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Optimum Window Design by
Semi-Infinite Quadratic Programming

Sven Nordebo, Ingvar Claesson, and Zhuquan Zang

Abstract—This letter presents a new extended active set strat-
egy for optimum finite impulse response (FIR) window design
by semi-infinite quadratic programming. The windows may be
asymmetric corresponding to frequency responses with general
nonlinear phase. The optimality criterion is to minimize the
sidelobe energy (L;-norm) subject to a peak sidelobe magnitude-
constraint (L. -constraint). Additional linear constraints are used
to form the mainlobe (unity DC gain). Numerical examples

involving group delay specifications are used to illustrate the

usefulness of the algorithm.

I. INTRODUCTION

ANY signal processing applications involving filter

L design depend on both minimax and least squares meth-

ods. The least squares criterion is relevant when the exogenous
input noise is random with known power spectrum whereas
the minimax criterion is relevant when the disturbing signal
is sinusoidal with unknown frequency. These two criteria
coirespond to a noise gain specification and a magnitude
specification, respectively. The most flexible design-approach
in a practical situation is to consider the combination of these

methods, i.e., the tradeoff between the minimax and the least

squares errors.

A new optimal window was defined in [1] providing the
optimum  tradeoff- between the peak . sidelobe level and the
sidelobe energy. It was demonstrated that the classical min-
imax and least squares methods (Dolph~Chebyshev/prolatee
spheriodal windows) are both fundamentally inefficient with
respect to the other design criterion (the minimax window has
the highest sidelobe energy etc.). :

The optimum window [1] ‘minimizes the sidelobe energy
subject to a peak sidelobe magnitude-constraint together with
some additional linear constraints (which can be used to
form the mainlobe etc.). The solution for linear-phase FIR
filters (syminetric windows) can be found by conventional
quadratic programming methods [2] since the magnitude car
be represented by a real amplitude function [3]. An efficient
multiple exchange algorithm is proposed in [1] for the case of
symmetric windows.

'In this letter, we consider the general case with asymmetric
windows and complex response. The optimum window design
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is formulated as a semi-infinite quadratic program. A new
extended active set strategy is proposed for the solution of the
optimization problem. Numerical examples involving group
delay specifications are used to demonstrate the efficiency of
the new algorithm. '

We emphasize that the presented design technique may be
useful for complex approximation with any filter structure
having finite complex basis such as the digital Laguerre
networks [4] and beamformers [5].

II.. PROBLEM FORMULATION

The frequency response of a real N-tap finite impulse
response (FIR) window is given by

N-1.

H(w) =) hne™3" = b7 ¢(w)

n=0

1)

where h is a real N x 1 vector containing the filter coefficients
hn, and ¢(w) a complex vector of basis functions e~7vn,
n =20, N—-1, o

We pose the following design criterion:

o1 .
Join o= /Q IH(‘”)Izld‘U: subjec.t' to 2)
[Hw)| < o(w), weq, 3)
Ph=p @

where the stopband region {2 is a closed and bounded subset
of [~m, ], Q; a finite subset of Q, o(w) is a strictly positive
magnitude bound, P an M x N constraint matrix and p an
M x 1 constraint vector.

The design objective in (2) is to minimize the sidelobe
energy together with a peak sidelobe magnitude constraint (3).
The linear constraints (4) can be used to form the mainlobe by
choosing P = [1---1] and'p = 1 (unity DC gain H(0) = 1).

We will now convert the design formulation (2)~(4) into
a semi-infinite quadratic programming problem. According to
the real rotation theorem {3), a magnitude inequality in the
complex plane can be expressed in the equivalent form

I/l <o e Rz} <0, Vo€ [0,24] 5)
where z is a complex number, o a real and positive number,
and R{-} denotes the real part.
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By making use of (5), the design problem (2)-(4) can be
reformulated as the semi-infinite quadratic program

min 1h” Qh
al(w,0)h < o(w), we, 0¢€l0,2n] (6)
Ph=p
where
Q== / $(w)¢" () du )
T Ja
a(w,0) = R{p(w) - &} ®)

