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based on measurement data and numerical com-
putation is obtained. The generic electromagnetic 
model for arbitrary multiport antennas or vector 
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estimation.

Next, in Part II using the generic electromagnetic 
model (from Part I), we obtain the Cramér-Rao 
bound (CRB) for DOA and polarization estima-
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Gaussian case, the CRB is given in terms of the 
transmission matrix, the spherical vector harmo-
nics and its spatial derivatives. Numerical examp-
les using an ideal Tripole antenna array and a non-
ideal Tetrahedron antenna array are included.

In Part III, the theory of optimal experiments is 
applied to a cylindrical antenna near-field measu-
rement setup. The D-optimal (determinant) for-
mulation using the Fisher information matrix of 

the multipole coefficients in the spherical wave 
expansion of the electrical field result in the opti-
mal measurement positions. The estimation of the 
multipole coefficients and corresponding electric 
field using the optimal measurement points is stu-
died using numerical examples and singular value 
analysis.  

Further, Part IV describes a Digital Directional 
Coupler (DDC), a device for wave splitting on a 
transmission line. The DDC is a frequency domain 
digital wave splitter based on two independent 
wide-band measurements of the voltage and the 
current. A calibration of the digital processor is in-
cluded to account for the particular transmission 
line and the sensors that are employed. Properties 
of the DDC are analyzed using the CRB and an 
experiment where wave splitting was conducted 
on a coaxial-cable is accounted for.

Finally, in Part V the DDC has been designed and 
implemented for wave splitting on a medium vol-
tage power cable in a power distribution station 
using low cost wide-band sensors. Partial dischar-
ge measurements are conducted on cross-linked 
polyethylene insulated power cables. The directio-
nal separation capabilities of the DDC are visua-
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travel.   
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Abstract

This doctoral thesis is comprised of five parts. The first three parts concern
signal processing and electromagnetic modelling of multiport antennas. The
last two parts concern signal processing and transmission line theory applied
to wave splitting on transmission lines.

In Part I, the spherical vector wave expansion of the electromagnetic field is
used to completely characterize a multiport antenna. A general framework for
modelling an antenna configuration based on measurement data and numerical
computation is obtained. The generic electromagnetic model for arbitrary
multiport antennas or vector sensors is applied in direction of arrival (DOA)
estimation.

Next, in Part II using the generic electromagnetic model (from Part I), we
obtain the Cramér–Rao bound (CRB) for DOA and polarization estimation
using arbitrary multiport antennas. In the Gaussian case, the CRB is given
in terms of the transmission matrix, the spherical vector harmonics and its
spatial derivatives. Numerical examples using an ideal Tripole antenna array
and a non-ideal Tetrahedron antenna array are included.

In Part III, the theory of optimal experiments is applied to a cylindrical
antenna near-field measurement setup. The D-optimal (determinant) formu-
lation using the Fisher information matrix of the multipole coefficients in the
spherical wave expansion of the electrical field result in the optimal measure-
ment positions. The estimation of the multipole coefficients and corresponding
electric field using the optimal measurement points is studied using numerical
examples and singular value analysis.

Further, Part IV describes a Digital Directional Coupler (DDC), a device
for wave splitting on a transmission line. The DDC is a frequency domain
digital wave splitter based on two independent wide-band measurements of the
voltage and the current. A calibration of the digital processor is included to
account for the particular transmission line and the sensors that are employed.
Properties of the DDC are analyzed using the CRB and an experiment where
wave splitting was conducted on a coaxial–cable is accounted for.

Finally, in Part V the DDC has been designed and implemented for wave
splitting on a medium voltage power cable in a power distribution station
using low cost wide–band sensors. Partial discharge measurements are con-
ducted on cross–linked polyethylene insulated power cables. The directional
separation capabilities of the DDC are visualized and utilized to separate
multiple reflections from partial discharges based on the direction of travel.
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Preface

During the years as a graduate student I have had the privilege to expand
my knowledge in signal processing and electromagnetic theory where several
applications have been studied, ranging from radar processing, radio astron-
omy, electromagnetic inverse problems and array processing. It has been very
rewarding to combine my fields of interest. The mixture of the vast areas
of signal processing and electromagnetic theory is fruitful, providing both an
understanding of e.g., signal manipulation and information theory as well as
antenna design and electromagnetic wave propagation. This doctoral thesis
concludes my work as a graduate student at the School of Mathematics and
System Engineering at Växjö University.

The thesis consists of five parts, joined together by the combination of sig-
nal processing and electromagnetic theory. Part I-III concerns signal process-
ing applications and antennas using the spherical vector wave expansion of the
electromagnetic field, specifically modelling of multiport antennas, Cramér-
Rao bound analysis of direction of arrival and polarization estimation, and
sensitivity analysis of antenna measurements. In Part IV and V, a Digital
Directional Coupler is put forward as a digital wave splitter for transmis-
sion lines. The directional separation is primarily applied to partial discharge
measurements on power cables.

Parts

I A Generic Electromagnetic Model for DOA Estimation Using Arbitrary
Multiport Antennas

II Fundamental Limitations for DOA and Polarization Estimation with
Applications in Array Signal Processing

III On the Design of Optimal Cylindrical Antenna Near–Field Measure-
ments

IV Statistical Analysis of a Digital Directional Coupler for Transmission
Line Measurements

V Partial Discharge Measurement Using a Digital Directional Coupler
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ization Diversity Antennas in Satellite Communications”, In proceedings of
RadioVetenskap och Kommunikation 02, Stockholm, Sweden, June 2002.
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Introduction 1

Introduction

In the research–field of signal processing, many topics are directly connected
to other research areas. The interdisciplinary combination can be more or less
extensive and include concepts that have developed independently during the
years. As an example, consider applications involving processing of signals
obtained from antennas. An accurate mathematical model of the signals is
based on the physical understanding and mathematical modelling of the an-
tennas. Development of advanced algorithms involving the antenna signals
can therefore benefit from this interdisciplinary mixture.

Signal processing is sometimes referred to as the manipulation of signals
received from some type of sensor e.g., an antenna. Just as the sensors vary
from one application to another, so does the actual processing of the signals.
In model–based signal processing, the signal obtained can be traced to a
physical process and a corresponding mathematical model of the signal can
be obtained. In this thesis, signal processing is combined with electromagnetic
theory to obtain further knowledge and to support applications in the areas
of antennas and transmission lines.

The parts of this doctoral thesis can be read individually since each part is
based on a publication. To clarify and simplify the tools used herein, both in
signal processing and in electromagnetic modelling; an introduction to selected
topics related to the parts of the thesis is included. A collection of references
is provided for further reading. The treatment is by no means complete and
should serve as a short introduction.

First, the Cramér-Rao bound is described assuming both complex and real
parameters. Detailed formulas that are used in this thesis are provided. The
Cramér-Rao bound is an important and often exploited tool in statistical sig-
nal processing, a quantitative tool for the achievable accuracy in parameter
estimation problems. Thereafter follows a brief summary of the spherical vec-
tor wave expansion of the electromagnetic field, which is frequently employed
in e.g., antenna measurements, electromagnetic inverse problems and scat-
tering. The mathematical modelling of the electric field using this approach
provide a generic model that can be analyzed and exploited in e.g., estimation
theory in array processing. Finally, a summary of the field of partial discharge
diagnostics on power cables is included. This area has received much atten-
tion during the last decade where signal processing capabilities in conjunction
with the advancement of integrated electronics have improved the diagnostic
tools that researchers have provided.

The thesis consists of five parts. Part I concern the modelling of an ar-
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bitrary multiport antenna or vector sensor using the spherical vector wave
expansion of the electromagnetic field in the context of direction of arrival
estimation. In Part II, the spherical vector wave expansion of the electro-
magnetic field of an arbitrary multiport antenna is utilized in combination
with the Cramér-Rao bound to obtain an understanding of the fundamental
limits of direction of arrival and polarisation estimation in array processing.
In Part III, a cylindrical antenna near-field measurement is designed as an
optimal experiment based on the Fisher information matrix of the multipole
coefficients of the electrical field. Parts I, II and III were partially supported
financially by the Swedish Research Council.

Further, in Part IV, a Digital Directional Coupler (DDC) for direction
separation of travelling waves on transmission lines is detailed. This device
conduct wave splitting based on digital signal processing. Finally, in Part
V the DDC is applied to partial discharge measurements for direction based
separation of partial discharge pulses on power cables. Part IV and V were
partially funded by the Swedish Knowledge Foundation. Experiments have
been conducted in collaboration with Öresundskraft. A patent based on Part
IV and Part V, detailing the functionality of the DDC has been submitted,
AWAPATENT AB Ref: SE-21028018.
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On the Cramér-Rao bound

For many decades the Cramér-Rao Bound (CRB) [Sch91, SM97, Tre01] has
been one of the most applied tools for performance investigations in parame-
ter estimation problems. In 1922, the Cramér-Rao inequality for nonrandom
parameters was introduced by Fisher [Fis22] and a few years later derived
independently by Cramér [Cra46] and Rao [Rao45]. In estimation theory, the
bound is an important tool and provide a lower bound on the variance of
an unbiased estimator θ̂ of a parameter θ. The performance of an unbiased
estimator is then evaluated through the comparison of the variance of the
estimator and the CRB. This will provide insight into the accuracy of the es-
timator as function of model parameters, sometimes including the parameters
that are to be estimated. Due to the applicability and usefullness of the CRB,
much research regarding the properties of the CRB has been published, see
e.g., [SM90, SO96, Bos94]

From the theory of the CRB an efficient estimator (if it exists) can be
deduced. If this is not the case the CRB does not provide any informa-
tion on how to find an estimator. However, the CRB has the important
connection with the Maximum likelihood (ML) method, that asymptotically
the variance of the ML estimator is approximately equal to the CRB, see
e.g., [SN90a, VSO97, KV96]. Hence, the ML estimator is an asymptotically
effective estimator for large number of samples, if the number of unknown pa-
rameters does not increase with the number of samples [SN90b, SM97]. Any
other estimator can be compared to the CRB which then approximate the
variance of the ML estimator. Yet another advantage of the CRB is that the
bound is relatively easy to compute compared to other bounds [Tre01, SM97],
especially for Gaussian distributed data.

The CRB has been used extensively in parameter estimation, see e.g.,
[YD05, BAM05, SJL97, AH06] and in array processing, e.g., [Tre02, SN90a,
SMFS89]. As a natural extension to array signal processing, electromagnetic
properties of antennas or wave propagation are often included in the signal
model. This provides a closer connection between signal processing and elec-
tromagnetic modelling where the CRB is employed, see e.g., [WZ00, Li93,
SV93, HTT98, WF93, LS94, HN95, HTT97, HTN99, WLZ04, Won01, HN96,
TSR04, WF91, NP94, NGP07, NG06, GN06, NG05b, MD99, MDG04]. Al-
though fruitful, the application might be less useful if the electromagnetic
model is too ideal, e.g., disregaring the mutual coupling between antennas in
an arbitrary vector sensor [QQS05].

Even though no actual estimator is available, the CRB by itself is of in-
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terest. The bound can provide information regarding the estimation problem
and the incorporated parameters that influence the problem formulation. So
by analysing the CRB, knowledge of the problem formulation can be obtained.
This is especially of interest if interpretations of the CRB can lead to increased
knowledge and deeper understanding of the underlying physics. Hence, the
combination of statistical signal processing and electromagnetic theory yields
useful tools for analysing fundamental physical limitations. By utilizing the
CRB, information regarding the physical properties or model specific proper-
ties included in the signal processing model can be interpreted and exploited to
improve the goal of the application, see e.g., [HN06, OM05, PRWP05, DL05].

Assume that the data observed using apropriate sensors is complex-valued
x ∈ C and the corresponding probability density function (PDF) p(x;θ) is
known. In many applications the parameters are real-valued and the extension
to complex-valued parameters is often made by separation of the complex
parameters into real and imaginary parts [Kay93a]. Yet another approach is
to describe the complex–valued parameters by a linear transformation of the
real–valued parameters [Smi05, Col05].

The CRB for a vector parameter θ, [θ]i = θi is obtained as

E
{
|θ̂i − θi|2

}
≥

[
I−1(θ)

]
ii

, (1)

where E {·} denotes the expectation operator and I is the Fisher information
matrix (FIM), [Kay93b, Tre01, Fis22].

Consider both complex and/or real–valued parameters and define the gra-
dient vector of the parameters θ as,

∂

∂θ
=

(
∂

∂θ1
, · · · ,

∂

∂θi
, · · · ,

∂

∂θM

)T

, (2)

where
∂

∂θi
=

{
∂

∂θi
when θi ∈ R

1
2

(
∂
∂x − i ∂

∂y

)
when θi ∈ C.

(3)

Based on the regularity condition E
{

∂
∂θ ln p(x;θ)]

}
= 0, (which follows from

the demand of an unbiased estimator) and Cauchy-Schwarts inequality, the
FIM reads,

I(θ) = E

{
∂

∂θ∗
ln p(x;θ)

(
∂

∂θ
ln p(x;θ)

)T
}

, (4)
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where ∗ denote the conjugate operation. Each element of the FIM is given by

[I(θ)]ij = −E
{

∂2

∂θ∗i ∂θj
ln p(x;θ)

}
. (5)

In this thesis, the signal models consist of complex–valued signals with
complex and/or real–valued parameters and noise that is complex Gaussian
distributed [Mil74]. We therefore include the complex Gaussian PDF,

p(x,θ) =
1

π detR(θ)
exp

(
− (x− µ(θ))H R−1(θ) (x− µ(θ))

)
, (6)

where (·)H denotes the Hermitian transpose, µ = E{x} is the expectation
value and R = E{(x− µ) (x− µ)H} is the covariance matrix. The expression
for the FIM using complex–valued Gaussian data is then given as,

[I(θ)]ij = tr
{

∂R
∂θ∗i

R−1 ∂R
∂θj

R−1

}
+

∂µH

∂θ∗i
R−1 ∂µ

∂θj
+

∂µH

∂θj
R−1 ∂µ

∂θ∗i
, (7)

where tr {·} denote the trace operator.
Consider the estimation of α where α = g(θ). The vector parameter

transformation is used and the CRB for α is,

E
{
|α̂i − αi|2

}
≥

[
∂g(θ)

∂θ
I−1(θ)

(
∂g(θ)

∂θ

)H
]

ii

. (8)

Two special cases can be identified. First, when θi is purey real, ∂/∂θ∗i =
∂/∂θi and (7) reads

[I(θ)]ij = tr
{

∂R
∂θi

R−1 ∂R
∂θj

R−1

}
+ 2Re

{
∂µH

∂θi
R−1 ∂µ

∂θj

}
, (9)

which is the standard FIM formula for real–valued parameters in complex
valued data [Kay93b]. Second, if µ is analytic in θi (observe that R can not
be analytical in θi since R = RH) then ∂µ/∂θ∗i = 0 and the last term of (7)
is equal to zero.

As a special case, when R = σ2I and µ is differentiable and analytical,

[I(θ)]ij =


2
σ2

Re
{

∂µH

∂θi

∂µ

∂θj

}
θi ∈ R and θj ∈ R

1
σ2

∂µH

∂θ∗i

∂µ

∂θj
θi ∈ C and/or θj ∈ C.

(10)
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When the FIM has diagonal or block diagonal structure valuable infor-
mation is obtained. This provides knowledge regarding the relation between
the parameters. If the FIM is diagonal all parameters are uncoupled, while
a block diagonal FIM indicates that the parameters can be arranged in sub-
spaces where each subspace is uncoupled from the other. The parameters in
a specific subspace could still be coupled within that subspace. Properties of
the FIM and the corresponding CRB are analysied and exploited in Part II,
Part III and Part IV of this thesis.
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On the spherical vector wave expansion

Within the field of electromagnetic theory, especially the area of near–field
measurements and antenna theory, a common and well known technique to
describe a general electromagnetic field is the spherical vector wave expansion
[Han88, Har61, Han35, Kri99, Thi07]. Much research concerning physical
limitations of antennas in free space have been based on spherical waves, see
e.g., [Chu48, CR64, Col98, Har61], including the derivations of the optimal
Q-value of a general antenna. The well defined mathematical theory of the
spherical waves is a stable foundation for applications involving electromag-
netic modelling that can benefit from the spherical wave expansion.

The combination of signal processing and antenna theory grows stronger,
much research now include the two areas e.g., Multiple Input, Multiple Out-
put systems (MIMO) and Radar systems, see e.g., [VBA03, JW04, JW05,
GSV+07, FHB+06]. The spherical wave expansion of the electromagnetic
field of an arbitrary antenna is done on a spherical surface enclosing the
antenna. Since the antenna can be arbitrary, this approach of electromag-
netic modelling provides a general framework to analyse the properties of the
antenna from a signal processing perspective. Since many applications de-
pend strongly on the antenna properties, a general description including all
properties of the antenna is of great interest e.g., in DOA estimation using
the super–resolution techniques MUSIC and ESPRIT [LW90, RH89, KSS94,
SS97, RK89, GSRK94].

Below, a short summary of the spherical wave expansion for the applica-
tions in this thesis is included.

In a spherical coordinate system, spherical vector waves are solutions to
Maxwell’s equations in a homogenous, linear and isotropic material without
sources. The sources are confined within and surrounded by a spherical vol-
ume with radius a. In the exteriour of the sphere, the electric and magnetic
fields are expanded in spherical waves. From Maxwell’s equations,{

∇×E(r) = −iωµH(r)
∇×H(r) = iωεE(r) (11)

and utilizing that ∇·E = 0 in a source-free surrounding, the Helmholtz vector
wave equation reads

∇2E(r) + k2E(r) = 0, (12)

where k = 2π, λ the wavelength, ε and µ the permittivity and permeability,
respectively.
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The solution of the vector wave equation in a spherical coordinante system
is obtained via a generating scalar function that is separable in the spherical
variables r, θ, φ. The scalar wave equation in spherical coordinates is given by(

1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂φ2
+ k2

)
Ψ = 0, (13)

and using the separation of variables method Ψ(r, θ, φ) = R(r)T (θ)P (φ).
Then, (13) can be reformulated as three ordinary differential equations since
the three variables are independent [AW01],

d2

dφ2
P (φ) + Q1P (φ) = 0, (14)

1
sin θ

d

dθ

(
sin θ

d

dθ
T (θ)

)
− Q1

sin θ
+ Q2 = 0, (15)

d

dr

(
r2 d

dr
R(r)

)
+ k2r2R(r)−Q2R(r) = 0, (16)

where Q1 and Q2 are constants. The azimuth angle φ has a periocidicity of
2π, a natural choice is to set Q1 = m2, m = ...,−1, 0, 1, .... The solution to
(14) consists of a complex exponential that has the same periodicity. Next,
by setting Q2 = l(l+1), l ≥ 0, (15) becomes the associated Legendre equation
[AW01]. The general solutions are the associated Legendre functions Pm

l (x)
where x = cos θ. Further, (16) is identified as the spherical Bessel’s equa-
tion with solutions consisting of linear combinations of spherical Bessel and
Neumann functions. A linear combination of the two is the spherical Hankel
functions h(1)

l (kr) and h(2)
l (kr) of first and second kind, respectively. When

describing the electromagnetic field outside the sphere enclosing the sources
centered at origo of the spherical coordiante system, the Hankel functions are
used. For the employed time convention, eiωt, the spherical Hankel functions
of first and second kind correspond to incoming and outgoing propagation
of spherical waves, respectively. Finally, combine the individual solutions of
(14)-(16) to obtain Ψ(r, θ, φ) = R(r)T (θ)P (φ), where

P (φ) = 1√
2π

eimφ, m = ...,−1, 0, 1, ...

R(r) = h(1)
l (kr) or h(2)

l (kr), l = 0, 1, 2, ...
T (θ) = Pm

l (cos θ).
(17)

Important properties of both P (φ) and T (φ) includes orthogonality,∫ 2π

0

1√
2π

eimφ 1√
2π

e−im′φ = δm,m′ , (18)



Introduction 9

and ∫ π

0

Pm
l (cos θ)Pm

l′ (cos θ) sin θdθ =
2

2l + 1
(l + m)!
(l −m)!

δl,l′ . (19)

From the generating scalar function that solves the Helmholtz scalar wave
equation, the scalar spherical harmonics are [AW01],

Yml(r̂) = (−1)m

√
2l + 1

4π

√
(l −m)!
(l + m)!

