal com-
pletion time when processes can be reallocated
compared to when they cannot be reallocated
to other processors during their execution time.
Scenario two, when a schedule is preemptive, the
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ratio for the minimal completion time when we
use two different numbers of preemptions.

The second part discusses the problem of redist-
ribution of the load among running computers in
a parallel system.The goal is to find a redistribu-
tion scheme that maintains high performance even
when one or more computers go down. Here we
deliver four different redistribution algorithms.

In both parts we use theoretical techniques that
lead to explicit worst-case programs and scena-
rios. The correctness is based on mathematical
proofs.
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