Note that Q; is assumed to be finite, whereas the phase variable

6 belongs to an infinite set. c
In our examples below Q = [—7, —w,] U [ws, 7] where w;
is the stopband frequency. Thus, the elements g, of Q are

calculated as follows:
2sin(ws(m — n))
w(m—n :

Gmn = § 2(71_ _ (4()5) ) (9)

7

1. SEMI-INFINITE QUADRATIC PROGRAMMING

A. Kuhn-Tucker Conditions

The necessary and sufficient Kuhn-Tucker conditions re-
lated to (6) are given by [6]

Qh+/ a(w,0)dA +PTp =0 (10)
D
/ (a¥(w,0)h —c(w))dA=0 . (1D
D .
al(w,0)h—o(w) <0, (w,0) €D (12)
Ph=p (13)
A>0 14

where A is a regular Borel measure, D = € x [0, 27] and
is an M x 1 vector of Lagrange multipliers. ,

"It can be shown [6], [7] that the optimum (nonunique)
measure A satisfying (10)-(14) can always be represented by
a measure with finite support (atomic measure) at no more
than IV points. The Kuhn-Tucker conditions may therefore be
written

Qh+ Y Na(w;,6:) + PP =0 (15)
=1

/\i(aT(wi,Qi)h—O(wi)) :07 $ = 1,"-,7' (16)

al(w,0)h — o(w) <0, (w,0)eD 17

Ph=p (18)

Ai >0 (19)

where (w;,0;) € D, i =1,---,7 < N and ); are the values
of the atomic measure. The proof follows the same technique
as given in {7, pp. 73-76] by an application of Caratheodory’s
theorem.

The implication of the conditions (15)-(19) is extremely
useful since it allows us to solve the problem (6) using a finite
active set in very much the same way as with the active set
strategy for finite-dimensional quadratic programs.

e —
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B. Extended Active Set Strategy

Below, an extended active set strategy is given to solve
the semi-infinite quadratic program (6). The algorithm is an
extension of the finite-dimensional version given in [2].

It is assumed that an initial feasible solution hg to (6) is
available. This solution must satisfy the constraints in (3)
and (4) and can be found by solving the semi-infinite linear
programming problem ’

min é
cr(lw) aT(w’H)h <,
Ph=p

weQ, §€l0,2x] (20)

where 6 is an additional real variable. The problem (20) can be
solved by using simplex extension algorithms; see e.g., [7], [8].
If the optimum objective §g < 1, the corresponding solution
hy is feasible. If 8§y > 1, a feasible solution does not exist.
The extended active set strategy to solve (6) proceeds as
follows: Let hj denote the solution at an iteration index k
and Wy, = {(w1,01), -, (wr,0,)} the corresponding working
set defined by r active constraints in the second row of (6).
Note that the working set is identified by r distinct frequencies
w; for which |Hy(w;)| = o{w;) and the corresponding phase
angles uniquely given by 8; = — arg{ Hy{w;)}. Note also that
Wy may be empty (in particular, Wy is empty if §5 < 1).
Define

aT(wl,Ql) \ a(wl)
Ay = 5 D b= - 21
"7 aT(w,,0,) o(ws) @b
P P

where (w1,9,) € Wi, =1,---,r. Thus A hy = by.
The Lagrangian multipliers related to the working set W,
are given by

Me = —(AxQTAT) by (22)

Given an initial feasible solution hy and the corresponding
working set Wy, the algorithm proceeds with the following
basic steps. '

1) Solve the equality constrained quadratic program

min %hTQh
H(wl) cedt = U(wi),
Ph=p

(wi, 0:) € Wi (23)

where H(w) = h7¢(w), h = hy + d; and the
optimization is performed with respect to the vector
increment dy.
If dy # 0 proceed with step 2. If d = 0 calculate

Ao = ie{ml’lnr.x’r} Ak (%) 24)
where Ai(?) are the elements of Ay given by (22).
Denote the minimizing index ¢. If A\g > 0 then hy is
optimal; stop. If Ap < 0, exclude (wg,8,) from Wy o
form Wiy1. Set £ = k + 1 and return to step 1.