Pm
l (cos θ)eimφ. (20)

Next, the spherical vector harmonics Aτml(r̂) reads
A1ml(r̂) = 1√

l(l+1)
∇× (rYml(r̂))

A2ml(r̂) = r̂ ×A1ml = 1√
l(l+1)

r∇Yml(r̂)

A3ml(r̂) = r̂Yml(r̂)

(21)

and on the unit sphere,∫ 2π

0

∫ π

0

Aτml(r̂)A∗
τ ′m′l′(r̂)dΩ = δτ,τ ′δm,m′δl,l′ . (22)

A series expansion of the electric field in a source-free sourronding outside
a sphere of radius a enclosing all sources and origo as described here is [AW01,
Jac75, Han88]

E(r) =
∞∑

l=1

l∑
m=−l

2∑
τ=1

fτmluτml(kr) + aτmlvτml(kr), (23)

where r > a, fτml and aτml are the multipole coefficients. Further, the out-
going spherical vector waves are given by

u1ml(kr) = h(2)
l (kr)A1ml(r̂)

u2ml(kr) =
1
k
∇× u1ml(kr) =

(krh(2)
l (kr))′

kr
A2ml(r̂) +

√
l(l + 1)

h(2)
l (kr)
kr

A3ml(r̂)

(24)

and the incoming spherical vector waves reads,

v1ml(kr) = h(1)
l (kr)A1ml(r̂)

v2ml(kr) =
1
k
∇× v1ml(kr).

(25)
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The value of l is the order of the modes m = −l, ..., l. The electrical field de-
scribed by (23) is a solution to Helmholtz vector wave equation (12), [AW01,
Jac75, Han88]. Since ∇·u1ml(kr) = ∇·u2ml(kr) = 0, u1ml(kr) and u2ml(kr)
are suitable for describing the outgoing electrical field in a source-free sour-
ronding.

For analysing transmitting antennas without accounting for scattering, it
is enough to consider a description of the transmitted (outgoing) electrical
field given by (23) where aτml = 0,

E(r) =
∞∑

l=1

l∑
m=−l

2∑
τ=1

fτmluτml(kr). (26)

Using Faradays law (11), the corresponding magnetic field is

H(r) = − 1
iη

∞∑
l=1

l∑
m=−l

2∑
τ=1

fτmluτ̄ml(kr), (27)

where τ = 1, 2 corresponds to τ̄ = 2, 1.
All multipoles corresponding to τ = 1 are namned magnetic multipoles

or transversal electrical multipoles while multipoles with τ = 2 are namned
electical multipoles or transversal magnetic multipoles. Since r̂ ·u1ml(r̂) = 0,
u1ml(r̂) describe the transversal part of the electric or magnetic field.

The total transmitted power through a sphere of radius a is given by the
sum of the absolute square of the multipole coefficients,

P =
1

2ηk2

∞∑
l=1

l∑
m=−l

2∑
τ=1

|fτml|2. (28)

The power transported by each mode is therefore independent of all other
modes.

In all practical applications the sum of l is finite, l = 1, 2, ..., L where
L is the maximum order of modes. The maxium order L is determined by
the electrical size and bandwidth of the antenna [Han88, NG05a, Fan50].
According to [Han88], L can be determined by the empirical rule

L = [ka] + n1, (29)

where [·] denotes the closest larger integer and n1 is an integer constant that
varies in value depending on the application. For most practical purposes in
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spherical antenna near–field measurements n1 = 10 is considered sufficient
[Han88].

A second approach to obtain L, consider [NG05a, Fan50, GN04, NG04,
CR64] where the transmission coefficients for each mode can be calculated as

|tl| ≤
√

1− e−
2π
Ql

1−B2/4
B , (30)

where B is the fractional bandwidth and Ql the Q-factors of each mode l. By
utilizing modes up to a certain power level Pτml ≤ ε the maxmimum mode
order L satisfies

PτmL =
1

2ηk2
|fτmL|2 ≤ |tL|2Pin ≤ ε, (31)

where Pin is the input power.
At a large distance from the antenna i.e., in the far–field of the antenna

where kr � a, we can approximate the spherical Hankel functions

h(2)
l (kr) ≈ (−i)l+1 e−ikr

kr
(32)

and from (26) obtain the electrical far–field

E(r) =
e−ikr

kr

L∑
l=1

l∑
m=−l

2∑
τ=1

il+2−τfτmlAτml(r̂) =
e−ikr

kr
F (r̂), (33)

where F (r̂) is the far–field amplitude. An important property observed in
(33) is that based on the orthonormality of the spherical vector harmonics,

fτml = i−l−2+τ

∫
A∗

τml(r̂) · F (r̂)dΩ. (34)

Orthogonality of the spherical vector waves uτml is applied in antenna
near–field measurements where the objective is to estimate the multipole coef-
ficents from the measured electromagnetic field transmitted from the antenna
under test (AUT) [Han88]. This is known as the inverse problem in antenna
measurements, see e.g., [Lai05]. To obtain the multipole coefficients based on
samples of the electric and/or magnetic field, several methods have been sug-
gested that could include probe calibration, e.g., [Han97, LPB06]. Methods
without probe calibration is often based directly on (26) and a least-square
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solution [Han88]. Using the estimated multipole coefficients, important pa-
rameters of the AUT can be calculated e.g., the directivity, far–field pattern
etc. The task of antenna measurement is often discussed in terms of numerical
algorithms and experiment design involving e.g., probe correction [Lar80] and
measurement configuration [HRs99].

In Part III of this thesis, the theory of optimal experiment design is applied
in a cylindrical antenna measurement configuration, see e.g., [AD92, Fed72,
EN98, VBW98, WGF06, XC04]. Based on an optimization formulation using
the Fisher information matrix, the measurement strategy or the measure-
ment positions are obtained. Properties of the optimization formulation and
the result of the inverse problem are analysed using numerical examples and
singular value analysis.

An arbitrary antenna can conveniently be described as a spherical wave
guide with one port connected to the transmitter or receiver and several radi-
ating ports, one port for each multipole coefficient. Properties of the antenna
in transmission and receiving mode and scattering properties are then de-
scribed by a linear relationship between the complex multipole coefficients,
transmitted signal x+ and received signal x−. For notation simplification, the
multi-index α = (τ,m, l) is introduced, fτml = fα. Also, normalization of
the power is choosen such that the transmitted and recevied power equals
|x+|2/(2Zg) and |x−|2/(2Zg), respectively, where Zg is the impedance of the
propagating wave guide mode (often Zg = 1 is choosen for simplicity). The
antenna scattering matrix (one input port) of size 2L(L + 2) + 1 is given by,(

Γ R
T S

) (
x+

a

)
=

(
x−

f

)
, (35)

where Γ is the antenna reflection coefficient, R (1× 2L(L+2)) is the antenna
receiving coefficients, T (2L(L+2)×1) is the antenna transmission coefficients
and S (2L(L + 2) × 2L(L + 2)) is the antenna scattering matrix. The total
scattering matrix of (35) is unitary if the antenna is lossless. Also, f and a
are the vector representation of the multipole coefficients.

For receiving antennas, the voltages corresponding to the received signals
are related to the far–field amplitude of the antennas via the effective length
or size [Bal97]. A slightly different approach based on (35) is considered here,
see Fig 1. By reciprocity, the receiving multiport antenna is characterized
in terms of the transmission matrix from incident voltage waves to multipole
coefficients of the outgoing spherical vector waves.

Let x+
i and x−i denote the incident and reflected voltages at the antenna

waveguide connections for i = 1, . . . , N . These voltages are normalized so
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T,Γ

Figure 1: An arbitrary multiport antenna where the transmitter is located to
the right and the radiating part of the antenna to the left.

that the power delivered to a particular antenna port is |x+
i |

2

2Zg
and the corre-

sponding reflected power is |x−i |
2

2Zg
. On transmission from the input terminals

with incident voltage waves x+
i , the transmitted wave field fα is given by[
fα

k

]
= Tx+

√
η

Zg
, (36)

where T = [Tαi] is the 2L(L + 2) × N properly scaled transmission matrix
which maps the vector of incident voltages x+ = [x+

i ] to propagated multipoles
fα. Compare to (35) where only one incident signal is transmitted. Here, T
has N columns and a slightly different scaling is applied. However, (35) could
be extended to describe a multiport antenna, see e.g., [GN06]. The reflected
voltages are given by x− = Γx+ where Γ (N × N) is the reflection matrix.
For power conservation,

ΓHΓ + THT ≤ I (37)

holds with equality for lossless antennas.
Consider one incident signal x+

i ,

x−i x+
i = −i

λ2

2π

Zg

η
F (k̂0) ·E0 (38)
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follows from the antenna reciprocity theorem [DPG+98] where E0 is the com-
plex vector amplitude of a plane wave E0e−ikk̂0·r incident from direction k̂0

and x−i the corresponding received signal. Here, F (r̂) (33) is the far–field
amplitude corresponding to the transmitted signal x+

i . From (33) and (38),
the received vector signal is

x− =

√
Zg

η
λRAE (39)

where R = TT, A (2L(L+2)×2) is a matrix where each column corresponds
to the spherical components of the spherical vector harmonics il+1−τAα(k̂0),
and E is an 2 × 1 vector containing the corresponding signal components of
the electric field E0.

Finally, the extension to K incoming vector signals result in

x− =

√
Zg

η
λ

K∑
k=1

RAkEk (40)

and in the case of completely polarized signals Ek = E0
ksk,

x− = Hs, (41)

where the columns of H are given by,

[H]k =

√
Zg

η
λRAkE0

k (42)

and [s]k = sk. If a different multiport antenna should be investigated, only
R in (42) should be replaced by the corresponding receiving matrix of the
desired antenna.

In Part I, the method of obtaining the signal model for an multiport an-
tenna introduced here is described and applied in DOA estimation. In Part
II, based on the generic electromagnetic model is an analysis of the physical
limitations for DOA and polarization estimation using multiport antennas.
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On partial discharge diagnostics

The modern society in its present form is strongly dependent on continu-
ous power supply. This is especially true for the industry but also for the
community and its citizens. To meet the demands the power companies
needs to apply methods for continuous surveillance of the power network
in order to obtain early warning signals from faulty equipment, see e.g.,
[ZQC06, Mon06, FS06]. Assessments regarding if a repair or replacement
of the equipment is necessary should be supported by fault indications. One
method of fault indication supported assessment is Partial Discharge (PD)
diagnostics that is based on the insulation properties of the electrical equip-
ment.

Although used as a diagnostic tool, PD measurements are also used by the
manufacturers of electrical equipment to evaluate the design and to assure that
requirements are met regarding the insulation properties. Here, the focus is
on power cables. However, PD diagnostics is used in connection with other
electrical devices e.g., stator bars, transformers or capacitors [Bar02].

A presence of PD can indicate electrical, mechanical, thermal or enviro-
mental aging [Sto05]. PD diagnostics can be applied either off–line or on–line
where the former means that the device under test is not subjected to or-
dinary operational conditions e.g., no voltage is applied and the equipment
under test is disconnected from other devices.

Partial discharges are small and fast electrical sparks resulting from elec-
trical breakdown in a gas filled void e.g., an air filled cavity in the insulation
of a power cable. In this situation the cavity might be filled with air inside
or on the surface of the insulation. This can be caused by a damage occuring
at the installation or it can result from degredation of the insulation material
due to aging [Sto05].

If the cavity is subjected to a sinusoidal voltage, a breakdown can occure
when the applied voltage exceed the breakdown level and a free electron can
initiate the electron flow accross the cavity [Bar02]. This process results in
a short current pulse, typically measured in nanoseconds, due to the charge
carried by the electron flow. Interesting properties of the PD pulse includes
the amplitude, the time duration and the point of occurence related to the
phase of the applied sinusoidal voltage.

The partial discharge is regarded as a stochastic process with all of its
parameters stochastic variables that depend on the creation process see e.g.,
[Hei99, Bar02, GB95, CMF00]. The parameters of successive recordings of
PD pulses are used in an effort to identify the cause of the PD but also to
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Figure 2: A picture of the oscilloscope window in one measurement where
the infinite persistance is applied (left figure). The top curve is the applied
voltage (scaled to 220 V), the middle and bottom curves are the voltage sensor
and current sensor signals, respectively. The setting on the oscilloscope is 10
ms/div, 50 mV and 100 mV for the two sensors, respectively. In the right
figure is shown one PD pulse (to the left) and multiple reflections occuring in
the system of power cables. The solid and dashed curves correspond to the
voltage and current sensor, respectively.

separate multiple PD sources, see e.g., [CCM+02, BHN06, SSB05, SB02].
The ongoing research of PD diagnostics has produced several apparatus

that have been commercially available e.g., [SHV91, Mas00, Sto05]. Most of
the PD diagnostic equipment available are off-line technologies [Vee05]. How-
ever, off–line techniques can affect the properties of the partial discharges that
may depend on other factors such as mechanical or thermal stress. Instead,
on-line PD diagnostics provides means to continuously monitor the current
state of the power cable during regular operation. This requires a different
approach using sensors that must sustain operational conditions.

The usage of advanced signal processing has been extensively applied, espe-
cially since the cost of processing power has decreased. Continuous monitoring
can provide early warnings and indications of degradations in the power cable
system. This combined with a long-term history of the power cables condition
would be most useful in determining the present state of the power cables.
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The final result would provide an instument for early warnings of impending
problems but it might never give an estimation of the remaing life time of the
monitored equipment [Sto05].

On–line PD diagnostics has not been used extensively but rather received
large attention during the last decade [Sto05], this mostly due to the rapid im-
provment in integrated electronics enabeling e.g., the usage of more advanced
noise reduction techniques.

One fundamental part of a PD diagnostic technique is to handle the
large amount of noise and interference that are present in PD measurements
[SSS00, LPP03]. The noise and interference includes components of differ-
ent nature e.g., wide–band background noise, narrow–band interference and
pulse-shaped disturbances, see e.g., [LPP03, BD00, And98]. Many different
noise reduction techniques have been proposed. One classification of noise
reduction techniques is open–loop and closed–loop techniques [SSS01] where
closed-loop techniques refers to a situation where a reference signal is used
to measure the noise and interference e.g., an external antenna. Open-loop
techniques includes filtering, spectral analysis and wavelets analysis see e.g.,
[VW03, AS98, KG05] and references therein.

The art of detecting, characterization and localization of PD in power ca-
ble systems has been investigated in many studies and publications. Detection
and characterization can be performed in several ways e.g., statistical analysis
using probabilistic quantities related to the PD signal [GK92]. Other tech-
niques that have received much attention are Neural Networks, Fuzzy Logic
and Pattern Recognition, see e.g., [Bar02, SB02, CCM+02].

In the context of localization of PD sites on power cables, several different
types of solutions have been reported e.g., off-line time domain reflectrometry
and synchronization of dual-end measurements using Global Positions Sys-
tem (GPS) [Vee05]. In [Vee05], a reference signal is injected in the power ca-
ble, providing a basis for difference–in–time–of–arrival (DTOA) measurement
which outperforms the GPS based system under certain conditions. The task
of localization is dependent on the system at hand and on the characteristics
of the power cables under investigation. Power cables have a large attenua-
tion for high frequencies so PD pulses are likely to be distorted and attenuated
[BPW96]. This affects the timing resolution of the diagnostic system. Further,
timing resolution is a factor that in combination with the properties of the
power cable, specifically the high-frequency attenuation and the length, de-
termines the optimum bandwidth for PD detection [SSS01]. Since a PD pulse
can have a bandwidth of several hundred megahertz but the power cable act
as a low–pass filter, a practical approach using a bandwidth of approximately
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20 MHz is sometimes proposed [BPW96]. However, there are several reports
of PD detection using a high-frequency sensor e.g., [AS98, ZYJZ05] that has a
bandwidth of approximately 100 MHz. Commercial PD diagnostic equipment
is mostly designed with a bandwidth of approximately 10 MHz.

Sensors used for PD detection can be divided into capacitive or inductive
sensors, measuring the voltage or current on the power cable, respectively.
In addition, the sensor position can be varied [WVWS03] to obtain the best
possible signals. The general inductive sensor can either be a High Frequency
Current Transformer (HFCT) or a Rogowski Coil (RC). The two differs in the
core material of the sensor, HFCT is usually based on a splitt ferrite core while
a RC has an air core. This destinction is not so strict and combinations of the
two occurs [ZYJZ05]. The properties and physical limitations often decide
which type of sensor that can be employed [WVWS03, DE04]. The choice
of sensor depends also on the power system properties and the installation
requirements. In [PSH+99] directional coupling sensors where mounted on
both sides of a joint between two power cables. This enabled estimation of
the direction of the PD pulse propagation.

The estimation of the direction from which a PD pulse arrives is an im-
portant part of a PD diagnostic system. Separation by direction provides
the first identification step in a PD diagnostic system. However, due to the
size and number of cables in a power network, PD pulses could travel far in
the system and thereby be recorded at different positions where sensors are
installed. Part VI and V of this thesis concerns the development of a Digital
Directional Coupler, an instrument for wave splitting by digital means. The
DDC is applied to separate forward and backward traveling waves. In Part
IV, the properties of the DDC is investigated using the CRB as an assesment
tool. Also, a laboratory experiment is conducted, resulting in an isolation and
a directivity of approximately 40 dB over a frequency range of 20− 80 MHz.
In Part V, the DDC is implemented and utilized for PD measurements on a
cross–linked polyethylene (XLPE) insulated power cable. The performance
of the DDC was approximately 30 dB isolation and 25 dB directivity over
a frequency range of approximately 50 MHz. The narrower frequency band
in Part V compared to Part IV is due to the sensor design and selected to
mitigate noise and interference.

In Fig. 3 is shown the site used to test the DDC. In the bottom figure is
seen the low to medium voltage transformer, power cables and measurement
equipment. In the top figure, the device used to penetrate the insulation of
the power cable is depicted.
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Figure 3: In the bottom figure is shown the site where the DDC is used for
directional separation of partial discharge pulses and in the top figure, the
device constructed to create partial discharges by penetrating the insulation
of a power cable.
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Thesis summary

Part I - A Generic Electromagnetic Model for DOA Esti-
mation Using Arbitrary Multiport Antennas

A generic model of multiport antennas based on spherical vector waves is
developed. This constitutes a general framework for modelling a general mul-
tiport antenna. From measurement or numerical calculations of the antenna
far–field amplitude, a complete description can be obtained through a numer-
ical method based on the FFT and properties of the spherical vector waves.

All properties of the modelled antenna are included e.g., mutual coupling
is accounted for, which if not included can cause deterioration in the result
of applications that are sensitive to errors in the antenna model, e.g., beam-
forming and DOA estimation using super–resolution techniques.

In the context of DOA estimation, increasing the resolution of DOA es-
timation techniques are easily done by computations of the array manifold
on a dense spatial grid, no further measurements of the antenna properties
are required. Illustrations of DOA estimation using a Tetrahedron array are
included.

Part II - Fundamental Limitations for DOA and Polariza-
tion Estimation with Applications in Array Signal Pro-
cessing

In Part II, based on the generic electromagnetic model of part I, fundamental
physical limitations associated with DOA and polarization estimation using
arbitrary antennas or antenna arrays are analysed. The Cramér–Rao bound
(CRB) for DOA and polarization estimation is provided for any real multiport
antenna.

The spherical vector waves and their associated equivalent circuits and
Q factor approximations are used together with the broadband Fano theory
as a general framework for analysing electrically small multiport antennas.
The CRB is given in terms of the transmission matrix, the spherical vector
harmonics and its spatial derivatives.

A principal parameter analysis using the singular value decomposition of
the Fisher information matrix is employed to evaluate the performance of an
ideal Tripole antenna array with respect to its ability to estimate the state
of polarization of a partially polarized plane wave coming from a given direc-
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tion. As a second example of an arbitrary multiport antenna, the non–ideal
Tetrahedron array (including mutual coupling) is considered in the context of
DOA estimation.

Part III - On the Design of Optimal Cylindrical Antenna
Near–Field Measurements

A cylindrical antenna near–field measurement setup is considered based on the
theory of optimal experiment design. Two separate semi–definite optimization
formulations are considered and based on the Fisher information matrix of the
multipole coefficients in the spherical vector wave expansion of the electrical
field. The optimal measurement points are obtained from the solution of the
two separate optimization formulations, respectively.

The inverse source problem i.e., the estimation of the multipole coefficients
is studied using equidistant measurement points and optimal measurement
points. A singular value analysis is used to interpret the result of the opti-
mization, the estimation of the multipole coefficients and the corresponding
electrical field.

