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Software is today used in more and different ways 
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space shuttles and smart cards. As such, most soft-
ware, usually need to adhere to a specifi cation, i.e. 
to make sure that it does what is expected. 
 Normally, a software engineer goes through 
a certain process to establish that the software 
follows a given specifi cation. This process, verifi ca-
tion and validation (V & V), ensures that the soft-
ware conforms to its specifi cation and that the 
customers ultimately receive what they ordered. 
Software testing is one of the techniques to use 
during V & V. To be able to use resources in a bet-
ter way, computers should be able to help out in 
the “art of software testing” to a higher extent, 
than is currently the case today. One of the is-
sues here is not to remove human beings from 
the software testing process altogether—in many 
ways software development is still an art form and 
as such pose some problems for computers to 
participate in—but instead let software engineers 
focus on problems computers are evidently bad at 
solving. 
 This dissertation presents research aimed at 
examining, classifying and improving the concept 

of automated software testing and is built upon 
the assumption that software testing could be 
automated to a higher extent. Throughout this 
thesis an emphasis has been put on “real life” app-
lications and the testing of these applications. 
 One of the contributions in this dissertation is 
the research aimed at uncovering different issues 
with respect to automated software testing. The 
research is performed through a series of case 
studies and experiments which ultimately also 
leads to another contribution—a model for ex-
pressing, clarifying and classifying software testing 
and the automated aspects thereof. An additional 
contribution in this thesis is the development 
of framework desiderata which in turns acts as 
a broad substratum for a framework for object 
message pattern analysis of intermediate code re-
presentations. 
 The results, as presented in this dissertation, 
shows how software testing can be improved, ex-
tended and better classifi ed with respect to auto-
mation aspects. The main contribution lays in the 
investigation of, and the improvement in, issues 
related to automated software testing. 
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To my father

The most exciting phrase to hear in science, the one that heralds new
discoveries, is not “Eureka!” but rather, “Hmm. . . that’s funny. . . ”

Isaac Asimov (1920 - 1992)
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ABSTRACT

Software is today used in more and different ways than ever before. From refrigerators
and cars to space shuttles and smart cards. As such, most software, usually need to
adhere to a specification, i.e. to make sure that it does what is expected.

Normally, a software engineer goes through a certain process to establish that the
software follows a given specification. This process, verification and validation (V
& V), ensures that the software conforms to its specification and that the customers
ultimately receive what they ordered. Software testing is one of the techniques to use
during V & V. To be able to use resources in a better way, computers should be able
to help out in the “art of software testing” to a higher extent, than is currently the case
today. One of the issues here is not to remove human beings from the software testing
process altogether—in many ways software development is still an art form and as such
pose some problems for computers to participate in—but instead let software engineers
focus on problems computers are evidently bad at solving.

This dissertation presents research aimed at examining, classifying and improving
the concept of automated software testing and is built upon the assumption that soft-
ware testing could be automated to a higher extent. Throughout this thesis an emphasis
has been put on “real life” applications and the testing of these applications.

One of the contributions in this dissertation is the research aimed at uncovering
different issues with respect to automated software testing. The research is performed
through a series of case studies and experiments which ultimately also leads to an-
other contribution—a model for expressing, clarifying and classifying software testing
and the automated aspects thereof. An additional contribution in this thesis is the de-
velopment of framework desiderata which in turns acts as a broad substratum for a
framework for object message pattern analysis of intermediate code representations.

The results, as presented in this dissertation, shows how software testing can be
improved, extended and better classified with respect to automation aspects. The main
contribution lays in the investigation of, and the improvement in, issues related to au-
tomated software testing.
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Chapter 1

Introduction

1.1 PREAMBLE
Testing software in an automated way has been a goal for researchers and industry
during the last few decades. Still, success has not been readily available. Some tools
that are partly automated have evolved, while at the same time the methodologies for
testing software has improved, thus leading to an overall improvement. Nevertheless,
much software testing is still performed manually and thus prone to errors1, inefficient
and costly.

Today several questions still remain to be solved. As an example we have the
question of when to stop testing software, i.e. when is it not economically feasible
to continue to test software? Clearly, spending too much time and money testing an
application which will be used a few times, in a non-critical environment, is probably
a waste of resources. At the same time, when software engineers develop software that
will be placed in a critical domain and extensively used, an answer to that question
needs to be found.

Next, there is the question of resources. Small- and medium-sized companies are
today, as always, challenged by their resources, or to be more precise, the lack thereof.
Deadlines must be kept at all costs even when, in some cases, the cost turns out to be
the actual reliability of their products. Combine this with the fact that software has
become more and more complex, and one can see some worrying signs.

The question of complexity, or to be more precise—the fact that software has grown
in complexity and size—is very much part of the problem of software testing. Software

1The IEEE definition of error, fault and failure is used throughout this thesis.
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systems have grown in an amazing pace, much to the frustration of software engineers,
thus making it even more crucial trying to at least semi-automate software testing.
After all, a human being costs much money to employ while hardware is comparatively
cheap. . .

However, not everything in this particular area can be painted black. Newer pro-
gramming languages, tools and techniques that provide better possibilities to support
testing have been released. In addition to that, development methodologies are being
used, that provide a software engineering team ways of integrating software testing into
their processes in a more natural and non-intrusive way.

As such, industry uses software testing techniques, tools, frameworks, etc. more
and more today. But, unfortunately there are exceptions to this rule. There is a clear
distinction between, on the one hand, large, and on the other hand, small- and medium-
sized enterprises. Small- and medium-sized enterprises seem to experience a lack of
resources to a higher degree than large enterprises and thus reduce and in some cases
remove the concept of software testing all together from their software development
process. Hence the reasons for introducing and improving automated software testing
is even clearer in this case.