2) Calculate the step size parameter

o(w).— aT (w,OHhy,
al(w,)dy

ap = min
(w,0)€D

(25)
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Fig. 1. Solid lines: Quadratic programming solution [H{(w)| and specified

upper bound a(w) in dB. Dashed lines: Linear programming solution
| Ho(w)| and minimum bound 6o (w) in dB. Specified group delay 74 = 15
for w = 0.

Group delay 7(w) [samples]

140 0.;35 0.1 0.15 0.2 0.25 0.3

Fig. 2." Resulting group delay. Solid line: 74 = 20. Dashed line: 74 = 15.

where the minimization is performed -over D, =
{(w,8) : aT(w,0)d; > 0}. Let the minimizer be
denoted (w’,8"). If g, < 1, put hgyi = hy + ozdy and
Wiy = WkU{(w’, 9/)} Ifoar > 1, puthy = he+dg
and Wiiq1 = Wy. Set k = k + 1 and return to step 1.
The minimization in (25) is performed in two steps. First
calculate

o(w) — R{Hy(w)e’}
RDA o)

Olk(o.)) = w € O (26)

1
€O, (w)

where Hy(w) = ¢T (w)hy, Di(w) = ¢¥'(w)d and

Ox(w)
- {a — arg(Dy(w)) = & < 0 < — arg(Di(w)) + }
Next, calculate o = miin ax(w) where the minimization is

performed over all w €.y such that (w,d) ¢ W, for any 4.
The minimizer is «’.
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Impulse response h,,

30 35
n [samples]
Fig. 3. Resulting impulse response. Solid line: 74 = 20. Dashed line:
T4 = 15.
Quadratic cost 2h”Qh [dB)
47

44 42 40 38
Max norm o [dB]

Fig. 4 Quadratic cost versus specified max norm o (N = 41, a4 = 20).
The * and o denote the minimax and the eigenvector solutions, respectlvely

An explicit formula for the minimizing phase ¢ in (26) can
be found by differentiating the function

o — R{ze’}

f(8) = Rwe?]

@7
with respect to §. The differential is equated to zero and by
standard trigonometric manipulations we arrive at

f =sin™! (Lj — yu> — arg(iv) (28)

where 7 = £+ jy and w = u + jo.

Formula (28) is used to calculate the functlon 6(w) of
minimizing phase angles for all w € €; in (26). Thus, the
minimizer in (25) is given by (w', ") = (o', (w")).

IV. NUMERICAL EXAMPLES

As a numerical example we consider the design of an
optimum FIR window as described in Section I. The fil-
ter length is N = 41, the stopband magnitude constraint
20logo(w) = —37 dB, the stopband frequency w, = 0.17
and the domain €2; consists of 200 points evenly distributed in

'
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|ws, 7]. In addition to the mainlobe constraint we also employ
a linear group delay-constraint to define (4). This constraint
approximates a group delay of 74 samples for w = 0 and is
given by

N-1
> ha(n—7a) =0 (29)
n=0

(see, e.g., [9]).

Figs. 1-4 show the resulting design when the specified
group delay 74 is 20 respective 15 samples. The design
algorithm (the extended active set strategy as described in
Section III) converged in two and six iterations, respectively.
The case with 7, = 15 was chosen to illustrate the ability to
design asymmetric windows with complex response.

Fig. 4 shows the tradeoff in quadratic cost versus max norm
for the case with 74 = 20. Fig. 4 also shows the minimax
solution given by (20) and the eigenfilter corresponding to the
minimum eigenvalue of Q.

V. SUMMARY AND CONCLUSIONS

This work presents a new extended active set strategy to
solve the semi-infinite quadratic programming problem corre-
sponding to an optimum FIR window design. The optimality
criterion is to minimize the sidelobe energy subject to a max
norm constraint and additional linear constraints (mainlobe DC

265

gain etc.). The success of the approach relies on the finiteness
of related Lagrange multipliers.

Design examples involving group delay constraints are
included to demonstrate the flexibility (asymmetric windows

and complex response) and numerical efficiency of the design
algorithm.

Future work includes applications to general digital filter
design, Laguerre filter design, and beamforming.
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