The first optimization formulation provides close to a minimum number of
measurement points sufficient to solve the inverse problem. The second opti-
mization formulation introduce more measurement points. Numerical exam-
ples are provided to study the results and include an extension to a cylindrical
measurement.

Part IV - Statistical Analysis of a Digital Directional Cou-
pler for Transmission Line Measurements

A Digital Directional Coupler (DDC) that separates forward and backward
propagating waves on a transmission line is presented. The application is
direction separation of signals propagating on a transmission line. The DDC
is based on two independent wide–band measurements of voltage and current
and a frequency domain digital wave splitting using the FFT.

To account for imperfections e.g., the sensors might have a non–flat fre-
quency response; a practical procedure is described for calibration of the digi-
tal wave splitter. The CRB is used as a statistical tool to analyse the proper-
ties of the DDC. Important parameters are identified e.g., the signal-to-noise
ratio in the calibration procedure, the characteristic impedance of the trans-
mission line and the frequency transfer functions of the voltage and current
sensors.
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An experiment was conducted where a DDC is implemented to operate
over an appreciable bandwidth using simple and low cost sensors. The trans-
mission line was a standard coaxial antenna cable and the resulting directivity
(ratio between coupling and cross-coupling) was approximately 37 dB over a
bandwidth of 20–80 MHz.

Part V - Partial Discharge Measurement Using a Digital
Directional Coupler

First, the Digital Directional Coupler that separates forward and backward
propagating waves on a transmission line is described. Then, experiments
using medium voltage equipment in a power distribution station and a DDC
implemented to conduct wave splitting on a cross–linked polyethylene (XLPE)
insulated power cable are described.

Using a set of power cables designed for different voltage levels, a multi–
reflection environment is obtained. A needle is used to penetrate the insulation
of a power cable, providing some control to the amount and to the properties
of the resulting partial discharges.

The isolation and coupling of the DDC were determined to 27 dB and 5
dB, respectively; over a bandwidth of approximately 50 MHz. Measurements
displays the ability of DDC to separate partial discharge pulses based on the
direction of travel even for pulses hardly visible in the sensor signals.
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Estimation Using Arbitrary Multiport Antennas

J. Lundbäck, S. Nordebo and M. Gustafsson

Abstract

During the last decades electromagnetic vector sensors have been
extensively investigated, especially since the properties of electromag-
netic wave propagation are incorporated in the statistical signal estima-
tion techniques used for direction finding and polarization estimation
in sensor array processing, see e.g., [WLZ04]. In this paper, we uti-
lize a generic electromagnetic model for arbitrary multiport antennas
e.g., vector sensors applied in DOA estimation, which was exploited in
[NGL06] for statistical analysis of DOA and polarization estimation.
By utilizing the spherical vector wave expansion of the electromagnetic
field to completely characterize the multiport antennas a general frame-
work for modelling an antenna configuration based on measurements or
computations including e.g., mutual coupling is obtained. The array
manifold can easily be expanded over a dense spatial grid to enable
high-resolution DOA estimation without demanding further measure-
ments of the antenna characteristics.

1 An Electromagnetic Model for Arbitrary Mul-
tiport Antennas

Consider an arbitrary multiport antenna. Let (r, θ, φ) denote the spherical
coordinates, k = ω

c = 2π
λ the wave number, ω = 2πf the angular frequency,

λ the wave length and c and η the speed of light and the wave impedance of
free space, respectively. Assume that the antenna is contained inside a sphere
of radius r = a, and let eiωt be the time convention. Based on a spherical
vector waves expansion [Han88] of the transmitted electric field, E(r), it can
be shown that in the far–field when r →∞, E(r) = e−ikr

kr F (r̂) where F (r̂) is
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the far–field amplitude given by

F (r̂) =
L∑

l=1

l∑
m=−l

2∑
τ=1

il+2−τfτmlAτml(r̂). (1)

In (1) Aτml(r̂) are the spherical vector harmonics [Han88] and fτml are the
expansion coefficients or multipole moments. Here τ = 1 corresponds to a
transversal electric (TE) wave and τ = 2 corresponds to a transversal mag-
netic (TM) wave. The other indices are l = 1, 2, . . . , L and m = −l . . . , l
where l denotes the order of that mode. The maximum order L is determined
by the electrical size and bandwidth of the antenna cf., [Han88, NGL06]. Fur-
thermore, it can also be shown that the total power Ps transmitted by the
antenna is given by Ps = 1

2ηk2

∑L
l=1

∑l
m=−l

∑2
τ=1 |fτml|2.

Given that the far–field amplitude F (r̂) of the antenna is available through
some numerical or analytical means and utilizing orthonormality of the spher-
ical vector harmonics [Han88], the multipoles can be calculated from the pro-
jections

fτml = i−l−2+τ

∫
A∗

τml(r̂) · F (r̂) dΩ (2)

where ∗ denote the conjugate operation.
When calculating the multipoles (2) from spherical data it is convenient

to employ the Fast Fourier Transform (FFT). Let F p(r̂) denote the spheri-
cal components of the far–field amplitude F (r̂) where p = θ, φ. Let F̃ p

m(θ)
denote the Discrete Fourier transform (DFT) of the calculated (or measured)
spherical components along the azimuthal coordinate φ such that

F p(r̂) =
1
M

M/2∑
m=−M/2+1

F̃ p
m(θ)eimφ (3)

where M is the number of azimuthal points and the size of the DFT, M/2 >
L and L is assumed to be sufficiently large so that the spatial aliasing in
(3) can be neglected. The spherical vector harmonics Aτml(r̂) and their
corresponding DFT’s Ãτml(θ) are defined so that Aτml(r̂) = Ãτml(θ)eimφ,
see also [NGL06]. Hence, by the orthogonality of the periodic Fourier basis
eimφ, the double integral in (2) can now be calculated conveniently by the
single integrals

fτml =
2π

M
i−l−2+τ

∑
p=θ,φ

∫ π

0

Ãp∗
τml(θ) · F̃

p
m(θ) sin θ dθ (4)
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where Ãp
τml(θ) denotes the spherical components of Ãτml(θ).

Consider an arbitrary multiport antenna consisting of N ports. Let x+
i and

x−
i denote the corresponding incident and reflected voltages at the antenna

waveguide connections for i = 1, . . . , N . These voltages are normalized so that
the power delivered to a particular antenna port is |x+

i |2
2Zg

and the corresponding

reflected power is |x−i |2
2Zg

where Zg is the impedance of the propagating wave
guide mode. On transmission from the input terminals with incident voltage
waves x+

i , the transmitted wave field fα is given by[
fα

k

]
= Tx+

√
η

Zg
(5)

where the multi–index α = (τ,m, l) is used to simplify the notation, T =
[Tαi] is the properly scaled transmission matrix which maps the vector of
incident voltages x+ = [x+

i ] to propagated multipoles fα. The 2L(L + 2)×N
transmission matrix T is obtained one column at a time by calculating the
far–field and the corresponding multipoles (2) with the corresponding input
connections energized one at a time. Now, considering one single incident
wave x+

i , the antenna reciprocity theorem [DPG+98] yields

x−
i x+

i = −i
λ2

2π

Zg

η
F (k̂0) ·E0 (6)

where E0 is the complex vector amplitude of a plane wave E0e−ikk̂0·r coming
from direction k̂0 and x−

i the corresponding received signal. Further, F (r̂) is
the far–field amplitude corresponding to the transmitted signal x+

i . Hence, by
using (1) the received vector signal is obtained from the reciprocity theorem
(6) as

x− =

√
Zg

η
λRAE (7)

where R = TT, A is an 2L(L+2)× 2 matrix where each column corresponds
to the spherical components of the spherical vector harmonics il+1−τAα(k̂0),
and E is an 2 × 1 vector containing the corresponding signal components of
the electric field E0.
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2 DOA Estimation Using a Multiport Antenna

Based on (7) we employ here the simple snapshot signal model [Tre02]

x =

√
Zg

η
λRAEs + n, (8)

where the signal s and sensor noise n are modelled as uncorrelated zero mean
complex Gaussian variables with signal variance σ2

s , noise variance σ2
n and

noise covariance matrix σ2
nI. The received electric field is assumed to have

unit magnitude |E0| = 1 and completely polarized. Hence,
E = [cos α cos β + i sinα sinβ cos α sinβ − i sinα cos β]T where −π/4 ≤ α ≤
π/4 and 0 ≤ β ≤ π are angular polarization parameters. Define the signal–
to–noise ratio (SNR) as SNR = σ2

sZgλ2

σ2
nη , the signal covariance matrix is given

by
Cxx = σ2

n

(
SNRRAEEHAHRH + I

)
. (9)

Here, we employ Capon and MUSIC, see e.g. [Tre02], two well known high-
resolution techniques for DOA estimation where the corresponding spatial
spectrum functions are given by

PC(θ, φ) =
1

λmin

{
AH(θ, φ)RHC−1

xxRA(θ, φ)
} (10)

and
PM(θ, φ) =

1
λmin {AH(θ, φ)RHQnQH

n RA(θ, φ)}
, (11)

respectively, where Qn is the N × (N − 1) noise subspace eigenvector matrix
obtained from the eigenvalue decomposition of Cxx = QΛQH and λmin {·}
denotes the minimum eigenvalue of the enclosed matrix. With reference to
(10) and (11), it is observed that in order to increase the sampling density of
the spatial spectrums we simply compute A(θ, φ) on a more dense grid. No
further measurements of the antenna properties are needed. When calculating
A(θ, φ) the following formulas can be applied to decrease the computational
demand,

Ãθ
2ml(θ) = −Ãφ

1ml(θ), (12)

Ãφ
2ml(θ) = Ãθ

1ml(θ), (13)

Ãθ
1ml(θ̃) = (−1)l+mÃθ

1ml(θ), (14)

Ãφ
1ml(θ̃) = (−1)l+m+1Ãφ

1ml(θ), (15)
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where θ̃ = π − θ, π/2 < θ̃ ≤ π. Defining ∆θ and ∆φ as the spatial resolution
we also observe that Aτml(θ, φ + ∆φ) = Aτml(θ, φ)eim∆φ.

3 Numerical Examples

Consider a single tetrahedron antenna array consisting of six half-wave dipoles
centred on and organized as the edges in a tetrahedron where the total length
of one edge is one wave-length. Utilizing a Method of Moments based elec-
tromagnetic simulation software, to obtain the far–field amplitude F (r̂) for
64× 128 points of θ and φ,(a spatial grid of size 64× 128) and following the
method outlined in section 1 with L = 10 and M = 128 we obtain R = TT of
size 240× 6. This enables DOA estimation over the complete 2D DOA-space
but for computational simplicity we let θ ∈ [1 40] and φ ∈ [1 100]. Let the
DOA of s be θ = 10.5◦, φ = 30.5◦, α = 13◦, β = 7◦ and SNR = 40 dB. Using
(9) in (10) and (11), we obtain the normalized spatial spectrum in Fig. 1.
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Figure 1: Normalized spatial spectrum function using a DOA-grid of a) 40×
100 points and b) 80× 200 points. The peek indicate a signal present.

In Fig. 1 a) the spatial grid is 40× 100 points, ∆θ = 1◦ and ∆φ = 1◦, and
in Fig Fig. 1 b) the spatial grid is 80× 200 points, ∆θ = 0.5◦ and ∆φ = 0.5◦.
The accuracy is improved, especially for MUSIC, since the computations of
A(θ, φ) over a more dense grid includes the calculation of the response vector
corresponding to the incoming signal.
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Let R̃ = T̃T be the transmission matrix obtained by modelling one dipole
at a time, a simplification where the antenna elements are assumed to have
no interaction. We can thereafter compare the results of the DOA estimation
when R̃ is used in (10) and (11) instead of R. In Fig. 2 a), the spatial spectrum
estimate using R is depicted and in Fig. 2 b) using R̃. A poor result is seen
when the antenna is modelled using the assumption that no mutual coupling
exists between the antenna elements.
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Figure 2: Normalized spatial spectrum function using a spatial grid of 80×200
points. In a) is the spatial spectrum estimate using the complete antenna
model and in b), the spatial spectrum estimate for the case where each antenna
element is modelled separately.

4 Conclusions

Using the generic model of multiport antennas based on spherical vector
waves, we have obtained a general framework for modelling an arbitrary an-
tenna system. Properties such as e.g., mutual coupling are accounted for,
which if not included can cause deterioration in the DOA estimation. Increas-
ing the resolution of DOA estimation techniques is easily done by computa-
tions of the array manifold on a dense spatial grid, no further measurements
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of the antenna properties are required.
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Fundamental Limitations for DOA and

Polarization Estimation with Applications in

Array Signal Processing

S. Nordebo, M. Gustafsson and J. Lundbäck

Abstract

Using a generic electromagnetic model based on the spherical vector
harmonics, we provide the Cramér–Rao lower bound (CRB) for DOA
and polarization estimation with arbitrary multiport antennas. By reci-
procity, the receiving multiport antenna is characterized in terms of
the transmission matrix from incident voltage waves to multipole coef-
ficients of the outgoing spherical vector waves. Explicit results of the
CRB for the Gaussian case is given in terms of the transmission matrix,
the spherical vector harmonics and its spatial derivatives. Numerical
examples are included to illustrate the results.

1 Introduction

The Direction of Arrival (DOA) estimation using antenna arrays has been
the topic for research in array and statistical signal processing over several
decades and comprises now well developed modern techniques such as max-
imum likelihood and subspace methods, see e.g., [KV96, VSO97, SN90] and
the references therein. In recent years, there has been an increased interest in
incorporating properties of electromagnetic wave propagation with the statis-
tical signal estimation techniques used for sensor array processing and there
are many papers dealing with direction finding and polarization estimation
using electromagnetic vector sensors and diversely polarized antenna arrays,
tripole arrays, etc., see e.g., [RTS04, WZ00, Li93, SV93, HTT98, WF93, LS94,
HN95, HTT97, HTN99, WLZ04, Won01]. However, most papers assume ideal
electromagnetic vector sensors, and does not take into account the actual per-
formance of a real antenna system, mutual coupling effects, etc., see e.g.,

49
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[QQS05].
The classical theory of radiation Q uses spherical vector modes and equiv-

alent circuits to analyze the properties of a hypothetical antenna inside a
sphere, see e.g., [Han81, CR64, McL96, GJQ00]. An antenna with a high Q
factor has electromagnetic fields with large amounts of stored energy around
it, and hence, typically low bandwidth and high losses [Han81]. From a ra-
diation point of view, the high–order vector modes give the high–resolution
aspects of the radiation pattern. As is well known, any attempt to accomplish
supergain will result in high currents and near fields, thereby setting a practi-
cal limit to the gain available from an antenna of a given size, see also [Kar04].
The classical theory of broadband matching shows how much power that can
be transmitted between a transmission line and a given load [Fan50], i.e. the
antenna. Hence, by considering an antenna of a given size and bandwidth, to-
gether with the Q factors which are computable for each vector mode [CR64],
the broadband Fano–theory [Fan50] can be used to estimate the maximum
useful multipole order, and to calculate an upper bound for the transmis-
sion coefficient of any particular vector mode, see also [GN04, NG05, NG06].
However, when the antenna system is given, it is straightforward to assess
the maximum useful multipole order simply by inspection of the multipole
coefficients obtained from direct calculations.

In this paper, we demonstrate that the combination of statistical signal
processing and electromagnetic theory yields simple and very useful tools for
analyzing fundamental physical limitations associated with DOA and polariza-
tion estimation using arbitrary multiport antennas. In particular, we provide
the Cramér–Rao bound (CRB) for DOA and polarization estimation with
arbitrary multiport antennas by employing a generic electromagnetic model
based on the spherical vector harmonics.

2 An Electromagnetic Signal Model for Arbi-
trary Multiport Receiving Antennas

In order to develop a general signal model for a receiving multiport antenna,
or antenna array we start by considering the electromagnetic fields associated
with arbitrary antennas in the transmit mode, and then apply the reciprocity
theorem to obtain the properties of the corresponding antennas in the receive
mode.

Consider an arbitrary multiport antenna in the transmit mode. Let (r, θ, φ)
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denote the spherical coordinates, k = ω
c = 2π

λ the wave number, ω = 2πf the
angular frequency, λ the wave length and c and η the speed of light and the
wave impedance of free space, respectively. Assume that the antenna is con-
tained inside a sphere of radius r = a, and let eiωt be the time convention. The
transmitted electric field, E(r), can then be expanded in outgoing spherical
vector waves uτml(kr) for r > a as [AW01, Jac75, Han88]

E(r) =
L∑

l=1

l∑
m=−l

2∑
τ=1

fτmluτml(kr) (1)

where fτml are the multipole coefficients. Here τ = 1 corresponds to a
transversal electric (TE) wave and τ = 2 corresponds to a transversal mag-
netic (TM) wave. The other indices are l = 1, 2, . . . , L and m = −l . . . , l where
l denotes the order of that mode. For further details about the spherical vector
mode representation we refer to the appendix and [AW01, Jac75, Han88].

In principle, the summation in (1) is infinite (L = ∞). However, for all
practical purposes the maximum useful order L of any real antenna system is
finite and can be estimated as described in e.g., [CR64, GN04, NG05, NG06].
Hence, by considering a hypothetical mode–coupled antenna inserted inside
a sphere of radius a, a given electrical size ka, fractional bandwidth B (nor-
malized to the center frequency), and the Q–factors which are computable for
each mode order l [CR64], the Fano–theory [Fan50] can be used to calculate
the following upper bound for the transmission coefficient tl for a particular
mode, cf., e.g., [Fan50, GN04, NG05]

|tl| ≤
√

1− e−
2π
Ql

1−B2/4
B . (2)

However, when the antenna system is given, it is straightforward to assess L
simply by inspection of the multipole coefficients obtained from direct calcu-
lations as described below.

It can be shown that in the far–field when r → ∞, the electric field is
given by E(r) = e−ikr

kr F (r̂) where F (r̂) is the far–field amplitude given by

F (r̂) =
L∑

l=1

l∑
m=−l

2∑
τ=1

il+2−τfτmlAτml(r̂) (3)

and where Aτml(r̂) are the spherical vector harmonics [AW01, Jac75, Han88],
see the appendix for the definition used here. The power carried by each mode
is given by Pτml = 1

2ηk2 |fτml|2.
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Given that the far–field amplitude F (r̂) of the antenna is available through
some measurements, or through some numerical or analytical means, the mul-
tipole coefficients can be calculated from the projections

fτml = i−l−2+τ

∫
A∗

τml(r̂) · F (r̂) dΩ (4)

where we have employed the orthonormality of the spherical vector harmonics
[AW01, Jac75, Han88].

When calculating the multipole coefficients (4) from spherical data it is
convenient to employ the Fast Fourier Transform (FFT). Let F p(r̂) denote
the spherical components of the far–field amplitude F (r̂) where p = θ, φ. Let
F̃ p

m(θ) denote the Discrete Fourier Transform (DFT) of the spherical compo-
nents along the azimuthal coordinate φ such that

F p(r̂) =
1
M

M/2∑
m=−M/2+1

F̃ p
m(θ)eimφ (5)

where M is the number of azimuthal points and the size of the DFT, M/2 > L
and L is assumed to be sufficiently large so that the spatial alisasing in (5)
can be neglected.

The spherical vector harmonics Aτml(r̂) and their corresponding DFT’s
Ãτml(θ) are defined so that Aτml(r̂) = Ãτml(θ)eimφ, see the appendix.
Hence, by the orthogonality of the periodic Fourier basis eimφ, the double
integral in (4) can now be calculated conveniently by the single integrals

fτml =
2π

M
i−l−2+τ

∑
p=θ,φ

∫ π

0

Ãp∗
τml(θ) · F̃

p
m(θ) sin θ dθ (6)

where Ãp
τml(θ) denotes the spherical components of Ãτml(θ).