The aim of the research presented in this dissertation is to improve software testing
by increasing its effectiveness and efficiency. Effectiveness is improved by combining
and enhancing testing techniques, while the factor of efficiency is increased mainly by
examining how software testing can be automated to a higher extent. By improving ef-
fectiveness and efficiency in software testing, time can be saved and thus provide small
software development companies the ability to test their software to a higher degree
than what is the case today. In addition, to be able to look at automated aspects of
software testing, definitions needs to be established as is evident in this dissertation.
Consequently, in this dissertation, a model with a number of definitions is presented
which (in the end) helps in creating desiderata of how a framework should be con-
structed to support a high(er) degree of automation.

The main contribution of this dissertation is in improving and classifying soft-
ware testing and the automated aspects thereof. Several techniques are investigated,
combined and in some cases improved for the purpose of reaching a higher effective-
ness. While looking at the automated aspects of software testing a model is developed
wherein a software engineer, software tester or researcher can classify a certain tool,
technique or concept according to their level of automation. The classification of sev-
eral tools, techniques and concepts, as presented in this dissertation, implicitly provide
requirements for a future automated framework with a high degree of automation—a
framework which in addition is presented in this dissertation as well.

This thesis consists of research papers which are edited for the purpose of forming
chapters in this thesis. The introductory chapter is organized as follows. Section 1.2 in-

2
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troduces the basic notions used and outlines the frame of reference for this thesis, while
the last part of the section presents our particular view of software testing. Section 1.3
presents the research questions that were posed during the work on this thesis. Sec-
tion 1.4 presents the research methodology as used in this thesis. Section 1.5 presents
related work with respect to this thesis. Sections 1.6 and 1.7 cover the main contri-
butions and the outline of the whole thesis respectively. Finally, Section 1.8, lists the
papers which are part of this dissertation.

The rest of the thesis is constituted by a number of chapters (further presented in
Section 1.7) and ends with conclusions (Chapter 11).

1.2 CONTEXT
The research as put forward in this thesis is focused on analyzing, improving and clas-
sifying software testing, especially the automated aspects thereof. Software testing is,
in our opinion:

the process of ensuring that a certain piece of software item fulfills its
requirements.

Automation aspects in software testing, on the other hand, is focused on keeping
human intervention to a minimum. In order to test a software item’s requirements a
software engineer first needs to understand the basics of software quality, however,
thus we turn our attention to some basic concepts before continuing.

1.2.1 SOFTWARE QUALITY
What are the quality aspects a software engineer must adhere to, with respect to soft-
ware development? It is not an easy question to answer since it varies, depending on
what will be tested, i.e. each software is more or less unique, although most software
has some common characteristics.

Some quality aspects, which can be found by examining today’s literature (see
e.g. [140] for a good introduction), are:

• Reliability—the extent with which a software can perform its functions in a sat-
isfactorily manner, e.g. an ATM which gives $20 bills instead of $10 bills is not
reliable [46], neither is a space rocket which explodes in mid-air [178].

• Usability—the extent with which a software is practical and appropriate to use,
e.g. a word processor where the user needs a thick manual to be able to write a
simple note, possesses bad usability.

3
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• Security—the extent with which a software can withstand malicious interference
and protect itself against unauthorized access, e.g. a monolithic design can be bad
for security.

• Maintainability—the extent with which a software can be updated and thus ad-
here to new requirements, e.g. a software that is not documented appropriately is
hard to maintain.

• Testability—the extent with which a software can be evaluated, e.g. a bloated or
complex design leads to bad testability.

Of course there exist more characteristics, e.g. portability, efficiency or complete-
ness, but nevertheless, if a software engineer in a small- or medium-sized project
would, at least, take some of the above aspects into account when testing software,
many faults would be uncovered. It might be worth mentioning that going through all
these attributes, time and again, is a time-consuming task, but when an engineer has
gone through this process several times (s)he will eventually gain a certain amount of
knowledge, and thus be able to fairly quickly see which attributes are essential for a
particular software item.

However, needing to re-invent the wheel, is something that should be avoided. For-
tunately, The International Organization for Standardization has collected several of
these attributes, i.e. quality aspects that a software engineer could test for, in the ISO
9126 standard [140]. Nonetheless, all of these attributes affect each individual software
in a unique way, thus still putting demands on a software engineer to have intricate
knowledge of many, if not all, characteristics.

1.2.2 SOFTWARE TESTING
Software testing, which is considered to be a part of the verification and validation (V
& V) area, has an essential role to play when it comes to ensuring a software’s imple-
mentation validity to a given specification. One common way to distinguish between
verification and validation is to ask two simple questions [267]:

• Verification—are we building the product right?

• Validation—are we building the right product?

First of all, software testing can be used to answer the question of verification,
e.g. by ensuring, to a certain degree, that the software is built and tested according to a
certain software testing methodology, we can be assured that it has been built correctly.
Secondly, by allowing customers and end-users to test the software currently being
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Figure 1.1: Software testing and V & V.

developed, a software development team can ensure that the correct product has been
built.

Hence, the way to view software testing would be to picture it being a foundation
stone on which V & V is placed upon, while at the same time binding V & V together
(Figure 1.1).

Unfortunately, software testing still, by large, inherit a property once formulated by
Dijkstra [68] as:

Program testing can be used to show the presence of bugs, but never to
show their absence!

The quote, is often taken quite literarily to be true in all circumstances by software
engineering researchers but, obviously, depending on the statistical significance one
would want to use, the above quote might very well not be true (in Chapter 4 a different
stance regarding this problem is presented).

To sum it up, software testing is the process wherein a software engineer can iden-
tify e.g. completeness, correctness and quality of a certain piece of software. In addi-
tion, as will be covered next, software testing is traditionally divided into two areas:
white box and black box testing. This thesis emphasizes the black box approach, but
as the reader will notice, Chapter 10 also touches on the subject of white box testing.

WHITE BOX

White box testing [22, 204], structural testing or glass-box testing as some might prefer
calling it, is actually not only a test methodology, but also a name that can be used when
describing several testing techniques, i.e. test design methods. The lowest common
denominator for these techniques is how an engineer views a certain piece of software.