Consider an arbitrary multiport antenna consisting of N ports. Let x+
j and

x−j denote the corresponding incident and reflected voltages at the antenna
waveguide connections for j = 1, . . . , N . These voltages are normalized so that

the power delivered to a particular antenna port is
|x+

j |
2

2Zg
and the corresponding

reflected power is
|x−j |

2

2Zg
where Zg is the impedance of the propagating wave

guide mode.
On transmission from the input terminals with incident voltage waves x+

j ,
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the transmitted wave field fi is given by[
fi

k

]
= Tx+

√
η

Zg
(7)

where the multi–index i = (τ,m, l) is used to simplify the notation, T = [Tij ]
is the properly scaled transmission matrix which maps the vector of incident
voltage waves x+ = [x+

j ] to the multipole coefficients fi of the propagated
outgoing spherical vector waves. The 2L(L + 2) ×N transmission matrix T
is obtained one column at a time by calculating the far–field and the corre-
sponding multipole coefficients (4) with the corresponding input connections
energized one at a time. The reflected voltages are given by x− = Γx+ where
Γ is the reflection matrix. Conservation of total power yields the relationship
ΓHΓ + THT ≤ I where equality holds for lossless antennas.

Now, considering one single incident wave x+
j , the antenna reciprocity

theorem [DPG+98] yields

x−j x+
j = −i

λ2

2π

Zg

η
F (k̂0) ·E0 (8)

where E0 is the complex vector amplitude of a plane wave E0e−ikk̂0·r coming
from direction k̂0 and x−j the corresponding received signal. Further, F (r̂) is
the far–field amplitude corresponding to the transmitted signal x+

j . Hence, by
using (3) the received vector signal is obtained from the reciprocity theorem
(8) as

x− =

√
Zg

η
λRAE (9)

where R = TT, A is an 2L(L+2)×2 matrix where each column corresponds to
the spherical components of the spherical vector harmonics il+1−τAτml(k̂0),
and E is an 2 × 1 vector containing the corresponding signal components of
the electric field E0.

3 Cramér–Rao Bound for DOA and Polariza-
tion Estimation

Based on (9) we consider here the simple snapshot signal model [Tre02]

x =

√
Zg

η
λRAE + n (10)
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where the sensor noise n is zero mean white complex Gaussian noise [Tre02]
with variance σ2

n and covariance matrix σ2
nI. We may consider either of the

following three models for the received base band vector signal E.
(1): Assume that E is constant and thus completely polarized. The field

E can then be modeled as

E = A

(
cos α cos β + i sinα sinβ
cos α sinβ − i sinα cos β

)
(11)

where A is a complex amplitude, −π/4 ≤ α ≤ π/4 and 0 ≤ β ≤ π are angu-
lar polarization parameters corresponding to the Stoke’s parameters s1 =
s0 cos 2α cos 2β, s2 = s0 cos 2α sin 2β and s3 = s0 sin 2α for the Poincare
sphere [Han88] where s0 = |A|2. Denote by ξ = [θ φ α β]T the vector of
DOA and polarization parameters of interest and define the signal–to–noise
ratio SNR as

SNR =
Zgλ

2

η

s0

σ2
n

. (12)

The Fisher information matrix I(ξ) for this situation is given by [Kay93]

[I(ξ)]ij = 2SNR Re
{
pH

i pj

}
(13)

where pi = R ∂
∂ξi

{AE}.
(2): Assume that E is complex Gaussian and partially polarized. The

covariance (coherence) matrix for E is then given by

Cs = E
{
EEH

}
=

1
2

(
s0 + s1 s2 + is3

s2 − is3 s0 − s1

)
(14)

where E denotes the expectation operator and s0, . . . , s3 denotes the Stoke’s
parameters [Han88]. Denote by ξ = [θ φ s0 s1 s2 s3]T the vector of DOA and
polarization parameters of interest and let the signal–to–noise ratio SNR be
given by (12). The Fisher information matrix I(ξ) for this situation is given
by [Kay93]

[I(ξ)]ij = tr
{
C−1 ∂C

∂ξi
C−1 ∂C

∂ξj

}
(15)

where C is the covariance matrix for the measurements,

C = E
{
xxH

}
= σ2

n

(
SNR

1
s0

RACsAHRH + I
)

. (16)
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(3): Assume that E is complex Gaussian and completely polarized. Here E
is given by (11) where the amplitude A is zero mean complex Gaussian with
variance s0 = E

{
|A|2

}
. The covariance matrix for E is again given by (14)

where s1 = s0 cos 2α cos 2β, s2 = s0 cos 2α sin 2β and s3 = s0 sin 2α. Denote
by ξ = [θ φ s0 α β]T the vector of DOA and polarization parameters of
interest and let the signal–to–noise ratio SNR be given by (12). The Fisher
information matrix I(ξ) for this situation is again given by (15).

When calculating the Fisher information according to either (13) or (15) we
need to calculate the derivatives ∂A

∂θ and ∂A
∂φ of the spherical vector harmonics.

Denoting the 2L(L + 2)× 2 matrix A by

A = [il+1−τ Ãθ
τml(θ)e

imφ, il+1−τ Ãφ
τml(θ)e

imφ] (17)

we have

∂A
∂θ

= [il+1−τ ∂Ãθ
τml(θ)
∂θ

eimφ, il+1−τ ∂Ãφ
τml(θ)
∂θ

eimφ]
∂A
∂φ

= [il+1−τ imÃθ
τml(θ)e

imφ, il+1−τ imÃφ
τml(θ)e

imφ]
(18)

where

∂Ãθ
1ml(θ)
∂θ

=
∂Ãφ

2ml(θ)
∂θ

=
(−1)m√
2πl(l + 1)

im
sin2(θ)

(
∂P̄m

l (cos θ)
∂θ

sin θ − P̄m
l (cos θ) cos θ

)
∂Ãφ

1ml(θ)
∂θ

= −∂Ãθ
2ml(θ)
∂θ

=
−(−1)m√
2πl(l + 1)

∂2P̄m
l (cos θ)
∂θ2

(19)

are obtained from (28) and ∂P̄m
l (cos θ)

∂θ and ∂2P̄m
l (cos θ)
∂θ2 by repeated use of (27).

4 Numerical Examples

4.1 Polarization estimation with an ideal tripole antenna
array

In Fig. 1 is shown the optimum transmission coefficients |tl|2 from (2) with
Q–factors corresponding to the first 3 mode orders l = 1, 2, 3, cf., [CR64], as
the electrical size ka as well as the fractional bandwidth B is varied. The
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figure illustrates the difficulty to match higher order modes, as well as the
fact that all modes will ultimately become useful (useless) as the electrical
size increases (decreases), or as the bandwidth decreases (increases).
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Figure 1: Optimum transmission coefficient |tl|2 as a function of electrical size
ka for the first 3 mode orders l = 1, 2, 3. Fractional bandwidth is B = 1, 5, 10
%.

Consider now a single, ideal tripole antenna array with

A =

√
3
8π

 cos θ cos φ − sinφ
cos θ sinφ cos φ
− sin θ 0

 (20)

corresponding to the three fundamental TM modes of lowest order l = 1,
or equivalently, the three ideal electrical dipoles in the cartesian base vector
directions x̂, ŷ, ẑ.

In Fig. 2 is shown the Cramér–Rao bound for the polarization parameters
s0, s1, s2 and s3 versus electrical size ka in a situation where the unknown
parameters are ξ = [s0 s1 s2 s3 σ2

n]T. The diagonal elements of I−1(ξ)
are based on (15) with the optimum transmission coefficients T = diag{tl}
calculated as in (2) with B = 5 % and Q = 1

ka + 1
(ka)3 , cf., [CR64]. The
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Stoke’s parameters are parameterized as

s1 = Ps0 cos(2α) cos(2β)
s2 = Ps0 cos(2α) sin(2β)
s3 = Ps0 sin(2α)

(21)

where 0 ≤ P ≤ 1 is the degree of polarization. The signal–to–noise ratio
(12) was chosen to 50 dB. In this example we have chosen a situation with
circular polarization with s0 = 1, s1 = 0, s2 = 0 and s3 = 1. The solid,
dashed–dotted, dashed and dotted lines correspond to P = 0, 0.9, 0.99 and
1, respectively. The result in Fig. 2 is invariant to the directional parameters
θ and φ but depends strongly on polarization. In particular, only s1 and s2

can be efficiently estimated in this example, and the performance improves
drastically as the degree of polarization P approaches unity. It should be noted
that we employ here a one snapshot signal model and that the performance
will naturally improve by employing several signal samples of (10).
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Figure 2: Cramér–Rao bound for the polarization parameters s0, s1, s2 and
s3 versus electrical size ka. Circular polarization with s0 = 1, s1 = 0, s2 = 0
and s3 = 1. The solid, dashed–dotted, dashed and dotted lines correspond to
P = 0, 0.9, 0.99 and 1, respectively. SNR is 50 dB and B = 5%.
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Although the result above should be expected, it can be better under-
stood by performing a principal parameter analysis. We define the principal
parameters η to be the linear transformation

η = UHξ (22)

where U are the left singular vectors from the Singular Value Decomposition
(SVD) of the Fisher information, I(ξ) = UΣVH. The principal parameters ηi

are uncoupled, and their corresponding Cramér–Rao bounds are the reciprocal
of the singular values σ−1

i .
Fig. 3 a) shows the Cramér–Rao bounds σ−1

i for the principal parameters
ηi, as well as − log det I plotted as a function of the degree of polarization
P . Fig. 3 b) shows the corresponding results for the original parameters ξi.
The parameter situation is the same as above, except now SNR is 30 dB and
ka = 1.

Note that the performance results for the principal parameters in Fig.
3 a) are invariant not only to the directional parameters θ and φ, but are
also invariant to the polarization parameters α and β. In other words, the
performance of the principal parameters ηi depends only on the degree of
polarization P , whereas the performance of the original parameters ξi depends
also on the actual situation with polarization parameters α and β.

In this example with circular polarization, it is concluded that the relevant
parameters to measure are s1 and s2 whereas s0 and s3 cannot be measured
as efficiently. By studying the left singular vectors in U, we can identify the
principal parameters as linear combinations of the original parameters. The
“best” parameter η1 corresponds directly to the noise parameter σ2

n which is
thus a relevant parameter to measure. Further, η2 ∼ s3− s0 and η5 ∼ s3 + s0

are “good” and “poor” parameters to estimate, respectively. It is furthermore
“appropriate” to estimate s1 and s2 since (s1, s2) belongs to the subspace
spanned by the singular vectors corresponding to the two principal parameters
η3 and η4 sharing the same singular value (and hence the same Cramér–Rao
bound). It should also be noted that the SVD produces here a decomposition
which has a direct physical significance. Thus, η2 ∼ s3 − s0 and η5 ∼ s3 +
s0 correspond also to the power in the left and right circularly polarized
components, respectively, see e.g., [Han88]. Hence, given that the wave is
right circularly polarized (as in our example), the (absolute) performance of
estimating the power of a weak left circularly polarized signal component is
much better than for estimating the power of the dominating right circularly
polarized signal component.
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Figure 3: a) Cramér–Rao bound for the principal parameters η1, η2, η3, η4, η5

versus degree of polarization P . b) Cramér–Rao bound for the polarization
parameters s0, s1, s2, s3 and σ2

n versus degree of polarization P . Circular po-
larization with s0 = 1, s1 = 0, s2 = 0 and s3 = 1. SNR is 30 dB, ka = 1 and
B = 5%.

In conclusion, the study shows that the estimation performance of the
tripole antenna as measured by the functional log det I(ξ) is invariant to the
directional parameters θ and φ as well as to the polarization parameters α
and β. However, the functional log det I(ξ) depends strongly on the degree
of polarization P , as well as on the electrical size ka of the antenna and the
bandwidth B of the system. The principal parameter analysis is a useful
technique to investigate the significance of different parameters.

4.2 DOA estimation with a non–ideal tetrahedron array

We consider now an array of antennas consisting of six half wave dipoles
centered on the edges of a tetrahedron where each edge has the length of one
wave, see Fig. 4. We have utilized SuperNec c© 2.91, a Method of Moments

1SuperNec 2.9 is a product of the Poynting Group. www.supernec.com
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based electromagnetic simulation software to obtain the far–field amplitude
F (r̂) used in (4). The far–field amplitude F θ(r̂) for the six elements are shown
in Fig. 5 using L = 10 and hence 2L(L + 2) = 240 multipole coefficients.

In Fig. 6 is shown the Cramér–Rao lower bound (CRB) [Kay93] for DOA
estimation based on (13) when the polarization is given by α = β = 0 (linear
θ̂–polarization) which is assumed to be known. The signal to noise ratio is
SNR = 0 dB. Fig. 6 a) and b) show the CRB when all six elements of the array
is used. Fig. 6 c) and d) show the corresponding results using only the two
elements no. 2 and 3, a situation which is more easily related to the responses
shown in Fig. 5. Note also the higher levels and dynamics of the CRB when
only two elements are used.
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Figure 4: Geometry for the six element tetrahedron array.

5 Summary

Fundamental physical limitations associated with DOA and polarization es-
timation using arbitrary antennas or antenna arrays are analyzed. By using
spherical vector modes as a generic model for the transmission, we show how
the corresponding Cramér–Rao bounds can be calculated for any real antenna
system. The electromagnetic model is rather complex, but is straightforward,
generally applicable and complete in the sense that it incorporates all electro-
magnetic properties of the antenna system such as mutual coupling effects,
etc. The spherical vector modes and their associated equivalent circuits and
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Figure 5: Far–field amplitude F θ(r̂) for the six antennas in the array.

Q factor approximations are used together with the broadband Fano theory
as a general framework for analyzing electrically small multiport antennas. A
principal parameter analysis using the SVD of the Fisher information matrix
is employed to evaluate the performance of an ideal tripole antenna array with
respect to its ability to estimate the state of polarization of a partially polar-
ized plane wave coming from a given direction. As an example of an arbitrary
multiport antenna we employ the non–ideal tetrahedron array (with mutual
coupling) and analyze its performance with respect to the Cramér–Rao bound
for DOA estimation.

Future work includes an investigation about possible estimation algorithms,
such as those mentioned in e.g., [RTS04, WZ00, Li93, SV93, HTT98, WF93,
LS94, HN95, HTT97, HTN99, WLZ04, Won01] that could exploit and take
advantage of the presented generic model.
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A Spherical Vector Waves

The outgoing spherical vector waves are given by

u1ml(kr) = h(2)
l (kr)A1ml(r̂)

u2ml(kr) =
1
k
∇× u1ml(kr) =

(krh(2)
l (kr))′

kr
A2ml(r̂) +

√
l(l + 1)

h(2)
l (kr)
kr

A3ml(r̂)

(23)
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where Aτml(r̂) are the spherical vector harmonics and h(2)
l (x) the spherical

Hankel functions of the second kind, see [AW01, Jac75, Han88].
The spherical vector harmonics Aτml(r̂) are given by

A1ml(r̂) =
1√

l(l + 1)
∇× (rYml(r̂))

A2ml(r̂) = r̂ ×A1ml(r̂)
A3ml(r̂) = r̂Yml(r̂)

(24)

where Yml(r̂) are the scalar spherical harmonics given by

Yml(θ, φ) = (−1)m

√
2l + 1

4π

√
(l −m)!
(l + m)!

Pm
l (cos θ)eimφ (25)

and where Pm
l (x) are the associated Legendre functions [AW01].

For convenience, we introduce also the normalized associated Legendre
functions

P̄m
l (x) =

√
2l + 1

2

√
(l −m)!
(l + m)!

Pm
l (x) (26)

so that Yml(r̂) = (−1)mP̄m
l (cos θ) 1√

2π
eimφ. The following relations for P̄m

l (x)
are useful for numerical calculations [AW01, Han88]

P̄−m
l (x) = (−1)mP̄m

l (x)
∂

∂θ
P̄m

l (cos θ) =
1
2

√
(l + m)(l −m + 1)P̄m−1

l (cos θ)

−1
2

√
(l + m + 1)(l −m)P̄m+1

l (cos θ).

(27)

Note also that P̄m
l (x) = 0 for m > l.

Now, from (24) the spherical vector harmonics may be derived as

A1ml(r̂) = Ã1ml(θ)eimφ =
= (−1)m√

l(l+1)

(
θ̂ im

sin θ P̄m
l (cos θ)− φ̂ ∂

∂θ P̄m
l (cos θ)

)
1√
2π

eimφ

A2ml(r̂) = Ã2ml(θ)eimφ =
= (−1)m√

l(l+1)

(
θ̂ ∂

∂θ P̄m
l (cos θ) + φ̂ im

sin θ P̄m
l (cos θ)

)
1√
2π

eimφ

A3ml(r̂) = Ã3ml(θ)eimφ = r̂(−1)mP̄m
l (cos θ) 1√

2π
eimφ

(28)

where the Fourier transformed spherical vector harmonics Ãτml(θ) are defined
so that

Aτml(r̂) = Ãτml(θ)eimφ. (29)
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Note that Ãτml(θ) is defined as the Fourier transform only with respect to the
respective spherical r, θ, φ components. As a vector field Ãτml(θ) still depend
on the φ coordinate via the basis vectors r̂, θ̂, φ̂.
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On the Design of Optimal Cylindrical Antenna

Near–Field Measurements

J. Lundbäck

Abstract

In this report, the theory of optimal experiments is applied to cylin-
drical antenna near-field measurements. A D-optimal formulation based
on the Fisher information of the multipole coefficients in the spherical
wave expansion of the electrical field is considered. The solution to
the semi-definite optimization problem results in optimal measurement
points. Using the optimal measurement points, the inverse source prob-
lem is solved by a least-square based method. The properties of the
estimation of the multipole coefficients, the corresponding electric field
and the optimization formulation are studied using numerical examples
and singular value analysis.

1 Introduction

Many applications involving antennas require knowledge of the antenna prop-
erties that are obtained from antenna measurements. Antenna parameters to
be determined include e.g., gain and antenna far–field pattern. Depending
on the antenna construction and frequency of operation, either far–field or
near–field measurements are employed. The far–field measurement demand
a large and expensive out–door range making this method disadvantageous
[Han88].

The near–field measurement can be constructed indoor, and in a more
compact space, enabling a more attractive measurement configuration. Using
the spherical vector wave expansion of the electromagnetic field, the antenna
properties can be calculated once the multipole coefficients have been esti-
mated and systematic errors have been removed via the probe calibration, see
e.g., [RS04, Lai05, PG05, NG06b, NGP07].

71



72 Part III

Consider the antenna measurement as an optimal experiment [EN98]. The
objective of an optimal experiment is to adjust the experiment parameters so
that a suitable measure of optimality is maximized e.g., [WGF06, Fed72,
AD92]. The parameters of the experiment and the measure of optimality
vary in different applications e.g., in system identification, the parameter
that define the input signal should be optimum in the sense that the cor-
responding output signal of the unidentified system provides maximum infor-
mation to the identification process, see e.g., [LSL02]. Beside the antenna
near-field measurement, other applications that have benefited from the opti-
mal experiment design are measurement intensive applications involving sev-
eral experiment parameters e.g., Tomography and Ground Penetrating Radar
[XC04, PLP93, SXC05, ACM06, NG06a].

Here, based on the cylindrical measurement configuration, the experiment
parameters are the measurement positions of the near–field measurement.
The optimal measurement positions are obtained from the solution to a semi–
definite optimization formulation where the determinant of the Fisher infor-
mation matrix [Kay93] is maximized, which is termed a D-optimal experiment
[VBW98, VB99]. Generally, the formulation of the optimal experiment de-
pends on the unknown parameters that should be estimated using the data
obtained from optimal experiment [Hja05].

The electrical field of the antenna under test is constructed of generated
multipole coefficients. At the optimal measurement points, samples of two
polarizations of the electrical field are used to solve the inverse source problem
based on a least-square method. The near–field estimation of the electric field
follows after the estimation of the multipole coefficients in the spherical vector
wave expansion of the electrical field [Han88].

The report is organized as follows. In part 2, the electric near–field is de-
scribed using the spherical vector wave expansion in a cylindrical measurement
configuration. The Fisher information matrix of the multipole coefficients is
given and the solution method to the inverse problem is described. Next, in
part 3 the optimal measurement formulation is given, along with the measures
of the estimation performance. Numerical examples are included in part 4.
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2 Antenna Near–Field Estimation Based on
Cylindrical Data

We consider the antenna near-field estimation problem based on cylindrical
data. Let (r, θ, φ) and (ρ, φ, z) denote the spherical and cylindrical coordi-
nates, respectively. Further, let k = ω/c denote the wave number, ω = 2πf
the angular frequency, and c and η the speed of light and the wave impedance
of free space, respectively.