In white box testing an engineer examines the software, using knowledge concern-
ing the internal structure of the software. Hence, test data is collected and test cases
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Figure 1.2: The transparent view used in white box testing gives a software engineer
knowledge about the internal parts.

are written using this knowledge (Figure 1.2).
Today white box testing has evolved into several sub-categories. All have one thing

in common, i.e. how they view the software item. Some of the more widely known
white box strategies are coverage testing techniques:

• Branch coverage.

• Path coverage.

• Statement coverage.

Branch coverage [54] is a technique to test each unique branch in a given piece of
code. For example, each possible branch at a decision point, e.g. switch/case statement,
is executed at least once, thus making sure that all reachable code is executed in that
limited context.

Path coverage, on the other hand, deals with complete paths in a given piece of
code. In other words, every line of source code should be visited at least once during
testing. Unfortunately, as might be suspected, this is very hard to achieve on software
that contains many lines of code, thus leading to engineers using this technique mostly
in small and well delimited sub-domains e.g. that might be critical to the software’s
ability to function [120].

Statement coverage’s aim is to execute each statement in the software at least once.
This technique has reached favorable results [232], hence the previous empirical vali-
dation makes this technique fairly popular. It is on the other hand questionable if this
particular technique can scale reasonably, thus allowing a software tester to test large(r)
software items.

Even though white box testing is considered to be well-proven and empirically
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Figure 1.3: In black box testing, the external view is what meets the eye.

validated it still has some drawbacks, i.e. it is not the silver bullet2 [38] when it comes
to testing. Experiments have shown ([16] and later [108]) that static code reading,
which is considered to be a rather costly way to test software, is still cheaper than
e.g. statement testing, thus making certain researchers question the viability of different
coverage testing techniques [102]. Worth pointing out in this case is that a coverage
technique does not usually take into account the specification—something an engineer
can do during formal inspection [165, 166].

BLACK BOX

Black box testing [23, 204], behavioral testing or functional testing, is another way
to look at software testing. In black box testing the software engineer views, not the
internals but instead the externals, of a given piece of software. The interface to the
black box and what the box returns and how it correlates to what the software engineer
expects it to return, is the essential corner stone in this methodology (Figure 1.3).

In the black box family several testing techniques do exist. They all disregard the
internal parts of the software and focus on how to pass different values into a black
box and check the output accordingly. The black box can, for example, consist of
a method, an object or a component. In the case of components, both Commercial-
Off-The-Shelf (COTS) [160] and ‘standard’ [88] components, can be tested with this
approach (further clarifications regarding the concept of components are introduced in
Subsection 1.2.4).

Since many components and applications are delivered in binary form today, a
software engineer does not usually have any choice but to use a black box technique.
Looking into the box is simply not a viable option, thus making black box testing
techniques useful in e.g. component-based development (CBD). In addition to that,
CBD’s approach regarding the usage of e.g. interfaces as the only way to give access to

2A silver bullet is according to myth the only way to slay a werewolf and in this case the faulty software
is the werewolf.
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Figure 1.4: Using boundary value analysis to test an integer.

a component, makes it particularly interesting to combine with a black box technique.
Worth mentioning here is the concept of intermediate representations of code

(e.g. byte code or the common intermediate language). By compiling code into an inter-
mediate form, certain software testing techniques can be easily applied which formerly
were very hard if not impossible to execute on the software’s binary manifestation (this
concept is further covered in Chapter 10).

As mentioned previously, there exist several techniques within the black box family.
An old, but nevertheless still valid, collection of basic black box techniques can be
found in [204]. What follows next is a list of the most common techniques and a short
explanation of each.

• Boundary value analysis.

• Cause-effect graphing.

• Random testing.

• Partition testing (several sub-techniques exist in this field).

Boundary value analysis (BVA) is built upon the assumption that many, if not most,
faults can be found around boundary conditions, i.e. boundary values. BVA has showed
good results [244] and is today considered to be a straightforward and relatively cheap
way to find faults. As this thesis shows (Chapter 2), BVA is among the most commonly
utilized black box techniques in industry.

In Figure 1.4 an example is shown on how a simple integer could be tested (note
however that these numbers only apply to today’s PCs). In other words, by testing
the various boundary values a test engineer can uncover many faults that could lead to
overflows and usually, in addition to that, incorrect exception handling.

Cause-effect graphing [22, 204], attempts to solve the the problem of multiple
faults in software (see multiple fault assumption theory, pp. 97–101 in [146], for an
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Figure 1.5: Random testing using an oracle.

exhaustive explanation). This theory is built upon the belief that combinations of in-
puts can cause failures in software, thus the multiple fault assumption uses the Carte-
sian product to cover all combination of inputs, often leading to a high yield set of test
cases.

A software test engineer usually performs a variant of the following steps when
creating test cases according to the cause-effect graphing technique [204, 213, 221]:

1. Divide specification into small pieces (also known as the divide and conquer
principle).

2. List all causes (input classes) and all effects (output classes).

3. Link causes to effects using a Boolean graph.

4. Describe combinations of causes/effects that are impossible.

5. Convert the graph to a table.

6. Create test cases from the columns in the table.

Random testing [122], is a technique that tests software using random input (Fig-
ure 1.5). By using random input (often generating massive number of inputs) and
comparing the output with a known correct answer, the software is checked against its
specification. This test technique can be used when e.g. the complexity of the software
makes it impossible to test every possible combination. Another advantage is that a
non-human oracle [81], if available, makes the whole test procedure—creating the test
cases, executing them and checking the correct answer—fairly easy to automate. But,
as is indicated by this thesis, having a constructed oracle ready to use is seldom an op-
tion in most software engineering problems. In one way or another, an oracle needs to
be constructed manually or semi-automatically (in Chapter 8 a discussion regarding the
generation of oracles, whether manual, automatic or semi-automatic, is to be found).
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Partition testing [45, 144, 296], equivalence class testing or equivalence partition-
ing, is a technique that tries to accomplish mainly two things. To begin with, a test
engineer might want to have a sense of complete testing. This is something that par-
tition testing can provide, if one takes the word ‘sense’ into consideration, by testing
part of the input space.