Assume that all sources are contained inside a sphere of radius r = a,
and let eiωt be the time-convention. The transmitted electric field, E(r), can
then be expanded in outgoing spherical vector waves uτml(kr) for r > a as
[AW01, Jac75, Han88]

E(r) =
∞∑

l=1

l∑
m=−l

2∑
τ=1

fτmluτml(kr) (1)

where fτml are the multipole coefficients. Here τ = 1 corresponds to a
transversal electric (TE) wave and τ = 2 corresponds to a transversal mag-
netic (TM) wave. The other indices are l = 1, 2, . . . ,∞ and m = −l . . . , l
where l denotes the order of that mode. In principle, the sum in (1) is infi-
nite. However, for all practical purposes the maximum useful order L is finite
and is physically restricted by the electrical size ka of the sphere as well as
the bandwidth of the antenna, see e.g., [Han88, NG05].

We consider now the inverse, linear estimation problem of determining the
multipole coefficients fτml based on an observation of the electric near field,
E(r), as it is measured on the cylindrical surface {ρ = ρ0, z1 ≤ z ≤ z2}. We
assume that the measurement is corrupted by additive and spatially uncor-
related complex Gaussian noise N(r) with zero mean and dyadic covariance
function E{N(r)N∗(r′)} = σ2

nδ(r − r′)I where E{·} denotes the expectation
operator, σ2

n the noise variance, δ(r) the impulse function and I the identity
dyad. Note that since the data is discrete, δ(·) denotes the discrete impulse
function with δ(0) = 1.

When we wish to estimate the near field at a sphere of radius r = a, the
linear equations in (1) are first regularized by normalizing with the vector
norm ‖uτml(kr)‖ = (

∫
|uτml(kr)|2 dΩ)1/2 where dΩ is the differential solid

angle. By the orthonormality of the spherical vector harmonics [AW01, Jac75,
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Han88], we have

‖u1ml(kr)‖2
r=a =

∣∣∣h(2)
l (ka)

∣∣∣2
‖u2ml(kr)‖2

r=a =

∣∣∣∣∣ (kah(2)
l (ka))′

ka

∣∣∣∣∣
2

+ l(l + 1)

∣∣∣∣∣h(2)
l (ka)
ka

∣∣∣∣∣
2 (2)

which are independent of the azimuthal m-index.
Consider first a situation where we have arbitrary measurement points rj

for j = 1, . . . , n. The Fisher information matrix [Kay93] for estimating the
normalized multipole coefficients fτml is then given by

[I]τml,τ ′m′l′ = 1
σ2
n

∑n
j=1

∂E∗(rj)
∂f∗

τml
· ∂E(rj)

∂fτ′m′l′

=
1
σ2

n

n∑
j=1

u∗
τml(krj)

‖uτml(kr)‖r=a
· uτ ′m′l′(krj)
‖uτ ′m′l′(kr)‖r=a

.
(3)

Now, assume that we have a cylindrical measurement using M azimuthal
points φ equally spaced in [0, 2π], and n vertical positions zj with spherical
coordinates (rj , θj). The Fisher information (3) then becomes

[I]τml,τ ′m′l′ =
M

σ2
n

n∑
j=1

ũ∗
τml(rj , θj)

‖uτml(kr)‖r=a
· ũτ ′m′l′(rj , θj)
‖uτ ′m′l′(kr)‖r=a

δ(m−m′), (4)

where we have employed the orthogonality of the Discrete Fourier Transform
(DFT) and the azimuthal Fourier transform ũτml(r, θ) of the spherical vector
waves uτml(kr) = ũτml(r, θ)eimφ.

The Fisher information matrix (4) is decoupled over the m-index and
can hence be organized as a block diagonal matrix with diagonal blocks
Im with [Im]τl,τ ′l′ = [I]τml,τ ′ml′ for −L ≤ m ≤ L where τ, τ ′ = 1, 2
and l, l′ = max{|m|, 1}, . . . , L. The corresponding Cramér-Rao lower bound
(CRB) [Kay93] for the near–field estimation is now given by

E
{
|Ee(r)−E(r)|2

}
≥

L∑
m=−L

2∑
τ,τ ′=1

L∑
l,l′=max{|m|,1}

ũ∗
τml(r, θ) · [I

−1
m ]τl,τ ′l′ũτ ′ml′(r, θ)

‖uτml(kr)‖r=a‖uτ ′ml′(kr)‖r=a
,

(5)

where Ee(r) denotes the estimated field. Note that the CRB in (5) is in-
dependent of the azimuthal coordinate φ, and depends only on (r, θ). Let
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EP (r) = p̂(r) ·E(r) be an observation of the electrical field for a given polar-
ization ρ̂(r). Applying the DFT on the input data over the azimuthal direction
so that

EP (r) =
1
M

M/2∑
m=−M/2

ẼP
m(ρ, z)eimφ. (6)

We obtain a complex linear system of equations for each index m of the DFT,

1
M

ẼP
m(ρ, z) =

2∑
τ=1

L∑
l=max{|m|,1}

fτmlũτml(r, θ). (7)

Here, ρ̂ provide two measurements of the electrical field at each point in space.
Each complex linear system of equations consists of 2n measurement points
and 2(L −max {|m|, 1} + 1) multipole coefficients, resulting in an overdeter-
mined system of equations if 2n ≥ 2L. Based on (7) and for each m, let Em

be the matrix representation of the electrical field at the measurement points,
Um the matrix representation of the normalized spherical vector waves and
fm the unknown multipole coefficients. Then, the matrix representation of (7)
is

Em = Umfm, (8)

which is solved using the Penrose inverse of Um for each m. Observe that Um

is dependent on a due to the normalization. For regularization of the system
of equations, the Penrose inverse can be calculated after the singular values
of Um with values below a certain tolerance level are set to zero [GL96]. The
tolerance level is determined based on the noise level etc., and can be set to
a value close to zero if e.g., the noise level is low and many measurement
points are used. From the CRB theory of a linear model and (4), the Fisher
information matrix Im corresponding to fm reads

σ2
n

M
Im = UH

mUm. (9)

It is clear from (9) that the singular values of Um equals the square root of
the eigenvalues of σ2

n
M Im.
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3 Optimal Measurement Formulation

We consider designing an optimal measurement for the antenna near–field
estimation. The approach is based on the theory of optimal experiments, see
e.g., [AD92]. In the design of the optimal measurement considered here, the
measurement points rj are considered as the experiment parameters. The
measurement points that are obtained from the optimization formulation are
optimal in the sence that a functional of the Fisher information matrix of
the multipole coefficients is maximized i.e., using the optimal measurement
points, the variance of the estimates of the multipole coefficients should be
minimized.

Hence, we determine a set of optimal observation points by defining a con-
strained convex functional of the Fisher information matrix, see e.g., [VPPR00].
The most common used functional is the determinant and further functionals
are e.g., the trace and the minimum eigenvalue [EN98]. In general, the choice
of a particular functional is not obvious but some properties of functionals are
given in [EN98]. Here, we employ the determinant as a first approach, which
corresponds to a semi–definite optimization formulation.

Assume that there are n possible spatial observation points rj and assign
to each point the probability measure xj ≥ 0 for j = 1, . . . , n. The correspond-
ing vector decision variable is denoted x ∈ Rn. Let G(x) denote the Fisher
information matrix corresponding to a specific measurement constellation x,
ξ ∈ Cν the vector of complex parameters to be estimated, ν the number
of parameters and ∂E(rj)

∂ξ the corresponding sensitivity vector, see e.g., the
previous model (3). Other parameters of the measurement configuration are
assumed to be known e.g., k and L.

The corresponding convex optimization problem of maximizing the deter-
minant of the Fisher information matrix is then given by

(P1)



min
x∈Rn

− log detG(x)

G(x) =
n∑

j=1

xj
∂E∗(rj)

∂ξ∗
· ∂E(rj)

∂ξT

x ≥ 0
n∑

j=1

xj ≤ 1

(10)

We will refer to this optimization formulation as (P1). Observe that the mul-
tipole coefficients do not affect the measurement design since they appear
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linearly in the optimization formulation. In a general optimal experiment de-
sign, the optimization depend on the unknown parameters of interest [Hja05].

For implementation purpose, the diagonal structure of G(x) can be uti-
lized. Note that,

∂E∗(rj)
∂ξ∗

· ∂E(rj)
∂ξT

= diag [I−L . . .I0 . . .IL] , (11)

where Im = Im(rj), cf., (4). The objective function in the optimization
formulation then reads

− log detG(x) = −
L∑

m=−L

log detGm(x), (12)

where Gm(x) =
∑n

j=1 xjIm(rj).
Consider also the following formulation, refered to as (P2),

(P2)



min
x∈Rn

− log detG(x)

G(x) =
n∑

j=1

xj
∂E∗(rj)

∂ξ∗
· ∂E(rj)

∂ξT

0 ≤ x ≤ 1/γ
n∑

j=1

xj ≤ 1

(13)

where γ can be used to specifiy the minimum number of optimal measurement
points. Both P1 and P2 use the determinant of the Fisher information matrix
as the objective functional. This type of formulation is termed D-optimal
experiment design. Observe that the term M/σ2

n is removed from the Fisher
information matrix (4) in the optimization formulations since it does not
affect the solution, rather the numerical stability. Therefore, the optimal
measurement points are independent of the noise power and consequently the
signal–to–noise ratio. Note that if γ = 1, then P1 and P2 are essentially the
same optimization problem.

We will refer to optimal measurement points (OMP) as the spatial posi-
tions rj where the corresponding xj 6= 0. If a measurement point is determined
optimal, a sample of the electric field is taken at this point in space.
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3.1 Measurement configuration

We consider the cylindrical measurement (CM) configuration. The CM is the
classic configuration where measurements of the electrical field are obtained
at measurement points that describe a cylindrical surface (along the z-axis)
surrounding the antenna under test (AUT). Further, we consider the extended
cylindrical measurement (ECM). Here, possible measurement points are lo-
cated on three different measurement surfaces, the cylinder (parallel to the
z-axis) and the bottom and top of the cylinder (parallel to the ρ-axis).

For the CM and ECM, the z and the φ components of the electrical field (1)
is calculated at the measurement points. In the CM, the measurement points
are rj = (ρ0, zj), where |zj | ≤ zmax. For the ECM, the possible measurement
points are rj = (ρ0, zj), on the cylinder surface and rj = (ρj ,−zmax) and
rj = (ρj , zmax), on the bottom and top surfaces, respectively. The number of
measurement points in the φ direction is M = 120.

The AUT is confined within a sphere of radius a, where the center of the
sphere is located at r = (0, 0, 0) in the coordinate system used to describe the
electrical field (1). For simplicity, the measurement configuration is choosen
for symmetry between measurement points below and above z = 0.

The electrical field is constructed by synthetization of the multipole co-
efficients up to order L. Each coefficient fτml is a random number obtained
from a normalized complex white Gaussian distribution. The corresponding
power is PT = 1

2ηk2

∑
α |fα|2, where α = (τ,m, l) is a multi–index. Using

the multipole coefficients, the corresponding electrical field is calculated and
complex zero mean Gaussian noise is added. The inverse problem is solved
for a = 3λ, . . . , 15λ, where λ is the wavelength.

As a quantitative instrument we define the error function

ef (a) =
1
K

K∑
k=1

||fk − f̂k(a)||22
||fk||22

, (14)

where fk is the vector representation of the simulated multipole coefficients,
f̂k(a) is the estimate of the former quantity and K is the total number of
realizations used for the simulation. The error function measures the accuracy
of the multipole estimation for each value of a.

Using f̂k(a) we can estimate the electrical field Ee
k(r) and form the error

function

eE(r) =
1
K

K∑
k=1

|Ee
k(r)−Ek(r)|2

|Ek(r)|2
(15)
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where r = (a, θ, φ). Due to the symmetry in the φ direction of the measure-
ment configuration and the electric field corresponding to random multipole
coefficients, we can arbitrary choose φ = 0◦ in (15). Observe that for each
realization k, new multipole coefficients are obtained. The random multipole
coefficients is used to model the uncertainy regarding the radiation properties
of the AUT and to decrease the possibility of obtaning a simulated electrical
field that is not measurable by the probe. Also, we define the signal-to-noise
ratio (SNR) as

SNR =
maxj

{
|E(rj)|2

}
σ2

n

. (16)

As a measure of the difference in information between two measurement
strategies, the optimal value of the two corresponding objective functions
are used. The two measurement strategies could e.g., be the OMP and the
equidistant measurement points along the z-axis. The number of measurement
points is N and for each equidistant measurement point the corresponding
probability measure is xL = 1/N. Hence, the information measure between
the OMP and the equidistant measurement points is

det (G(xC))
det (G(xL))

, (17)

where xL and xC corresponds to the probability measure vector for the equidis-
tant measurement points and the OMP, respectively. Observe that when (17)
is depicted in dB, a higher value than 0 dB corresponds to more information
gained from the OMP compared to the equidistant measurement points.

Finally, since I is blockdiagonal (4) and each blockmatrix Im is related to
Um according to (9), the square root of the eigenvalues of σ2

n
M I corresponds

to the singular values of Um for all m given a. The optimization can be
analyzed by comparing the singular values of Um for all m using the OMP
and equidistant measurement points given a. This will also illustrate how the
choosen tolerance of the Penrose inverse used in (8) affect the solution to the
inverse problem of each measurement strategy.

4 Numerical Examples

In the following section we provide numerical examples that illustrate proper-
ties of the optimization and the corresponding OMP. The error functions are
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presented using both OMP and equidistant measurement points as two dif-
ferent measurement strategies. The equidistant distribution of measurement
points is a simple measurement strategy that can be easily applied. In each
simulation, K = 20 or larger to decrease the variance of the error functions.
The optimization problem is solved using YALMIP [Lof04] and SDTP3 4.0
[TTT04].

4.1 Cylindrical measurements based on P1

First, from the solution of P1 it is observed that for a given L and ρ0, zmax

can be choosen so that increasing zmax further would not alter the solution of
P1. The number of OMP N resulting from the solutions of P1 for different L
is given in table 1. Here, we choose zmax = 40λ and ρ0 = 5λ so that increasing
zmax would not affect the result of table 1.

L 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N 1 2 4 5 6 7 8 10 11 12 13 14 15 16 17

Table 1: The number of OMP for each order L.

Further, in the numerical experiments, we note that the number of OMP
given L are equal to L,L + 1 or L + 2 depending on the settings of zmax

and ρ0. For each m, the linear system of equations (8) consists of 2(L −
max {|m|, 1} + 1) multipole coefficients, corresponding to 2N measurements,
where we consider using measurements of two polarizations of the electrical
field. The maximum number of unknown coefficients is then 2L, (for m =
0,±1), which is less than or equal to 2N as seen in table 1. Hence, number
of OMP is sufficient to solve the inverse problem.

In the left figure of Fig. 1 is shown the OMP for L = 10, zmax = 20λ
and ρ0 = 5λ. By altering ρ0, the distance between the AUT and the probe
is changed. The OMP at rj = (rj , θj), j = 1, . . . N are invariant in θ if
ρ0 and zmax are changed so that θj still belongs to the set of possible mea-
surement positions. From the solution of P1 it is observed that the OMP
are approximately equidistant distributed in θ. This could be expected in a
spherical antenna measurement configuration but not obvious in a cylindrical
configuration. Hence, further knowledge of the measurement configuration is
provided by the optimization.

Let the spatial coverage in θ of the OMP along the z-axis be max{θj} −
min{θj}. Increasing L, the spatial coverage of the OMP along the measure-
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Figure 1: The left figure depicts the OMP for L = 10. The symmetry of the
OMP around z = 0 and the equidistant distribution in θ is seen. The right
figure depicts the spatial coverage max{θj} −min{θj} as function of L.

ment axis increases. Using the OMP, max{θj}−min{θj} is depicted as func-
tion of L in the right figure of Fig. 1.

Consider the near-field estimation problem using both measurement strate-
gies. Let zmax = 20λ, ρ0 = 5λ, SNR = 50 dB and L = 10 if nothing else is
stated. In the left figure of Fig. 2, ef is depicted as function of the SNR for
a = 5λ, 10λ and 15λ. The solid curves correspond to the equidistant measure-
ment points and the dashed curves correspond to the OMP.

The better result using the OMP is visible, except for a = 5λ. In this case,
the corresponding curves are equal. Neither measurement strategy result in
a good estimation of the multipole coefficients. Consider the singular values
depicted in the right figure of Fig. 2. The horisontal dashed-dotted line
indicate the tolerance level of the Penrose inverse used to solve (8). The level
of the remaning error, visual in ef for SNR = 25 dB and above, depend on
the tolerance level.

For a = 5λ, neither measurement strategy provides singular values above
the tolerance level resulting in a poor estimation performance. Although, note
that the singular values corresponding to the OMP are larger. As can be seen
by comparing the singular values for both measurement strategies for a = 10λ
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Figure 2: In the left figure, ef is depicted as function of SNR. In the right
figure, the singular values of Um for all m are depicted. Here, SNR = 50 dB
and the dashed dotted vertical line corresponds to the tolerance level of the
Penrose inverse. In both figures, solid curves correspond to the equidistant
measurement points and dashed curves correspond to the OMP.

and a = 15λ, the OMP results in more singular values above the tolerance level
and a better performance compared to the equidistant measurement points.

We point out the relation that log detI equals the sum of the logarithms
of the singular values (scaled with 2σ2

n/M) of Um for all m. Hence, note that
the area under respective curve in Fig. 2 is proportional to log detI. The
OMP increases the singular values of Fisher information matrix compared the
equidistant measurement points. Hence, the optimization of the measurement
configuration corresponds to deploying measurement points where maximum
information regarding the parameters to be estimated can be obtained.

In the example, the SNR is high and no other errors, random or systematic,
is present. Therefore, the tolerance of the Penrose inverse could be set to
lower value. Here, it is not the intention to evaluate the optimal tolerance
level but to analyze the properties of the optimization and the OMP. However,
the tolerance level is important and is used for regularization of the inverse
problem when needed, e.g., for lower SNR. For clarification, if the tolerance
level is set close to zero, the quality of the solution to the inverse source
problem using the OMP is only dependet on the SNR.
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Figure 3: The left figure depicts eE as function of θ and the right figure depicts
ef as function of a. Here, zmax = 20λ, ρ0 = 5λ, SNR = 50 dB and L = 10.
In both figures, the solid curves correspond to the equidistant measurement
points and the dashed curves correspond to the OMP. In the left figure, for
a = 5λ the two curves are equal.

The singular values depicted in Fig. 2 are dependent on the optimal mea-
surement points and therefore independent of the SNR. Also, based on the
CRB theory of a linear model, the variance of the estimated electrical field is
close to the CRB when the tolerance level is such that no singular values are
set to zero when the Penrose inverse is calculated.

In Fig. 3, the result of the near-field estimation is provided. The number
of OMP and equidistant measurement points is N = 12, and are shown in
Fig. 1. The estimation result is predicted by the analysis of the singular
values in Fig. 2, e.g., for a = 5λ neither measurement strategy provide an
acceptable solution since the tolerance level is set too high. A proper setting
of the tolerance level could be 0.1 in this case.
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4.2 Extended cylindrical measurement based on P1

As a final example, consider an extension to the CM, where two additional
measurement surfaces are added i.e., a top and a bottom surface is added to
the CM configuration to obtain the ECM.

Consider a measurement configuration where zmax = ρ0 since if zmax �
ρ0 there is little to gain from the ECM compared to the CM. Also, let the
SNR = 30 dB.
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Figure 4: The singular values of Um for all m is depicted in the left figure.
The corresponding OMP for CM and ECM are depicted in the right figure.
In both figures, the solid and dashed curves correspond to CM and ECM,
respectively. In the left figure, the horisontal dashed dotted line corresponds
to the tolerance level. In the right figure, the vertical arrows indicate the
separation between the measurement surfaces. In both figures zmax = ρ0 =
5λ.

In the left figure of Fig. 4 is shown the singular values of Um for all
m. The corresponding OMP for the ECM and the CM are depicted in the
right figure of Fig. 4. In both figures, the solid curves correspond to the CM
and the dashed curves correspond to the ECM. Observe in the left figure,
the OMP of the ECM results in increased singular values. For ρ0 = 5λ and
a = 10λ, 15λ, the gain of the ECM is due to the number of singular values
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above the tolerance level compared to the CM. Specifically, for ρ0 = 5λ and
a = 15λ all singular values are above the tolerance level. The OMP of the
ECM are approximately equidistant distributed in θ and three measurement
points are located on the bottom and top surface, respectively.

For ρ0 = 5λ, the corresponding error functions are depicted in Fig. 5.
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Figure 5: The left figure depict eE as function of θ for CM and ECM. The
right figure depict ef as function of a. In both figures, the solid curves and
the dashed curves correspond to the CM and the ECM, respectively

In the left figure of Fig. 5 is eE depicted for a = 5λ, 10λ, 15λ. Observe that
for ECM and a = 15λ, the error is seen to be very small, which is consistent
with all singular values above the tolerance level. In this situation, due to the
OMP the tolerance level has no effect on the solution.

In Fig. 6, the mean–square error of the estimated electric field is depicted.
The mean–square error corresponds to eE (15) without the normalization. For
the ECM and a = 15λ, the corresponding CRB is depicted (dashed dotted
curve).
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Figure 6: Mean–square error of the estimated electrical field and the cor-
responding CRB for the ECM when a = 15λ. The solid and dashed curves
correspond to the CM and the ECM, respectively.

4.3 Cylindrical measurements based on P2

The optimization formulation P2 is an alternative formulation to P1 that adds
some control of the number of measurement points that should be obtained.
While P1 is formulated without constraints on the number of measurement
points and return almost a minimum number of OMP, P2 has the parame-
ter γ that can be used to control the minimum number of OMP. It will be
illustrated here that although the number of OMP increases, the difference
in performance between the two measurement strategies is decreased. Here,
zmax = 20λ and ρ0 = 10λ. In the left figure of Fig. 7, (17) is depicted for
different values of N. Also, the corresponding plot of (17) using P1 is included
for comparison. As N increases the information measure of (17) decreases.
In the right figure of Fig. 7, ef is depicted. Due to the increased number
of measurement points, the differencies in ef between the two measurement
strategies are less prominent, compare to the left figure of Fig. 2 in the case
of P1. Here, the threshold SNR is approximately 10 − 15 dB, a lower value
than in the case P1 since here more measurement points are used.

An example of a near-field estimation follows. Consider zmax = 20λ, ρ0 =
10λ, SNR = 50 dB and L = 10 if nothing else is stated. The estimation is
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Figure 7: In the left figure, (17) is depicted as function of L. In the right
figure, ef is depicted as function of SNR for equidistant measurement points
(solid curves) and OMP (dashed curves) for N = 80.

made using 80 measurement points. For comparison, the OMP are depicted
in Fig 8 for both P1 (left figure) and P2 (right figure). Observe that for
zmax = 20λ and ρ0 = 10λ, the number of OMP N = 11 in P1. Observe the
concentration of OMP in P2 (right figure) around the positions of the OMP
in P1.

Next, in Fig. 9, eE is depicted for a = 5λ, 10λ, 15λ (left figure) and the
corresponding ef (right figure). The solid curves correspond to equidistant
measurement points and the dashed curves correspond to the OMP. Note that
for a = 5λ, the OMP improves the result of the inverse problem compared to
the equidistant measurement points, see left figure of eE . For higher values
of a the two measurement strategies have similar performance. In the right
figure of Fig. 9, the error function ef corresponding to the OMP is larger than
the error function of the equidistant measurement points for a larger than 6λ.
The value of a, for which the two measurement strategies have equal vaule of
ef depends on the number of measurement points. Less measurement points
would move the crossing to higher values of a.

Consider the singular values in Fig. 10. For a = 5λ, the OMP corresponds
to more singular values above the tolerance level. Hence, the estimation per-
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Figure 8: Optimal measurement points for L = 10, zmax = 20λ and ρ0 = 10λ.
In the left figure is shown the OMP for P1 and in the right figure, the OMP
for P2 when N = 80.

formance using the OMP is improved over the equidistant measurement points
as is seen in Fig. 8. For the two remaning a, the OMP corresponds to less
singular values above the tolerance level although some of the singular values
are larger than the corresponding singular values for the equidistant measure-
ment points. Comparing the area below each of the curves, the OMP provides
a slighly larger area compared to the equidistant points. This indicate that
the determinant of the Fisher information matrix is larger for the OMP.

The solution to the inverse source problem is strongly dependent on the
number of singular values above the tolerance level. Hence, in this case,
the requirement of more OMP might not be an appropriate formulation for
the quality of the solution to the inverse problem. Since many measurement
points are to be used, the gain of the optimization P2 and the correspond-
ing OMP will diminish. Simply using the equidistant measurement points
might therefore be the appropriate measurement strategy when the number
of measurement points are large.
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Figure 9: In the left figure, eE is depicted for the equidistant measurement
points (solid curves) and the OMP (dashed curves). In the right figure, the
corresponding ef is depicted as function of a.
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Figure 10: The singular values of Um for all m. The solid curves correspond
to equidistant measurement points, the dashed curves correspond to the OMP
and the dashed dotted vertical line indicate the tolerance level of the Penrose
inverse.
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Consider increasing the number of optimal measurement points N at the
cost of increased noise. The noise variance is proportional to the number of

measurement points used, σ2
n = N

maxj{|E(rj)|2}
SNR . In Fig. 11, ef is depicted as

function of N for zmax = 20λ, ρ0 = 10λ and SNR = 30 dB. Here, a = 5λ and
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Figure 11: The figure depicts ef as function of N when the applied noise is
proportional to the number of measurement points.

the OMP will therefore produce a better result compared to the equidistant
measurement points. Increasing the number of measurement points improves
the result of the estimation to a certain degree. Using the scaling of the noise
variance enables comparison of ef for different values of N. For comparison,
equidistant measurement points in θ is included. This measurement strategy
corresponds well to the OMP strategy. (For a given level of ef , e.g., −6
dB, the OMP corresponds to N ≈ 40 compared to N ≈ 80 for equidistant
measurement points.)
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5 Summary and Conclusions

Cylindrical antenna near-field measurements have been designed as optimal
experiments. We have formulated the optimal measurement configuration
based on the Fisher information matrix that provides details regarding the
estimation performance of the multipole coefficients. The optimal measure-
ment points are obtained from the solution of two separate semi–definite op-
timization formulations, respectively. Properties of the solution to the inverse
problem have been studied for both the optimal measurement points and
equidistant measurement points.

The first optimization formulation P1 provides close to a minimum num-
ber of measurement points sufficient to solve the inverse problem. In the
second optimization formulation P2, the number of measurement points are
increased resulting in a decrease in estimation performance using the optimal
measurement points compared to the equidistant measurement points.

A singular value analysis is used to interpret the result of the optimization
and the properties of the solution to the inverse problem. Numerical examples
include an extended cylindrical measurement where a complete measurement
of the electrical field can be obtained.
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Abstract
This paper describes the fundamental properties of a Digital Direc-

tional Coupler (DDC) that separates forward and backward propagating
waves on a transmission line. The DDC is based on two independent
wide-band measurements of voltage and current and a frequency domain
digital wave splitting using the FFT. A practical procedure is described
for calibration of the digital processor with respect to the particular
transmission line and the voltage and current sensors that is employed.
The Cramér-Rao lower bound is used as a statistical tool to analyze the
fundamental performance of the DDC. Important parameters are iden-
tified and investigated e.g., the signal-to-noise ratio in the calibration
procedure, the characteristic impedance of the transmission line and
the frequency transfer functions of the voltage and current sensors. In
order to illustrate the wave splitting ability of the DDC, an experiment
has been conducted where a DDC has been implemented and tested
and the experimental results are compared with the theoretical models.

1 Introduction

Wave splitting or separation of forward and backward propagating waves is
incorporated in many applications e.g., as a part of a vector network analyzer
[Poz98]. The wave splitting is commonly achieved by a directional coupler
designed as a hardware module whose properties are directly linked to the
electromagnetic coupling effects within the module. However, these coupling
effects are usually very difficult to control and it is a non-trivial task to design a
directional coupler that maintains high performance (isolation and directivity)
over an appreciable bandwidth, see e.g., [Poz98, MYJ80].

There are several applications that could benefit from the functionality of
a directional coupler for transmissions lines e.g., fault localization and partial
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discharge (PD) monitoring on power lines, see e.g., [PSH+99, Vee05]. Another
interesting application area is with the transient based protection techniques
for power transmission systems [Bo00]. However, installing a separate device
on a transmission line could be difficult or hazardous, especially for medium-
voltage or high-voltage power lines. A more easy and accessible way is to
install and utilize conventional current and voltage sensors and perform the
wave splitting by digital means.

The ongoing research on on-line PD diagnostics has produced several ap-
paratus that has been commercially available e.g. [SHV91, Mas00]. The use
of advanced signal processing has been extensively applied, especially since
the cost of processing power has decreased. Continuous monitoring com-
bined with a long-term history can provide early warnings and indications
of degradations in the power cable system. Clearly, a directional coupler for
power lines with good isolation properties can be very useful for discriminat-
ing between transients, pulses, PD phenomena etc., which are emanating from
different locations in the power cable network [PSH+99].

Noise and interference mitigation is another fundamental problem in any
PD monitoring or transient based protection system, see e.g., [SSS00, LPP03].
As the interference includes many components of different nature e.g., wide–
band background noise, narrowband interference and pulse-shaped distur-
bances, see e.g. [LPP03, BD00, And98], many different noise reduction tech-
niques have been proposed including filtering, spectral analysis and wavelets
analysis, see e.g., [VW03, AS98, KG05]. Clearly, a directional coupler for
power lines with good isolation properties can be very useful for efficient re-
duction of any exterior noise emanating from locations other than that under
investigation.

A Fisher information analysis and the Cramér-Rao lower bound [Kay93]
provides a very useful instrument for sensitivity analysis of various wave prop-
agation phenomena, and which facilitates valuable physical interpretations,
see e.g., [DT91, TD91, NB99, DN01, Col05, Smi05, NG06, GN06].

In this paper, we describe a statistical signal analysis of a Digital Di-
rectional Coupler (DDC) that separates forward and backward propagating
waves on a transmission line. In the literature, we have found only one refer-
ence to a Digital Directional Coupler (DDC) in the context of digital optical
switches [Sym92]. However, the theory and application in [Sym92] is not
similar to the work done herein. The Digital Directional Coupler (DDC) con-
sidered here is based on two independent wide–band measurements of voltage
and current on a transmission line, and a frequency domain digital wave split-
ting using the FFT. A practical procedure is described for calibration of the
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digital processor with respect to the particular transmission line and the volt-
age and current sensors that are employed. A similar technique is given in
[PE03] for measurement of the propagation constant of a power cable.

A statistical model for the calibration and operation of the DDC is given.
The Cramér-Rao lower bound is used as a statistical tool to analyze the cor-
responding isolation and directivity [Poz98] properties in terms of the sensor
signal quality. Important parameters are identified and investigated e.g., the
signal-to-noise ratio in the calibration procedure, the characteristic impedance
of the transmission line and the frequency transfer functions of the voltage
and current sensors.

An experiment has been conducted in order to illustrate the calibration
process of the DDC and to show that a DDC can be designed to operate
over an appreciable bandwidth using very simple and low cost sensors. The
rest of the paper is outlined as follows. In section 2 the digital directional
coupler is introduced and the calibration procedure is described. In section 3
a statistical analysis of the performance of the DDC is provided. In section 4
an experiment is described where a DDC has been designed and implemented
using a standard coaxial antenna cable. The resulting performance of the
DDC is compared to the performance predicted by the statistical analysis.

2 The Digital Directional Coupler

2.1 Wave propagation model

The one-dimensional electric voltage V (x) and current I(x) on a single-mode
transmission line can be represented by V (x) = V +e−γx + V −eγx

I(x) =
V +

Z
e−γx − V −

Z
eγx (1)

where V + and V − are the complex amplitudes associated with forward and
backward propagating waves, γ the complex propagation constant, x the
length dimension and Z the characteristic impedance of the transmission line,
see e.g., [Poz98]. Note that all wave parameters are here described in the
frequency domain. The mapping between the total voltage V = V (0) and
current I = I(0) and the wave amplitudes V + and V − at the transmission
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line input is then given by(
V +

V −

)
=
(

1
2

1
2Z

1
2 − 1

2Z

)(
V
I

)
. (2)

Assume now that two decoupled sensors are available measuring the volt-
age V and current I as {

u = AV
v = BI

(3)

where A and B are the corresponding sensor frequency functions, cf., also
Fig. 1. Then there is a linear, one-to-one relationship between the measured
signals u and v and the wave amplitudes V + and V − given by(

V +

V −

)
=
(

a b
a −b

)(
u
v

)
(4)

where a = 1
2A and b = Z

2B .

2.2 Calibration procedure

Consider the calibration set-up in Fig. 1. The device under test (DUT) is
an open ended transmission line of length l1, characteristic impedance Z and
complex propagation constant γ. Two sensors are applied to the left side of
the DUT measuring the voltage u = AV and current v = BI on the cable in-
put. The calibration set-up consists further of a pulse generator with voltage
Eg and generator resistance R, a matched power splitter with transmission
coefficient T and auxiliary coaxial cables of length l0 and l with characteristic
impedance R and propagation constant γ0 = iω/c0 where c0 is the speed of
wave propagation. A measurement voltage Vm is obtained over the load resis-
tance R via the power splitter as depicted in Fig. 1. The voltage reflections
and transmissions at the indicated reference plane in Fig. 1 is given by the
scattering formulation(

V −
1

V +
2

)
=
(

Γ+ 1− Γ+

1 + Γ+ −Γ+

)(
V +

1

V −
2

)
(5)

where
Γ+ =

Z −R

Z + R
. (6)
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Eg

R

RVm

T

R, γ0, l0 R, γ0, l

R, γ0, l0

Z, γ, l1

V +
1

V −
1

V +
2

V −
2

Zin

u v

Figure 1: Calibration set-up with open ended transmission line.

The total input impedance of the open ended transmission line as seen from
the left at the reference plane is Zin = Z coth γl and the corresponding reflec-
tion coefficient is hence given by

Γ =
Zin −R

Zin + R
=

Γ+ + e−γ2l

1 + e−γ2lΓ+
= Γ+ + e−γ2l(1− Γ+2) + · · · (7)

yielding the reflected voltage V −
1 = V +

1 Γ. The incident wave at the reference
plane is given by

V +
1 =

Eg

2
e−γ0(l+l0)T (8)

and the corresponding first order pulses are hence given by{
V −

1

(1)
= V +

1 Γ+

V +
2

(1)
= V +

1 (1 + Γ+).
(9)

The observed pulses at the measurement resistor are given by{
V

(0)
m = Eg

2 e−γ02l0T

V
(1)
m = V −

1

(1)
e−γ0(l+l0)T

(10)

and it is found that V +
1 = V

(0)
m e−γ0(l−l0). The reflection coefficient Γ+ can be

obtained from a short circuit measurement where V −
1

(s)
= −V +

1 and V
(s)
m =
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V −
1

(s)
e−γ0(l+l0)T , and hence

Γ+ =
V −

1

(1)

V +
1

= −V −
1

(1)

V −
1

(s)
= −V

(1)
m

V
(s)
m

. (11)

The parameters a and b are obtained from the calibration equations{
V +

2

(1)
= au(1) + bv(1)

0 = au(1) − bv(1)
(12)

with the straightforward solution a = V +
2

(1)

2u(1)

b = V +
2

(1)

2v(1)

(13)

where u(1) and v(1) correspond to the first pulses of u and v, respectively.
See also Fig. 2 which shows a timing diagram for the calibration procedure.
Note that the assumption u(1) = AV = AV +

2

(1)
and v(1) = BI = BI+

2

(1)
=

BV +
2

(1)
/Z yields the correct answer a = 1

2A and b = Z
2B . The calibration

procedure can now be summarized by the following operations
Γ+ = −V (1)

m

V
(s)
m

V +
2

(1)
= V

(0)
m e−γ0(l−l0)(1 + Γ+)

a = V +
2

(1)

2u(1)

b = V +
2

(1)

2v(1) .

(14)
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Figure 2: Timing diagram for the calibration procedure. Note that it is only
the first order pulses that are employed in the calibration.

3 Statistical Analysis

Let â and b̂ denote estimates of the parameters a and b according to the
measurement model given in (4). The estimated wave amplitudes are thus
given by (

V̂ +

V̂ −

)
=
(

â b̂

â −b̂

)(
u
v

)
. (15)
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Using (2) and (3) with A = 1
2a and B = Z

2b , the estimation (15) is given by V̂ + =
(
â 1

2a + b̂ 1
2b

)
V + +

(
â 1

2a − b̂ 1
2b

)
V −

V̂ − =
(
â 1

2a − b̂ 1
2b

)
V + +

(
â 1

2a + b̂ 1
2b

)
V −.

(16)

The cross-coupling Vcc is given by

Vcc = â
1
2a

− b̂
1
2b

= ∆a
1
2a

−∆b
1
2b

(17)

and the coupling Vc

Vc = â
1
2a

+ b̂
1
2b

= ∆a
1
2a

+ ∆b
1
2b

+ 1 (18)

where ∆a = â− a and ∆b = b̂− b.
Using standard definitions from microwave technology [Poz98], the cou-

pling, directivity and isolation (in dB) can be obtained for the DDC,

C = −20 log (|Vc|) , (19)

D = 20 log
(∣∣∣∣ Vc

Vcc

∣∣∣∣) , (20)

I = −20 log (|Vcc|) , (21)

respectively, where I = D + C. An ideal directional coupler has infinite
isolation and directivity corresponding to Vcc = 0 and perfect coupling, i.e.,
Vc = 1. Furthermore, for unbiased estimators it is readily seen that E{Vcc} = 0
and E{Vc} = 1 where E{·} denotes the expectation operator.

Based on (14), the following non-linear statistical measurement model is
now introduced

x1 = V
(1)
m + n1 = −V

(s)
m Γ+ + n1

x2 = V
(s)
m + n2

x3 = V
(0)
m + n3

x4 = u(1) + n4 = 1
2aV

(0)
m e−γ0(l−l0)(1 + Γ+) + n4

x5 = v(1) + n5 = 1
2bV

(0)
m e−γ0(l−l0)(1 + Γ+) + n5

(22)

where the five unknown and independent variables are a, b, Γ+, V
(0)
m and V

(s)
m

and ni denotes uncorrelated zero mean complex Gaussian noise with variance
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σ2
1 = σ2

2 = σ2
3 = σ2, σ2

4 and σ2
5 for i = 1, . . . , 5. Assuming that there is no

noise present, we can see that the solution to (22) is given by

V
(s)
m = x2

Γ+ = − x1

V
(s)
m

V
(0)
m = x3

a = 1
2x4

V
(0)
m e−γ0(l−l0)(1 + Γ+)

b = 1
2x5

V
(0)
m e−γ0(l−l0)(1 + Γ+).

(23)

We consider two different statistical models related to (22).
Deterministic excitation. The excitation variables V

(0)
m and V

(s)
m are

independent deterministic parameters. The unknown parameter vector is de-
noted θ = [a b Γ+ V

(0)
m V

(s)
m ]T. The cross-coupling is given by Vcc = ηH

1 (θ̂−θ)
and the coupling is Vc − 1 = ηH

2 (θ̂ − θ) where ηH
1 = [ 1

2a − 1
2b 0 0 0] and

ηH
2 = [ 1

2a
1
2b 0 0 0]. The Cramér-Rao lower bounds (CRB) [Kay93] for Vcc

and Vc are given by

E
{
|Vcc|2

}
≥ ηH

1 I−1(θ)η1, (24)

E
{
|Vc − 1|2

}
≥ ηH

2 I−1(θ)η2, (25)

where I(θ) is the Fisher information matrix given by

I(θ) =
∂µH

∂θ∗
R−1 ∂µ

∂θT
(26)

where (·)∗ denotes complex conjugation, (·)T transpose, (·)H Hermitian trans-
pose, µ = E{x}, R = E{(x−µ)(x−µ)H} = diag{σ2

i }, and where the elements
of x and µ, xi and µi = E{xi} are given by (22). Explicit expressions for the
derivatives used in (26) are given in the appendix.