Second, partition testing strives at avoiding redundancy. By simply testing a
method with one input instead of millions of inputs a lot of redundancy can be avoided.

The idea behind partition testing is that by dividing the input space into partitions,
and then test one value in that partition, it would lead to the same result as testing all
values in the partition. In addition to that, test engineers usually make a distinction
between single or multiple fault assumptions, i.e. that a combination of inputs can
uncover a fault.

But can one really be assured that the partitioning was performed in the right way?
As we will see, Chapter 6 touches on this issue.

After have covered white and black box techniques, which software testing tradi-
tionally has been divided into, one question still lingers. . . What about the gray areas
and other techniques, tools and frameworks that does not nicely fit into the strict divi-
sion of white and black boxes?

ON COMBINATIONS, FORMALITY AND INVARIANTS

Strictly categorizing different areas, issues or subjects always leaves room for entities
not being covered, in part or in whole, by such a categorization (the difficulty when
trying to accomplish a categorization is illustrated in Chapter 8). As such, this section
will cover research which is somewhat outside the scope of how software testing is
divided into black and white boxes. After all, the traditional view was introduced in
the 60’s and further enforced in the late 70’s by Myers [204], so one would expect
things to change.

In this section combinations of white box and black box techniques will be covered
(combinations of different testing techniques within one research area, such as black
box testing, is partly covered in Chapters 5 and 6). Furthermore, formal methods for
software testing will be introduced and an introduction to how test data generation
research has evolved lately, will be covered.

First the concept of horizontal and vertical combinations will be introduced. A
horizontal combination, in the context of this thesis, is defined as being a combination
wherein several techniques act on the same level of scale and granularity. For example,
combining several black and/or white box techniques for unit testing, is by us seen as
a horizontal combination. On the other hand, combining several techniques on differ-
ent scale or granularity, e.g. combining a unit testing technique with a system testing
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technique (c.f. Figure 1.6 on page 13), is by us considered to be a vertical combination.
Now why is it important to make this distinction? First, in our opinion, combi-

nations will become more common (and has already started to show more in research
papers the last decade). While the horizontal approach is partly covered in this thesis
(see especially Chapter 6 and in addition e.g. [151]) the vertical approach is not. Differ-
ent vertical approaches have the last years starting to show up, see e.g. [134, 270, 285],
and more research will most likely take place in the future.

Formal methods [1, 5, 35] is not a subject directly covered by this thesis (but formal
methods in software testing is on the other hand not easily fit into a black or white box
and hence tended for here). Using formal methods an engineer start by, not writing
code, but instead coupling logical symbols which represents the systems they want to
develop. The collection of symbols can then, with the help of e.g. set theory and predi-
cate logic, be [253]: “checked to verify that they form logically correct statements.” In
our opinion, formal methods is the most untainted form of Test Driven Development
(TDD) [19] and can lead to good results (Praxis High Integrity Systems claim one error
in 10, 000 lines of delivered code [253]). On the other hand, there are problems that
need to be solved in the case of formal methods. First, does formal methods really
scale? In [253] Ross mentions a system containing 200, 000 lines of code, which is
not considered to be sufficient for many types of projects. Second, to what extent are
formal methods automated? In our opinion, more or less, not at all. The generation of
the actual software item is automatic, but the generation needs specifications which are
considered to be very cumbersome to write.

Finally, with respect to test data generation, a few new contributions have lately
been published which has affected this thesis and most likely can have an impact on
software testing of object-oriented systems by large in the future [84, 126, 219, 230] (in
addition it is hard to categorize these contributions following a traditional view). Ernst
et al. and Lam et al. has lately focused on generating likely invariants in object-oriented
systems. A likely invariant is, to quote Ernst et al. [230]:

. . . a program analysis that generalizes over observed values to hypothesize
program properties.

In other words, by collecting runtime data, an analysis can be performed where
the properties of these values can be calculated to a certain degree (compare this to
Claessen’s et al. work on QuickCheck [53] where they formally set properties before-
hand). By executing a software item, an engineer will be able to, to put it bluntly,
generate ∆-values of an existing system being developed.

As an example, suppose a software executes a method twice; with the integer input
value 1 the first time, and 5 the second time. ∆ in this case (when accounting for the
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boundaries) are the values 1, 2, 3, 4, 5, i.e. we have input values (or likely invariants)
for the values 1 and 5. Even though this is a very simple example it might give the
reader an idea of the concept (using the definition of ∆, as is done in the example, is
not always this straightforward in real life).

The contributions regarding likely invariants by Ernst et al. and Lam et al. is decid-
edly interesting for two reasons. First, they can generate likely invariants for complex
types. Second, by having likely invariants a fully automated approach can be reached
(an engineer does not need to formally define properties in advance). In other words,
a fully automated approach for testing object-oriented, imperative, software systems
might be realizable.

1.2.3 AIMS AND LEVELS OF TESTING
In the previous section several methods and techniques, for testing software, were cov-
ered. In this subsection an overview of, and some examples on, the different views of
testing are given, thus providing an introduction to and understanding of the various
aims that testing can adhere to.

The attentive reader might have noticed that the previous sections did not cover
the concepts of static [44, 203] and dynamic [24] analysis. This is rightly so since in
this thesis these concepts are not viewed as testing techniques themselves, but rather as
supporting techniques that can be used for testing software. These two techniques ap-
proach software analysis in two different ways. In static analysis an engineer does not
actually run the program while in dynamic analysis, data regarding the software behav-
ior is collected during run-time. Some of the techniques that can be used in dynamic
analysis are profilers, assertion checking and run-time instrumentation (Chapter 10),
while static analysis uses tools, such as source code analyzers, for collecting different
types of metrics. This data can then be used for e.g. detecting memory leaks [129] or
invalid pointers [179].