Stochastic excitation. The excitation variables V
(0)
m and V

(s)
m are in-

dependent zero mean complex Gaussian random variables with variances σ2
0

and σ2
s = σ2

0T 2, respectively. The unknown parameter vector is denoted
θ = [a b Γ+]T. The Cramér-Rao lower bounds for Vcc and Vc are given by
(24) and (25), respectively, where ηH

1 = [ 1
2a − 1

2b 0], ηH
2 = [ 1

2a
1
2b 0] and where

I(θ) is the Fisher information matrix given by

Iij(θ) = tr
{

∂R
∂θ∗i

R−1 ∂R
∂θj

R−1

}
(27)
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where tr{·} denotes the trace operator, R = E{xxH}, and where the elements
of x, xi are given by (22). Explicit expressions for the derivatives used in
(27) are given in the appendix. It can be shown1 that both statistical models
described above yield the same analytical solution when phrased in terms of
the signal-to-noise ratios related to the measurement equations in (22). Hence,
the CRB for each parameter in θ is obtained as,

E
{
|θ̂i − θi|2

}
≥
[
I−1(θ)

]
ii

(28)

and given explicitly, including the CRB for Vcc and Vc, as

E
{
|â− a|2

}
|a|2

≥ 1 + |Γ+|2

|1 + Γ+|2 T 2SNR
+

1
SNR

+

1
|1 + Γ+|2 SNRa

, (29)

E
{
|b̂− b|2

}
|b|2

≥ 1 + |Γ+|2

|1 + Γ+|2 T 2SNR
+

1
SNR

+

1
|1 + Γ+|2 SNRb

, (30)

E
{
|Γ̂+ − Γ+|2

}
≥ 1 + |Γ+|2

T 2SNR
, (31)

E
{
|Vcc|2

}
≥

(
1

4SNRa
+

1
4SNRb

)
1

|1 + Γ+|2
,

(32)

E
{
|Vc − 1|2

}
≥ 1 + |Γ+|2

|1 + Γ+|2 T 2SNR
+

1
SNR

+(
1

4SNRa
+

1
4SNRb

)
1

|1 + Γ+|2
,

(33)

1The symbolic functions of Matlab or Mathematica can be used to find the inverse Fisher
information matrices.
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where

SNR =
|V (0)

m |2

σ2
=

σ2
0

σ2
, (34)

SNRa =
|V (0)

m |2

4|a|2σ2
4

=
σ2

0

4|a|2σ2
4

, (35)

SNRb =
|V (0)

m |2

4|b|2σ2
5

=
σ2

0

4|b|2σ2
5

, (36)

and where the right-hand side applies to the stochastic excitation model de-
scribed above.

The statistical analysis based on the Cramér-Rao lower bound provides
a very useful instrument for sensitivity analysis of the DDC which facil-
itates physical interpretations. A few examples are given as follows. In
Fig. 3 is shown the Cramér-Rao lower bounds for the cross-coupling Vcc (32)
and the coupling Vc (33) as functions of the signal-to-noise ratio SNRa with
SNRb = SNRa, and for different values of SNR. It is observed that the CRB
for the cross-coupling Vcc (32) is independent of the estimation of Γ+ and de-
pends solely on the quality of the measurement channels u and v, i.e., SNRa

and SNRb. This observation is consistent with the noise-free situation when
SNRa = SNRb = +∞ and Vcc = 0 regardless of the quality of Γ̂+. To see
this, note that the calibration equation (12) implies that âA − b̂B

Z = 0. As
should be expected, the CRB for the coupling Vc (33) depends on SNRa and
SNRb as well as of SNR.

In Fig. 4 is shown the Cramér-Rao lower bounds for the cross-coupling
Vcc (32) and the coupling Vc (33)as functions of the reflection coefficient Γ+.
The Cramér-Rao bounds are plotted against the complex domain |Γ+| ≤ 1
which is shown as a Smith chart at the bottom of the figures. Evidently, the
expressions (32) and (33) become singular when Γ+ = −1, a situation when
there is no energy delivered to the transmission line under test and estimation
becomes meaningless.
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Figure 3: Cramér-Rao lower bounds for the cross-coupling Vcc (solid line) and
the coupling Vc (dashed lines) as functions of the signal-to-noise ratio SNRa

with SNRb = SNRa. The coupling CRB(Vc) (dashed lines) is plotted for
SNR = 20, 30, 40, 50, 60, 70, 80 dB. Here, Γ+ = 0.2 and T = 0.5.

4 Experiments

An experiment with coaxial cables was arranged according to the illustration
in Fig. 1. The pulses were obtained from a 100 MHz function generator with
amplitude Eg = 8 V, and the measurement cables were RG-58 coaxial cables
with characteristic impedance R = 50 Ω. The tested transmission line was
a 50 m long standard coaxial antenna cable with characteristic impedance
Z = 75 Ω. The shield was removed at the pulse insertion point so that the
current sensor could be mounted around the inner conductor. The current
sensor was designed as a Rogowski coil [ZYJZ05] using a toroidal ferrite core,
4 turns of wire and a measuring resistance of 220 Ω. The capacitive voltage
sensor was a probe belonging to a 2 GS/s digital oscilloscope. The required
frequency functions were obtained using a zero padded 4096 point FFT at a
sampling rate of 400 MS/s. The forward and backward traveling waves V̂ +
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Figure 4: Cramér-Rao lower bounds for the cross-coupling Vcc (left figure)
and the coupling Vc (right figure) as functions of the reflection coefficient Γ+.
Here, SNR = SNRa = SNRb = 50 dB and T = 0.5.

and V̂ − were calculated in the frequency domain and then transformed back
to the time domain using the IFFT.

In the upper left figure of Fig. 6 is shown the recorded signals that was
used in the calibration procedure. Each pulse is labeled according to the
corresponding frequency function. In Fig. 5 is shown the estimates â and
b̂ as functions of frequency together with the estimated signal-to-noise ratio
|V +

2
(1)|2

σ̂2 = |V (0)
m |2|1+Γ̂+|2

σ̂2 related to the propagating pulse V +
2

(1)
. The noise

variance σ̂2 was estimated from data records with noise only. The bandwidth
of the oscilloscope is 500 MHz which is large enough to render â relatively
stable in the frequency range 0–100 MHz. The current sensor has a ferrite
core designed for frequencies higher than 20 MHz and b̂ is therefore large for
frequencies below this limit. For frequencies above 90 MHz, the signal-to-
noise ratio is below 20 dB due to limitations in the pulse generator. The
useful frequency band for estimation in this experiment is hence about 10-90
MHz.

The isolation and coupling properties of the calibrated DDC can be con-
veniently estimated from measured pulses as

I = 20 log

(
|V +

2

(1)|
|V̂ −|

)
≈ 20 log

(
|V (0)

m ||1 + Γ̂+|
|V̂ −|

)
(37)
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and

C = 20 log

(
|V +

2

(1)|
|V̂ +|

)
≈ 20 log

(
|V (0)

m ||1 + Γ̂+|
|V̂ +|

)
(38)

where the transmission line is terminated with a matched load to avoiding re-
flections. In Fig. 5 is shown the estimated isolation I and coupling C together
with the 95% confidence interval 2.45

√
CRB {Vcc} where CRB {Vcc} (32) has

been calculated using the estimated â, b̂, Γ̂+ and σ̂2 = σ̂2
4 = σ̂2

5 . Hence, there
is a 95% probability that a hypothetical minimum variance unbiased (MVU)
estimator should produce better isolation, Pr

{
|Vcc| ≤ 2.45

√
CRB {Vcc}

}
=

0.95. It is noted that the isolation of the DDC is almost everywhere confined
above this confidence interval except at an interval at low frequencies where
the current sensor do not operate properly.
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Figure 5: Measurements of the frequency functions â, b̂ and the signal-to-noise
ratio for the propagating pulse V +

2

(1)
(left figure) and estimated isolation I

and coupling C together with the 95% confidence interval 2.45
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for the calibrated DDC (right figure).
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output of the DDC when two consecutive pulses are injected at the input of
the open ended transmission line. The upper right figure shows the voltage
sensor output and two lower figures shows the wave amplitudes of the forward
and backward traveling waves, respectively. The timing of the injected pulses
are marked by arrows.

In order to illustrate the wave splitting in the time domain, we conclude
with an experiment where two consecutive pulses with different amplitudes
are injected at the input of the open ended transmission line. In Fig. 6 is
shown the voltage sensor output (upper right plot) and the output of the
DDC (lower plots) where the timing of the injected pulses are marked by
arrows. The first backward propagating pulse V̂ − with significant amplitude
corresponds to the first reflection at the open ended transmission line. The
isolation property of the DDC is manifested by the apparent absence of the two
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injected pulses in the estimated backward propagating waves V̂ − (indicated
by arrows). Note that the corresponding isolation in the frequency domain
is shown in the right figure of Fig. 5. In conclusion, the resulting directivity
D = I−C of the DDC applied to the coaxial cable in this experiment is about
37 dB over a bandwidth of 20–80 MHz.

5 Summary and Conclusions

A Digital Directional Coupler (DDC) that separates forward and backward
propagating waves on a transmission line has been presented. The DDC is
based on two independent broad band measurements of voltage and current
and a frequency domain digital wave splitting using the FFT. A practical pro-
cedure is described for calibration of the digital processor with respect to the
particular transmission line and the voltage and current sensors that is em-
ployed. The Cramér-Rao lower bound is used as a statistical tool to analyze
the fundamental performance of the DDC. Important parameters are identi-
fied and investigated e.g., the signal-to-noise ratio in the calibration procedure,
the characteristic impedance of the transmission line and the frequency trans-
fer functions of the voltage and current sensors. Hence, the Cramér-Rao lower
bound provides a very useful instrument for sensitivity analysis of the DDC
which facilitates physical interpretations. An experiment has been conducted
in order to illustrate the calibration process and to show that a DDC can be
designed to operate over an appreciable bandwidth using very simple and low
cost sensors. In the experiment, we have used a standard coaxial antenna ca-
ble and the resulting directivity (ratio between coupling and cross-coupling)
was about 37 dB over a bandwidth of 20–80 MHz.
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A Explicit Derivatives for the Fisher Informa-
tion

Explicit expressions for the derivatives associated with the Fisher informa-
tion matrices employed in section 3 are given below. The differential op-
erator which is used for a complex parameter z = x + iy is defined by
∂
∂z = 1

2

(
∂
∂x − i ∂

∂y

)
and ∂

∂z∗ = 1
2

(
∂
∂x + i ∂

∂y

)
. For the measurement model

in (22) with deterministic excitation, the mean is given by

µ =


−V

(s)
m Γ+

V
(s)
m

V
(0)
m

1
2aV

(0)
m d(1 + Γ+)

1
2bV

(0)
m d(1 + Γ+)


where d = e−γ0(l−l0). Hence, the Fisher information (26) can be calculated
using

∂µ

∂θT
= 

0 0 −V
(s)
m 0 −Γ+

0 0 0 0 1
0 0 0 1 0

−V (0)
m d(1+Γ+)

2a2 0 V (0)
m d
2a

d(1+Γ+)
2a 0

0 −V (0)
m d(1+Γ+)

2b2
V (0)

m d
2b

d(1+Γ+)
2b 0

 .

For the measurement model in (22) with stochastic excitation, the mean is
zero and the covariance matrix is given by

R =
(

R1 0T

0 R2

)
where 0 is an 3× 2 matrix with zeros,

R1 =
(

σ2
s |Γ+|2 + σ2 −σ2

s Γ+

−σ2
s Γ+∗

σ2
s + σ2

)
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and

R2 = 
σ2

0 + σ2 σ2
0d∗(1+Γ+)∗

2a∗
σ2
0d∗(1+Γ+)∗

2b∗
σ2
0d(1+Γ+)

2a
σ2
0 |1+Γ+|2
|2a|2 + σ2

4
σ2
0 |1+Γ+|2
2a2b∗

σ2
0d(1+Γ+)

2b
σ2
0 |1+Γ+|2
2a∗2b

σ2
0 |1+Γ+|2
|2b|2 + σ2

5

 .

Hence, the Fisher information (27) can be calculated using

∂R
∂a

= 
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 −σ2

0d(1+Γ+)
2a2

−σ2
0 |1+Γ+|2
4a|a|2

−σ2
0 |1+Γ+|2
2a22b∗

0 0 0 0 0

 ,

∂R
∂a∗

=


0 0 0 0 0
0 0 0 0 0
0 0 0 −σ2

0d∗(1+Γ+)∗

2a∗2 0
0 0 0 −σ2

0 |1+Γ+|2
4a∗|a|2 0

0 0 0 −σ2
0 |1+Γ+|2
2a∗22b 0

 ,

∂R
∂b

= 
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 −σ2

0d(1+Γ+)
2b2

−σ2
0 |1+Γ+|2
2a∗2b2

−σ2
0 |1+Γ+|2
4b|b|2

 ,

∂R
∂b∗

=


0 0 0 0 0
0 0 0 0 0
0 0 0 0 −σ2

0d∗(1+Γ+)∗

2b∗2

0 0 0 0 −σ2
0 |1+Γ+|2
2a2b∗2

0 0 0 0 −σ2
0 |1+Γ+|2
4b∗|b|2

 ,
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∂R
∂Γ+

= 
σ2

s Γ+∗ −σ2
s 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 σ2

0d
2a

σ2
0(1+Γ+)∗

|2a|2
σ2
0(1+Γ+)∗

2a2b∗

0 0 σ2
0d
2b

σ2
0(1+Γ+)∗

2a∗2b
σ2
0(1+Γ+)∗

|2b|2

 ,

and

∂R
∂Γ+∗ =


σ2

s Γ+ 0 0 0 0
−σ2

s 0 0 0 0
0 0 0 σ2

0d∗

2a∗
σ2
0d∗

2b∗

0 0 0 σ2
0(1+Γ+)
|2a|2

σ2
0(1+Γ+)
2a2b∗

0 0 0 σ2
0(1+Γ+)
2a∗2b

σ2
0(1+Γ+)
|2b|2

 .

References

[And98] P. M. Anderson. Power System Protection. Wiley-IEEE Press,
1998.

[AS98] N. H. Ahmed and N. N. Srinivas. On-line partial discharge de-
tection in cables. IEEE Transactions on Dielectrics and Electrical
Insulation, 5(2):181–188, April 1998.

[BD00] S. Boggs and J. Densley. Fundamentals of partial discharge in the
context of field cable testing. IEEE Electrical Insulation Magazine,
16(5):13–18, Sep./Okt. 2000.

[Bo00] Z. Q. Bo. Transient based protection for power transmission sys-
tem. In IEEE Power Engineering Society Winter Meeting, vol-
ume 3, pages 1832–1837, 2000.

[Col05] S. L. Collier. Fisher information for a complex gaussian ran-
dom variable: beamforming applications for wave propagation
in a random medium. IEEE Transactions on Signal Processing,
53(11):4236–4248, 2005.



116 Part IV

[DN01] A. Dogandzic and A. Nehorai. Cramér–Rao bounds for estimating
range, velocity, and direction with an active array. IEEE Transac-
tions on Signal Processing, 49(6):1122–1137, June 2001.

[DT91] A. J. Devaney and G. A. Tsihirintzis. Maximum likelihood estima-
tion of object location in diffraction tomography. IEEE Transac-
tions on Signal Processing, 39(3):672–682, March 1991.

[GN06] M. Gustafsson and S. Nordebo. Characterization of MIMO anten-
nas using spherical vector waves. IEEE Transactions on Antennas
and Propagation, 54(9):2679–2682, 2006.

[Kay93] S. M. Kay. Fundamentals of Statistical Signal Processing, Estima-
tion Theory. Prentice-Hall, Inc., NJ, 1993.

[KG05] A. Kyprianou and G. E. Georghiou. Wavelet packet denoising
for on-line partial discharge detection in high voltage systems.
In Mediterranean Conference on Control and Automation, pages
1184–1189, 2005.

[LPP03] V. Latva-Pukkila and P. Pakonen. Disturbances occuring in on-site
partial discharge measurements. In Conference record of Nordic
Insulation Symposium (NORDIS), pages 11–19, 2003.

[Mas00] M. Mashikian. Partial discharge location as a diagnostics tool for
power cables. In Proceedings of the IEEE Power Engineering So-
ciety Winter Meeting, volume 3, pages 1604–1608, 2000.

[MYJ80] G. Matthaei, L. Young, and E. M. T. Jones. Microwave filters,
impedance matching networks, and coupling structures. Artech
House, Inc., 1980.

[NB99] P. S. Naidu and A. Buvaneswari. A study of Cramér–Rao bounds
on object shape parameters from scattered field. IEEE Transac-
tions on Signal Processing, 47(5):1478–1481, May 1999.

[NG06] S. Nordebo and M. Gustafsson. Statistical signal analysis for the
inverse source problem of electromagnetics. IEEE Transactions on
Signal Processing, 54(6):2357–2362, 2006.

[PE03] R. Papazyan and R. Eriksson. Calibration for time domain propa-
gation constant measurements on power cables. IEEE Transactions
on Instrumentation and Measurement, 52(2):415–418, April 2003.



Statistical Analysis of a Digital Directional Coupler for Transmission Line Measurements 117

[Poz98] David M. Pozar. Microwave Engineering. John Wiley & Sons, New
York, 1998.

[PSH+99] D. Pommerenke, T. Strehl, R. Heinrich, W. Kalkner, F. Schmidt,
and W. Weissenberg. Discrimination between interal PD and
other pulses using directional coupling sensors on HV cable sys-
tems. IEEE Transactions on Dielectrics and Electrical Insulation,
6(6):814–824, Dec. 1999.

[SHV91] E. F. Steennis, E. Hetzel, and C. W. J. Verhoeven. Diagnostic
medium voltage cable test at 0.1 Hz. In Proceedings of the 3rd
IEEE International Conference on Insulated Power Cables, pages
408–414, 1991.

[Smi05] S. T. Smith. Statistical resolution limits and the complexified
Cramér-Rao bound. IEEE Transactions on Signal Processing,
53(5):1597–1609, 2005.

[SSS00] I. Shim, J. J. Soraghan, and W. H. Siew. Digital signal processing
applied to the detection of partial discharge: an overview. IEEE
Electrical Insulation Magazine, 16(3):6–12, May/June 2000.

[Sym92] R. R. A. Syms. The digital directional coupler: improved design.
IEEE Photonics Technology Letters, 4(10):1135–1138, Oct. 1992.

[TD91] G. A. Tsihirintzis and A. J. Devaney. Maximum likelihood es-
timation of object location in diffraction tomography, Part ii;
strongly scattering objects. IEEE Transactions on Signal Process-
ing, 39(6):14661470, June 1991.

[Vee05] J. Veen. On-line signal analysis of partial discharges in medium-
voltage power cables. Ph.d. thesis , Eindhoven University of Tech-
nology, the Netherlands, 2005.

[VW03] J. Veen and P. C. J. M. van der Wielen. The application of matched
filter to PD detection and localization. IEEE Electrical Insulation
Magazine, 19(5):20–26, Sep./Okt. 2003.

[ZYJZ05] J. Zhu, L. Yang, J. Jia, and Q. Zhang. The design of rogowski coil
with wide band using for partial discharge measurements. In Pro-
ceedings of 2005 International Symposium on Electrical Insulation,
pages 518–521, 2005.





Part V

Partial Discharge
Measurement Using a

Digital Directional Coupler



Part V is submitted as:
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Partial Discharge Measurements Using a Digital

Directional Coupler

J. Lundbäck, S. Nordebo and T. Biro

Abstract

In this paper, we describe a Digital Directional Coupler (DDC) that
separates forward and backward traveling waves on transmission lines.
Based on two independent wide–band measurements of voltage and cur-
rent and a frequency domain digital wave splitting using the FFT, the
DDC is a versatile device for direction separation. A practical proce-
dure is described for calibration of the digital processor with respect
to the particular transmission line and the voltage and current sensors
that are employed. A DDC has been designed and implemented on
medium voltage equipment at a power distribution station using low
cost wide–band sensors. The directional separation capabilities of the
DDC are visualized by partial discharge measurements conducted on
XLPE insulated power cables.

1 Introduction

There are several applications where wave splitting or separation of forward
and backward propagating waves is incorporated e.g., as a part of a vec-
tor network analyzer. Standard directional couplers are often designed as a
hardware module whose properties are directly linked to the electromagnetic
coupling effects within the module. However, these coupling effects are usu-
ally very difficult to control and it is a non-trivial task to design a directional
coupler that maintains high performance (isolation and directivity) over an
appreciable bandwidth, see e.g., [Poz98, MYJ80].

Considering a directional coupler for transmission lines, several applica-
tions could benefit from its functionality e.g., fault localization and partial
discharge (PD) monitoring on power lines or transient based protection tech-
niques for power transmission systems, see e.g., [PSH+99, Vee05, Bo00, Sto05].
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The ongoing research on on-line PD diagnostics has produced several appa-
ratus that have been commercially available, see e.g., [SHV91, Mas00, FS06].
Methods for PD diagnostics must include separation of individual PD signals
and their direction. Clearly, a directional coupler for power lines with good
isolation properties can be very useful for discriminating between transients,
pulses, PD phenomena etc., which are emanating from different locations in
the power cable network [PSH+99].