Apart from the above two concepts (dynamic and static) a system can, in addition,
be seen as a hierarchy of parts, e.g. sub-systems/components, objects, functions and a
particular line of code. Since a system or a piece of software can be rather large; testing
small parts initially and then continuously climb up the pyramid, would make it pos-
sible to achieve a reasonably good test coverage on the software as a whole, without
getting lost in the complexity that software can exhibit.

In [267] an example of a five-stage testing process is given, which is illustrated in
Figure 1.6 (next page). It is important to keep in mind that this is only one example and
usually a software testing process varies depending on several outside factors. Never-
theless, software testing processes as used today, often follow a bottom-up approach,
i.e. starting with the smallest parts and testing larger and larger parts, while the soft-
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Figure 1.6: Bare-bone example of a testing process taken from [267].

ware evolves accordingly (see [107, 171] for an overview of some of the most common
evolutionary software development approaches).

Each and every stage in Figure 1.6 can be further expanded or completely replaced
with other test stages, all depending on what the aim is in performing the tests. Nev-
ertheless, the overall aim of all test procedures is of course to find run-time failures,
faults in the code or, generally speaking, deviations from the specification at hand.
However, there exists several test procedures that especially stress a particular feature,
functionality or granularity of the software:

• System functional testing.

• Integration testing.

• Regression testing.

• Load testing.

• Performance testing.

• Stress testing.

• Security testing.

• Installation testing.

• Usability testing.

• Stability testing.

• Authorization testing.

• Customer acceptance testing.

• Deployment testing.
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In the end, it might be more suitable to use the word ‘aspect’ when describing the
different test procedures. The phrase aspect-oriented testing illustrates in a better way,
in the author’s opinion, that a software test engineer is dealing with different aspects of
the same software item.

1.2.4 TESTING IN OUR RESEARCH

This thesis focuses on the black box concept of software testing. Unfortunately the
world is neither black nor white—a lot of gray areas do exist in research as they do in
real life. To this end, the last part of this thesis takes into account the possibility to look
‘inside’ a software item. The software item, in this particular case, is represented in
an intermediate language and thus suitable for reading and manipulating. Intermediate
representations of source code is nowadays wide-spread (the notion of components is
supported very much indeed by the the intermediate representations) and used by the
Java Virtual Machine [177] and the Common Language Runtime [141].

Indeed, the main reason for taking this approach is the view on software in general.
We believe that Component-Based Software Engineering (CBSE) and Component-
Based Development (CBD) [88, 160] will increase in usage in the years to come.

Since the word component can be used to describe many different entities a clar-
ification might be appropriate (for a view on how completely differently researchers
view the concept of components please compare [34, 39, 192, 273]). Components, in
the context of this thesis, is [88]:

[. . . ] a self-describing, reusable program, packaged as a single binary unit,
accessible through properties, methods and events.

In the context of this thesis, the word self-describing should implicitly mean that
the test cases, which a component once has passed, need to accompany the component
throughout its distribution life-time (preferably inside the component). This is seldom
the case today. The word binary, on the other hand, indicates that a white box approach,
even though not impossible, would be somewhat cumbersome to use on a shipped
component—this is not the case as this thesis will show (in Chapter 10 a technique is
introduced wherein a white box approach is applied on already shipped components).

Finally, all software, as used in this thesis, is based on the imperative programming
paradigm (whether object-oriented or structured) [235] and can be considered as ‘real
life’ software (and not small and delimited examples constructed beforehand to suite a
particular purpose).

14



Introduction

1.3 RESEARCH QUESTIONS
During the work on this thesis several research questions were formulated which the
research then was based upon. The initial main research question that was posed for
the complete research in this thesis was:

Main Research Question: How can software testing be performed effi-
ciently and effectively especially in the context of small- and medium-
sized enterprises?

To be able to address the main research question several other research questions
needed to be answered first (RQ2–RQ10). In Figure 1.7 (next page) the different re-
search questions and how they relate to each other are depicted.

The first question that needed an answer, after the main research question was for-
mulated, was:

RQ2: What is the current practice concerning software testing and reuse
in small- and medium-sized projects?

Simply put, the main research question might have been a question of no relevance.
Thus, since this thesis is based upon the main research question, it was worthwhile
taking the time to examine the current practice in different projects and see how soft-
ware reuse and, especially, software testing was practiced. The answer to this research
question is to be found in Chapter 2 together with an analysis of how software testing
is used in different types of projects. To put it short, the answer to RQ2 divided the
research, as presented in this thesis, into two areas covering effectiveness in software
testing techniques and efficiency in software testing (for a discussion regarding effec-
tiveness and efficiency, in addition to a formal definition of these words, please see
Chapter 6, Definitions 6.1–6.2). To begin with, the research aimed at exploring the fac-
tor of effectiveness (RQ3–RQ6) while later focusing on efficiency and the automated
aspects of software testing (RQ7–RQ10).

In order to examine if the current practice in software development projects was
satisfactory for developing software with sufficient quality, RQ3 evolved into:

RQ3: Is the current practice, within software development projects, suffi-
cient for testing software items?

The answer to RQ3 is to be found in Chapter 3, and provides us with meager read-
ing with respect to the current practice in software projects. Additionally, the answer
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Figure 1.7: Relationship between different research questions in this thesis.

16



Introduction

to RQ3 indicated that the answer to RQ2 was correct (regarding the poor status of soft-
ware testing in many software development projects) and so, in addition, further shows
the importance of the main research question.

Since a foundation for further research now had been established several research
questions could be posed which in the end would help in answering the main research
question.

RQ4: How can a traditional software testing technique (such as random
testing) be improved for the sake of effectiveness?

The answer to RQ4 can be found in Chapter 4 which introduces new kinds of
quality estimations for random testing and hence indirectly led to Research Question
5:

RQ5: How do different traditional software testing techniques compare
with respect to effectiveness?