Noise and interference mitigation is another fundamental problem in any
PD monitoring or transient based protection system, see e.g., [SSS00, LPP03].
Based on advanced signal processing, many noise and interference reduction
techniques have been reported, [Vee05, ZZK05]. As the interference includes
many components of different nature e.g., wide–band background noise, nar-
rowband interference and pulse-shaped disturbances, see e.g., [BD00, And98],
a directional coupler for power lines with good isolation properties can be very
useful for efficient reduction of any exterior noise emanating from locations
other than that under investigation.

The Digital Directional Coupler (DDC) described here is based on two in-
dependent wide–band measurements of voltage and current on a transmission
line, and a frequency domain digital wave splitting using the FFT. Both sen-
sors are designed for wide–band measurements and built according to standard
techniques to maintain a high degree of simplicity. Hence, the DDC can be
designed to operate over an appreciable bandwidth by using conventional volt-
age and current sensors in connection with the digital wave splitting. Based
on modern signal processing techniques and devices, the directional coupler
is versatile and is easily incorporated into the existing power system.

A practical procedure is described that calibrates the DDC for the trans-
mission line under test and the sensors that are employed. In essence, this is a
calibration for identification of the linear mapping that exist between the mea-
sured voltage and current on the transmission line and the amplitudes of the
propagating waves. A similar technique is given in [PE03] for measurement
of the propagation constant of a power cable.

An experiment has been arranged at a power distribution station using
high-voltage equipment where PD signals are created in cross–linked polyethy-
lene (XLPE) insulated power cables. The configuration allowed multiple re-
flections to occur that were resolved by the DDC. The rest of the paper is
outlined as follows. In section 2, the digital directional coupler is introduced
and the calibration procedure is described. In section 3, an experiment is de-
scribed where a DDC has been designed and implemented for measurements
on a power cable in a power distribution station.



Partial Discharge Measurements Using a Digital Directional Coupler 123

2 The Digital Directional Coupler

2.1 Wave propagation model

Consider the frequency domain representation of a single-mode transmission
line, where the one-dimensional electric voltage V (x) and current I(x) are
given as  V (x) = V +e−γx + V −eγx

I(x) =
V +

Z
e−γx − V −

Z
eγx (1)

where V + and V − are the complex amplitudes associated with forward and
backward propagating waves, γ the complex propagation constant, x the
length dimension and Z the characteristic impedance of the transmission line,
see e.g., [Poz98]. The mapping between the total voltage V = V (0) and cur-
rent I = I(0) and the wave amplitudes V + and V − at the transmission line
input is given by (

V +

V −

)
=
(

1
2

1
2Z

1
2 − 1

2Z

)(
V
I

)
. (2)

Assume now that two decoupled sensors are available measuring the volt-
age V and current I as {

u = AV
v = BI

(3)

where A and B are the corresponding sensor frequency functions, cf., also
Fig. 1. Then there is a linear, one-to-one relationship between the measured
signals u and v and the wave amplitudes V + and V − given by(

V +

V −

)
=
(

a b
a −b

)(
u
v

)
(4)

where a = 1
2A and b = Z

2B .

2.2 Calibration procedure

Consider the calibration set-up in Fig. 1. The device under test (DUT) is
an open ended transmission line of length l1, characteristic impedance Z and
complex propagation constant γ. Two sensors are applied to the left side of
the DUT measuring the voltage u = AV and current v = BI on the cable
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input. The calibration set-up consists further of a pulse generator with voltage
Eg and generator resistance R, a matched power splitter with transmission
coefficient T and auxiliary coaxial cables of length l0 and l with characteristic
impedance R and propagation constant γ0 = iω/c0 where c0 is the speed
of wave propagation. A measurement voltage Vm is obtained over the load
resistance R via the power splitter as depicted in Fig. 1.

Eg

R

RVm

T

R, γ0, l0 R, γ0, l

R, γ0, l0

Z, γ, l1

V +
1

V −
1

V +
2

V −
2

Zin

u v

Figure 1: Calibration set-up with open ended transmission line.

The voltage reflections and transmissions at the indicated reference plane
in Fig. 1 is given by the scattering formulation(

V −
1

V +
2

)
=
(

Γ+ 1− Γ+

1 + Γ+ −Γ+

)(
V +

1

V −
2

)
(5)

where
Γ+ =

Z −R

Z + R
. (6)

The total input impedance of the open ended transmission line as seen from
the left at the reference plane is Zin = Z coth γl and the corresponding reflec-
tion coefficient is hence given by

Γ =
Zin −R

Zin + R
=

Γ+ + e−γ2l

1 + e−γ2lΓ+
= Γ+ + e−γ2l(1− Γ+2) + · · · (7)

yielding the reflected voltage V −
1 = V +

1 Γ. The incident wave at the reference
plane is given by

V +
1 =

Eg

2
e−γ0(l+l0)T (8)
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and the corresponding first order pulses are hence given by{
V −

1

(1)
= V +

1 Γ+

V +
2

(1)
= V +

1 (1 + Γ+).
(9)

The observed pulses at the measurement resistor are given by{
V

(0)
m = Eg

2 e−γ02l0T

V
(1)
m = V −

1

(1)
e−γ0(l+l0)T

(10)

and it is found that V +
1 = V

(0)
m e−γ0(l−l0). The reflection coefficient Γ+ can be

obtained from a short circuit measurement where V −
1

(s)
= −V +

1 and V
(s)
m =

V −
1

(s)
e−γ0(l+l0)T , and hence

Γ+ =
V −

1

(1)

V +
1

= −V −
1

(1)

V −
1

(s)
= −V

(1)
m

V
(s)
m

. (11)

The parameters a and b are obtained from the calibration equations{
V +

2

(1)
= au(1) + bv(1)

0 = au(1) − bv(1)
(12)

with the straightforward solution a = V +
2

(1)

2u(1)

b = V +
2

(1)

2v(1)

(13)

where u(1) and v(1) correspond to the first order pulses of u and v, respec-
tively. Fig. 2 illustrate the calibration signals in an experiment using an XLPE
insulated power cable. Note that the assumption u(1) = AV = AV +

2

(1)
and

v(1) = BI = BI+
2

(1)
= BV +

2

(1)
/Z yields the correct answer a = 1

2A and
b = Z

2B . The calibration procedure can now be summarized by the following
operations 

Γ+ = −V (1)
m

V
(s)
m

V +
2

(1)
= V

(0)
m e−γ0(l−l0)(1 + Γ+)

a = V +
2

(1)

2u(1)

b = V +
2

(1)

2v(1) .

(14)
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Figure 2: The calibration signals recorded for calibration of a DDC imple-
mented on an XLPE insulated power cable. The bandwidth is approximately
50 MHz. Each pulse is marked by the corresponding frequency domain rep-
resentation.

Let â and b̂ denote estimates of the parameters a and b according to the
measurement model given in (4). The estimated wave amplitudes are thus
given by (

V̂ +

V̂ −

)
=
(

â b̂

â −b̂

)(
u
v

)
. (15)

Using (2) and (3) with A = 1
2a and B = Z

2b , the estimation (15) is given by V̂ + =
(
â 1

2a + b̂ 1
2b

)
V + +

(
â 1

2a − b̂ 1
2b

)
V −

V̂ − =
(
â 1

2a − b̂ 1
2b

)
V + +

(
â 1

2a + b̂ 1
2b

)
V −.

(16)

The cross-coupling Vcc is given by

Vcc = â
1
2a

− b̂
1
2b

= ∆a
1
2a

−∆b
1
2b

(17)
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and the coupling Vc

Vc = â
1
2a

+ b̂
1
2b

= ∆a
1
2a

+ ∆b
1
2b

+ 1 (18)

where ∆a = â− a and ∆b = b̂− b.
Using standard definitions from microwave technology [Poz98], the cou-

pling, directivity and isolation (in dB) can be obtained for the DDC,

C = −20 log (|Vc|) , (19)

D = 20 log
(∣∣∣∣ Vc

Vcc

∣∣∣∣) , (20)

I = −20 log (|Vcc|) , (21)

respectively, where I = D + C. An ideal directional coupler has infinite
isolation and directivity corresponding to Vcc = 0 and perfect coupling, i.e.,
Vc = 1.

The isolation and coupling properties of the calibrated DDC can be con-
veniently estimated from measured pulses as

I = 20 log

(
|V +

2

(1)|
|V̂ −|

)
≈ 20 log

(
|V (0)

m ||1 + Γ̂+|
|V̂ −|

)
(22)

and

C = 20 log

(
|V +

2

(1)|
|V̂ +|

)
≈ 20 log

(
|V (0)

m ||1 + Γ̂+|
|V̂ +|

)
. (23)

3 Experiments

In an experiment at a power distribution station, the DDC was used to mea-
sure and separate PD signals based on the direction of travel. A schematic
diagram of the experiment is depicted in Fig. 3. The equipment consists of
a 0 − 230 V variac, one low to medium voltage transformer with a ratio of
1 : 90.7, and one 140.6 m long 22 kV XLPE insulated single–phase power
cable. The variac is supplied via the service-net 230 V, 50 Hz using low–pass
filters to mitigate disturbances and interference. Using an Ultrasonic receiver,
the equipment was verified to be free of partial discharges when the applied
voltage was less than 13 kV. The phase velocity on the 22 kV power cable
was estimated to 0.5 − 0.55 times the speed of light. At the points marked
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by 1 or 2 in Fig. 3, we connect a 10 kV power cable of 1 m that has been
prepared to create partial discharges at an applied voltage of approximately
5 kV. To obtain partial discharges from the 10 kV cable, either one end of
the cable is left un–terminated or a needle is used to penetrate the insulation.
By changing e.g., the thickness of the needle, the penetration depth and the
applied voltage, we can vary the properties of the partial discharges.

Experiment configuration

230 V 0− 230 V 1 : 90.7

Sensors position
�

�
�


22 kV power cable
140.6 m

1

? 2

Figure 3: Schematic picture of the experiment. At points marked by 1 and 2
additional power cables are connected as described in the experiments. The
sensors are mounted on the 22 kV power cable. Starting from the left is the
service–net, the variac, the low to medium voltage transformer and the power
cable.

The inductive current sensor was designed as a Rogowski coil, see e.g.,
[ZYJZ05], using a toroidal ferrite core and mounted around the center con-
ductor of the 22 kV power cable. The capacitive voltage sensor is connected to
the center conductor via a coupling capacitor. Both sensors were designed to
operate in the frequency range of 2− 50 MHz. In the calibration of the DDC,
a function generator capable of supplying pulses with amplitude Eg = 8 V and
100 MHz bandwidth was used. The required frequency domain representation
of the sensor signals were obtained using a zero–padded 4096–point FFT at
a sampling rate of 400 MS/s. The forward and backward traveling waves V̂ +

and V̂ − were calculated in the frequency domain and then transformed back
to the time domain using the IFFT.

In Fig. 4 is shown the estimates of a and b as functions of frequency (left
figure) and the estimated isolation I and coupling C (right figure).

The calibration of the DDC results in the estimates of a and b, which
we utilize in (15). To obtain the estimates of I and D depicted in Fig. 4, a
second measurement was made, where V̂ + and V̂ − were calculated. In the
time domain we then extract the inital pulse from both V̂ + and V̂ −, which
corresponds solely to a forward traveling wave (no backward traveling wave
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Figure 4: The left figure depicts the estimates of a and b. Observe that the
sharp edge at 50 MHz is due to the noise reduction processing. The right figure
depicts the isolation and coupling of the DDC as functions of frequency. Note
the flat characteristics of the isolation and coupling.

present). Finally, we obtain V
(0)
m and from the calibration measurement we

have Γ̂+ and we calculate I and C using (22) and (23), respectively.
Before the wave splitting operation is applied to measurements of partial

discharge signals, each measurement series is filtered using a digital filter bank
to attenuate strong interferers e.g., narrow band radio transmissions. The
filters are notch type and the total number of filters are dependent on the
number and power of the interferers. Investigation of the noise characteristics
confirmed that during short time periods the noise could be described as a
sum of additive white Gaussian noise and narrow–band interferers, similar to
the model in [SNPB05].

In [BPW96] a Gaussian pulse function was employed to model a partial
discharge pulse,

s(t) =
V0√
2πβ2

e−t2/2β2
, (24)

where β is the half pulse width at 60 % amplitude measured in seconds. Let
fβ =

√
2/(2πβ) be a measure of the bandwidth of the pulse. The amplitude

V0 can be related to the charge Q of the PD, using QZ =
∫

s(t)dt, as

V0 = QZ. (25)
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To provide some insight into the sensitivity of the DDC and the properties of
the experiment, we provide numerical values of measured quantities related
to (24) e.g., V0. These are often termed effective values since the calculations
are based on measurements using the sensors located at a position (often at
the end of a power cable) not equal to the position of the partial discharge
location [Bog90]. The PD signals are distorted by the power cable that is
acting as a low–pass filter.

3.1 Experiment I

In the first experiment we connect the 10 kV power cable at point 1 and
leave point 2 unconnected, i.e., the 22 kV power cable is open at the far end
from the sensors position. In Fig. 5, a short period of the recorded sensor
signals are depicted in the left figure and the corresponding forward traveling
wave amplitude (FTWA) and backward traveling wave amplitude (BTWA)
obtained from the DDC are depicted in the right figure.

Voltage sensor [V]

Current sensor [V]
0 1 2 3 4 5

−0.01

0

0.01

0.02

0.03

0 1 2 3 4 5
−0.04
−0.02

0
0.02
0.04
0.06

Time [µs]
0 1 2 3 4 5

−0.02

0

0.02

0.04

0.06

Time [µs]

FTWA/BTWA [V]

Initial pulse
First reflection

Figure 5: In the left figure is shown the signals recorded from the sensors and
in the right figure the corresponding output signals of the DDC where the
solid and dashed curves corresponds to FTWA and BTWA, respectively. The
inital pulse corresponds to a PD pulse while the first reflection corresponds
to the PD pulse reflected at the open end of the 22 kV power cable.

The first pulse in the right figure is a forward traveling wave, marked as
the initial pulse and coming from the PD site on the 10 kV power cable. The
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second pulse, marked as the first reflection, is a combination of a forward
and a backward traveling wave i.e., a reflection of the initial pulse at the
open end of the 22 kV power cable. The inital pulse has a pulse width of
approximately 0.1 µs, corresponding to β = 15 ns and V0 = 13 · 10−10 V in
(24). The correspoonding bandwidth of the pulse is fb = 15 MHz. Typically,
the pulse width is 1 − 10 ns at the source, [SSS00, BD00], corresponding to
β less than 5 ns. Investigations where β equals 5 − 80 ns have also been
conducted [BPW96].

The time difference between the two pulses corresponds to the time needed
to travel back and forth on the 22 kV power cable. The initial pulse is barely
visible in the BTWA. For the first reflection, both outputs of the DDC display
a pulse where the BTWA is greater than the FTWA. Taking both FTWA and
BTWA into account it is easy to verify from which direction a pulse arrive.
However, this is not necessary if the isolation and directivity of the DDC can
be further enhanced. Also, the time delay between two consecutive pulses
can serve as a simple but crude tool to exclude multiple reflections. Due to
the length of the 22 kV power cable (the power cable has a large attenuation
per meter for higher frequencies [OBP+05]) and the sensitivity of the sensors,
only one reflection is clearly visible and also resolved by the DDC.

3.2 Experiment II

In the second experiment, the 10 kV power cable is connected at point 2 in
Fig. 3 so that PD pulses travels the 22 kV power cable before recorded at
the sensors. A 22 m long 12 kV XLPE insulated power cable is connected
at point 1 and left open–ended to create multiple reflections for the DDC to
resolve. Also, based on the previous experiment we decrease the bandwidth
of the DDC to 2− 10 MHz to further mitigate interference. This flexibility is
one advantage of the versatile DDC. The result is depicted in Fig. 6.

A PD pulse created on the 10 kV power cable will travel the 22 kV power
cable and when reflected at the position of the sensors, some energy will be
transmitted to the 12 kV power cable. The DDC will classify this pulse as a
combination of a forward and a backward traveling wave. After reflection at
the open-end of the 12 kV power cable the pulse will return to the 22 kV and
be classified by the DDC as a forward traveling wave.

The initial pulse in the right figure of Fig. 6 cleary corresponds to a back-
ward traveling wave and a much weaker forward traveling wave. The pulse
width is approximately 0.2 µs, β = 30 ns and V0 = 15 · 10−10 V. This corre-
sponds to an approximative bandwidth fb ≈ 7.5 MHz and a charge of 60 pC.
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Figure 6: In the left figure is shown the signals recorded from the sensors and
in the right figure the corresponding output signals of the DDC where the
solid and dashed curves corresponds to FTWA and BTWA, respectively.

The time difference between the initial pulse and the first reflection is approx-
imately 0.3 µs, corresponding to the measured phase velocity of 0.5 times the
speed of light and twice the length of the 12 kV power cable. Observe that
the first reflection is hard to see in the sensor signals but readily seen in the
FTWA.

Also, in the experiment we veryfied that the DDC was able to resolve an
initial PD pulse with β = 30 ns and V0 = 4 · 10−10 V, corresponding to a
charge of 16 pC.

4 Summary and Conclusions

We have presented partial discharge measurements using a Digital Directional
Coupler (DDC) that separates forward and backward propagating waves on a
transmission line. The DDC is based on two independent wide–band measure-
ments of voltage and current and a frequency domain digital wave splitting
using the FFT. A practical procedure is described for calibration of the digi-
tal processor with respect to the particular transmission line and the sensors
that is employed. Experiments using medium voltage equipment in a power
distribution station and a DDC implemented on an XLPE insulated power
cable are described. The isolation and coupling of the DDC were determined
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to 27 dB and 5 dB, respectively; over a bandwidth of approximately 50 MHz.
Measurements displays the ability of DDC to separate partial discharge pulses
based on the direction of travel even for pulses hardly visable in the sensor
signals.
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This doctoral thesis is comprised of five parts. The 
first three parts concern signal processing and 
electromagnetic modelling of multiport antennas. 
The last two parts concern signal processing and 
transmission line theory applied to wave splitting 
on transmission lines.

In Part I, the spherical vector wave expansion of 
the electromagnetic field is used to completely 
characterize a multiport antenna. A general fram-
ework for modelling an antenna configuration 
based on measurement data and numerical com-
putation is obtained. The generic electromagnetic 
model for arbitrary multiport antennas or vector 
sensors is applied in direction of arrival (DOA) 
estimation.

Next, in Part II using the generic electromagnetic 
model (from Part I), we obtain the Cramér-Rao 
bound (CRB) for DOA and polarization estima-
tion using arbitrary multiport antennas. In the 
Gaussian case, the CRB is given in terms of the 
transmission matrix, the spherical vector harmo-
nics and its spatial derivatives. Numerical examp-
les using an ideal Tripole antenna array and a non-
ideal Tetrahedron antenna array are included.

In Part III, the theory of optimal experiments is 
applied to a cylindrical antenna near-field measu-
rement setup. The D-optimal (determinant) for-
mulation using the Fisher information matrix of 

the multipole coefficients in the spherical wave 
expansion of the electrical field result in the opti-
mal measurement positions. The estimation of the 
multipole coefficients and corresponding electric 
field using the optimal measurement points is stu-
died using numerical examples and singular value 
analysis.  

Further, Part IV describes a Digital Directional 
Coupler (DDC), a device for wave splitting on a 
transmission line. The DDC is a frequency domain 
digital wave splitter based on two independent 
wide-band measurements of the voltage and the 
current. A calibration of the digital processor is in-
cluded to account for the particular transmission 
line and the sensors that are employed. Properties 
of the DDC are analyzed using the CRB and an 
experiment where wave splitting was conducted 
on a coaxial-cable is accounted for.

Finally, in Part V the DDC has been designed and 
implemented for wave splitting on a medium vol-
tage power cable in a power distribution station 
using low cost wide-band sensors. Partial dischar-
ge measurements are conducted on cross-linked 
polyethylene insulated power cables. The directio-
nal separation capabilities of the DDC are visua-
lized and utilized to separate multiple reflections 
from partial discharges based on the direction of 
travel.   
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