The answer to RQ5 can be found in Chapter 5 which compares different traditional
software testing techniques. The comparison in RQ5 eventually led to the question of
combining different testing techniques:

RQ6: What is the potential in combining different software testing tech-
niques with respect to effectiveness (and to some extent efficiency)?

At this stage in this thesis, the focus turns away from the factor of effectiveness and
a full emphasis is put on the issue of efficiency. Since RQ2 indicated that there existed
a shortage of resources for projects one of the conclusions was that software testing
techniques not only need to be better at finding faults, but more importantly need to
be automated to a higher degree and thus, in the long run, save time for the process’
stake-holders.

Thus the following question was posed:

RQ7: What is the current situation with respect to automated software test-
ing research and development?

The answer to RQ7 gave an approximate view of the status of automated software
testing, but nevertheless was hard to formalize in detail due to the complexity of the
research area and the share amount of contributions found. To this end, a model was
developed which was able to formalize the area of software testing focusing, in the case
of this thesis, especially on automated aspects:
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RQ8: How can the area of software testing and its aspects be formalized
further for the sake of theoretical classification and comparison?

The model with its accompanying definitions (as presented in Chapter 8) which
partly is an answer to RQ8, was then used to classify, compare and elaborate on differ-
ent techniques and tools:

RQ9: How should desiderata of a future framework be expressed to fulfill
the aim of automated software testing, and to what degree do techniques,
tools and frameworks fulfill desiderata at present?

Finally, the last part of this thesis (Chapter 10) focuses on the last research question:

RQ10: How can desiderata (as presented in RQ9) be implemented?

Chapter 10 provides research results from implementing a framework for auto-
mated object message pattern extraction and analysis. Research Question 10, indi-
rectly, provided an opportunity to: a) examine the possible existence of object message
patterns in object-oriented software and, b) show how object message pattern analysis
(from automatically instrumented applications) can be used for creating test cases.

Before any work on solving a particular research questions starts (a research ques-
tion is basically a formalization of a particular problem that needs to be solved) a
researcher needs to look at how the problem should be solved. To be able to do this,
one must choose a research methodology.

1.4 RESEARCH METHODOLOGY
First of all, the research presented in this thesis aimed at using examples in the em-
pirical evaluations which were used in industry, especially among small- and medium-
sized projects. This, mainly because the research performed will hopefully, in the end,
be used in this context. In addition to that, the academic community has endured some
criticism for using e.g. simple ‘toy’ software, when trying to empirically validate theo-
ries.

Furthermore, the research as presented in this thesis always tried to have an empiri-
cal foundation, even when a theoretical model was developed as in Chapter 8. To focus
on the theory only and disregard an empirical evaluation would be, for our purposes,
meaningless, especially so when the previous paragraph is taken into consideration.
Empirical evaluations, of some sort, were always used as a way to investigate if a cer-
tain theory could meet empirical conditions, hence each step in this thesis was always
evaluated.
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Initially, in this thesis (see Chapter 2), a qualitative approach was used with some
additional quantitative elements (see [14] and [275] respectively). The results from
Chapter 2 led us to the conclusion that more must be done by primarily, trying to
improve current testing techniques and secondarily, looking at the possibilities at au-
tomating one or more of these techniques.

To this end, an exploratory study [198] (Chapter 3) was set up where a reusable
component was tested in a straightforward way. The aim was to try to show that even
basic testing techniques, e.g. unit testing, can uncover faults in software that had been
reused and reviewed by developers. At the same time the study gave some indication
on the validity of the various aspects of the survey in Chapter 2.

The survey and the exploratory study provided indications that some areas could
benefit from some additional research. Thus the following work was conducted:

• An improvement in how a software engineer might use random testing (Chap-
ter 4), hence combining it with other statistical tools.

• A comparative study (Chapter 5) between two black box techniques, i.e. partition
and random testing, giving an indication of the pros and cons of the respective
techniques.

The research on improvements, with respect to random testing (Chapter 4), was per-
formed using theoretical constructions which later were empirically evaluated, while
the comparative study, in Chapter 5, was implemented by empirically evaluating a soft-
ware item already used by industry. The methodology used in this chapter is common
in software engineering research and described in e.g. [229].

Next, in Chapter 6, an empirical evaluation was performed where the following
issues were researched:

• Strengths and weaknesses of different testing techniques.

• Combination of different testing techniques.

In the case of Chapter 6, the same type of research methodology was used, as
in Chapter 5, but with the addition that the focus was on researching the improved
effectiveness of combining several testing techniques.

Chapter 7 is a ‘classic’ literature study whereas a rigorous methodology is applied
for the purpose of outlining automated software testing research. It is appropriate to
mention here that the literature study in no way claims to be exhaustive (being exhaus-
tive in this context would most likely require a thesis of its own) but instead attempts
to take into account the significant areas of interest.
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Figure 1.8: Methodologies used in this thesis. The numbers in each diamond corre-
sponds to the chapter numbers in this thesis.

Chapter 8 has a theoretical foundation which is then strengthened via an empirical
evaluation. The model, which is introduced in Chapter 8 is used to compare, classify
and elaborate on different automated software techniques and then further, empirically,
strengthened by the survey in Chapter 9 whereas certain aspects of the model is exten-
sively used.

Finally, in Chapter 10, a case study is conducted where a framework is developed
and used on different software items with the aim to extract software testing patterns
automatically.

Figure 1.8 provides a rudimentary view of the methodologies as used in this thesis.

1.5 RELATED WORK

Before covering the contributions of this thesis related work will be presented in two
parts. To begin with, the most relevant related work covering each individual chapter
(Chapters 2–10) will be presented. Finally, related work for this thesis as a whole will
be covered.
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1.5.1 RELATED WORK FOR INDIVIDUAL CHAPTERS

To begin with, Chapter 2 of this thesis presents a survey. Surveys are performed in
software industry on a regular basis (a few on quarterly or annual basis). Related work
for this chapter focused on two areas: surveys conducted in industry and open source
development. As a consequence two surveys were found to be of particular importance
apropos this chapter. First, The Standish Group International’s CHAOS reports (all
reports can be found here [279]) which focuses on quarterly and annual investigations
of the software industry examining trends in e.g. project failures, development costs,
project management, outsourcing, etc. and second, the FLOSS reports [139], which
solely focus on open source and free software issues. Unfortunately, at the time of
writing Chapter 2 (2002), no study could be found regarding software testing in small-
and medium-sized enterprises and open source environments, hence leading to the con-
clusion to conduct a survey on our own.

Related work for Chapter 3 is summed up mainly by three contributions. To be-
gin with, Parnas and Clements’ [226] work on stage-wise evaluation of software was
considered to be of interest since one of the intentions with the exploratory study, per-
formed in Chapter 3, was to show that the developers relinquished from Parnas and
Clements’ conclusions, hence indicating that further help was needed in the area of
software testing. The second piece of related work, relevant for Chapter 3, was Rosen-
blum’s [252] work on “adequate testing”. Chapter 3 clearly indicates that the concept
of “adequate testing” is hard to follow and the results can be inauspicious, i.e. the de-
velopers did not abide by Rosenblum’s conclusion that more should be tested earlier.
Finally, this leads inevitably to Boehm’s [29] conclusion that the longer a fault stays in
a software system the more expensive it is to remove.

Next, related work for Chapter 4 is covered by several contributions dealing with
the issue of to what extent a test can be trusted. Frankl’s et al. contribution on evaluating
testing techniques (directly connected to the issue of reliability) [103] and Williams,
Mercer, Mucha and Kapur’s work on examining code coverage issues [299], albeit
theoretical, should be considered related work to this chapter. In addition Hamlet’s
many contributions on random testing, dependability and reliability [120, 121, 122,
123, 124] is of interest to this chapter due to its close correspondence to the subject
studied.

Chapter 5, presents a comparative study of different black box techniques and ex-
amines work done by Ntafos [211] (a theoretical comparison of partition and random
testing) and Reid’s contribution [244] (an empirical study comparing several different
test methodologies). Related work for Chapter 6, which presents research aimed at ex-
amining effectiveness issues in combining testing techniques, can equally be summed
up by the previously mentioned contributions, but in addition contributions by Boland
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et al. [32] and Gutjahr [119] is of interest (they conclude that the picture regarding
combinations of testing techniques is substantially complex).

In Chapter 7 a literature study is presented embodying many references in the field
of software testing and the automated aspects thereof. Since no such literature study
was known to the author (disregarding the automated aspects a few surveys can be
found in the area of test data and test case generation, e.g. see [78] and [234] respec-
tively) the focus on related work can in this aspect be summed up, to some extent,
by contributions covering the aspects on how to perform said studies. In this respect
Kitchenham, Dybå and Jørgensen’s paper on Evidence-Based Software Engineering is
relevant since they detail precisely how such a study should be performed (e.g. justify-
ing the method of search while discussing the risks associated with the search method).

Chapters 8 and 9 are closely connected to the question of classifying and comparing
different software testing techniques, tools and methods. Related work for these chap-
ters is the ISO 9126 standard [140] which covers, in some aspects rigorously, certain
quality aspects of software. In addition Parasuraman’s and Sheridan’s contributions on
automatization aspects in human-system interaction—albeit not with a software testing
focus—is very much interesting and closely connected to the geist of Chapters 8 and 9.
In the chapter covering future work (Chapter 11) we once again touch on the issues
that Parasuraman and Sheridan have spent time on researching.

Obviously, Fewster and Graham’s [93], Kaner, Falk and Nguyen’s [150], Pos-
ton’s [233], Jorgensen’s [146] and Sommerville’s [267] more traditional and ‘simplis-
tic’ views on certain aspects of software testing lays as a foundation to Chapters 8
and 9. It goes without saying that the work of these researchers provides a foundation
to this thesis.

Finally, Chapter 10, combines related work mainly from three areas. First, the
concept of patterns in object-oriented software is covered by e.g. [27, 62, 97, 167].
Nevertheless, as the reader will notice, the word pattern has a slightly different mean-
ing in Chapter 10, compared to how the authors of these publications use it. Second,
related work by Ernst et al. [84, 219, 230] and Lam et al. [126] are closely connected
to our work. Nevertheless, their work focuses very much on a concept called likely
invariants (further discussed below and in Chapters 9–10), while Chapter 10 on the
other hand focuses on pattern analysis, which then can be used in combination with
their contributions. Third, Lewis’ work on the omniscient debugger [174] follows the
same principle Chapter 10 tries to adhere to, i.e. see-all-hear-all.

In the end, related work for Chapter 10, is favorable represented by Claessen and
Hughes’ QuickCheck [53], Koopman’s et al. work on Gast [157] and Godefroid’s et
al. paper on DART [111].

The contributions concerning QuickCheck and Gast are interesting in that they
accomplish automation in software testing by means of formulating properties to be
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obeyed during testing. Unfortunately, both contributions focus very much on declara-
tive languages (i.e. Haskell3 in this case) and thus leave imperative languages to fend
for themselves.

Godefroid’s et al. contribution, on the other hand, is interesting in that they focus
on static source code parsing of imperative languages (Chapter 10 presents a dynamic
approach) and scalar values (Chapter 10 focuses on ‘real life’ applications with com-
plex data types). In addition, DART is not by us considered to be automatic to the
extent which this thesis strives at, thus leading to the next subsection.

1.5.2 RELATED WORK FOR THE THESIS

In this subsection related work covering this thesis as a whole is presented. To begin
with, a few books will be presented and the subsection ends by presenting references
such as research papers and theses. It goes without saying that finding a thesis which is
exactly the same would be pointless—after all a thesis should be unique—nevertheless,
in this subsection several references are covered which in part are aiming at solving or
researching the same issues as this thesis tries to.

There exist many books covering the area of software testing. Unfortunately very
few look at automated software testing. Despite that, two books are worth mentioning
in this context which at least try to look into these issues. First a book by Fewster and
Graham titled Software Test Automation: Effective Use of Test Execution Tools [94] and
second a book by Dustin, Rashka and Paul—Automated Software Testing: Introduction,
Management, and Performance [73]. Unfortunately, even though these two books are
excellent in what they try to accomplish, they still try to accomplish the wrong thing
for the purpose of this thesis. Both books cover software testing very much from a
project/process perspective (even from the project manager perspective). Alas, leading
us to research papers and theses.

Looking at research papers, there are especially three contributions that are closely
related to the purpose of this thesis. First, Godefroid’s et al. contribution on directed
automated random testing [111], second, Yuan and Xie’s work on Substra [308], and
finally, Kropp’s et al. contribution on robustness testing of components [162]. Gode-
froid’s et al. work on DART is examined in Chapter 10, while Kropp’s et al. contribu-
tion is covered in Chapters 7–9. Yuan and Xie’s work on Substra is on the other hand
not covered by any chapter in this thesis due to the novelty of their work. Substra is
a framework which focuses on automatic integration testing of software (thus falling
somewhat outside the scope of this thesis), and have a refreshing view on how one can
assemble several testing process steps in one and the same framework (very much in

3http://www.haskell.org
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the same spirit as the framework presented in Chapter 10).
Finally, with respect to theses, especially two are worth mentioning in this con-

text. Xie’s thesis titled Improving Effectiveness of Automated Software Testing in the
Absence of Specifications [303] and Meudec’s eminent thesis Automatic Generation of
Software Test Cases from Formal Specifications [191]. Even though Meudec’s thesis
has a slightly different focus than this thesis (focusing on formal specifications) the
spirit is the same—automation. Xie’s contribution on the other hand has the same aim
as this thesis but unfortunately focuses on generating many test cases and then trying
to select the ‘right’ one from this population—the automatization benefit with this ap-
proach is highly questionable since it would imply that a human being must participate
actively in the test process on all levels (which is evident by examining [303]).

1.6 CONTRIBUTIONS OF THESIS
First, this thesis presents research on the current usage of different testing techniques
in industry today, with a focus on small- and medium-sized enterprises. In addition
to that some black box techniques are theoretically extended while at the same time
being evaluated empirically. Special consideration is placed upon the future goal of
automatically creating and executing different types of software testing techniques.

Second, a formal model with accompanying definitions, for classifying, compar-
ing and elaborating on software testing and the automated aspects thereof is presented
and validated in this thesis. The model is used for classifying several techniques and,
in addition, desiderata concerning an automated software testing framework is devel-
oped with the help of the model. The framework is implemented and validated against
several ‘real life’ software items of considerable size.

Thus, the main contributions of this thesis are (in no particular order):

• A view of the current state of practice in industry.

• A formal model for classifying software testing and the automated aspects thereof.

• A framework for supporting automated object message pattern analysis with the
possibility to create test cases.

• Empirical evaluations of several black box techniques.

By looking at the testing techniques in use today, improvements could in the end
be made, by:

• Improving different techniques’ effectiveness even more.
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Figure 1.9: Research areas this thesis covers. The dashed line indicates a weak con-
nection.

• Combining several techniques, thus reaching an even higher effectiveness and/or
efficiency.

• Creating test cases and test suites automatically and/or semi-automatically by
adapting the proposed framework.

• Using the proposed model to classify and compare software testing tools when
needed, i.e. in industry to buy the right tool, or for researchers when comparing
different tools for the sake of research.

For a general overview of the areas this thesis is assembled around please see Fig-
ure 1.9.

1.7 OUTLINE OF THESIS
In Chapter 2, the results from a survey are presented and analyzed. The survey gives
the reader an overview concerning the state of practice among software developers
and companies. In addition to that, the survey acts as a pointer to different areas and
techniques, within the main area of software testing, that are either overlooked or too
cumbersome to use today.

Chapter 3 gives an overview on what software testing really means when it comes
to software reliability. For example, what types of faults can be found in a component
that is already being reused? In addition, the findings in Chapter 2 are found to hold
true. Chapters 4 and 5 focus on extending and improving the usage of random testing
and partition testing. While Chapter 6 focuses on investigating the combinations of
different testing techniques, i.e. partition and random testing.

Chapters 7 and 8 present research covering the development of a formal model
with its accompanying definitions. The model is then applied on a number of cases
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and desiderata is developed in Chapter 9. Chapter 10 focuses on implementing the
desiderata and presents a framework for object message pattern analysis. The last
chapter, Chapter 11, contains a summary and conclusion of this thesis as a whole and
in addition points out some future research issues which are of interest.

1.8 PAPERS INCLUDED IN THESIS
Chapter 2 is based on an research paper—A Survey on Testing and Reuse—published
in the proceedings of the IEEE International Conference on Software—Science, Tech-
nology & Engineering (SwSTE’03). The survey in Chapter 2 was conducted during the
year 2002.

Chapters 3 and 4 were originally published in the proceedings of the 14th Inter-
national Symposium on Software Reliability Engineering (ISSRE 2003). The research
presented in these chapters was done in the years 2002 and (early) 2003. The title of
the former chapter, when published, was An Exploratory Study of Component Reliabil-
ity Using Unit Testing, while the latter was titled New Quality Estimations in Random
Testing.

Chapter 5 was originally published in the proceedings of the Swedish Conference
on Software Engineering Research and Practice (SERPS’03) titled Fault Finding Effec-
tiveness in Common Black Box Testing Techniques: a Comparative Study, while Chap-
ter 6 has recently (early 2006) been published in the proceedings of the The IASTED
International Conference on Software Engineering (SE 2006).

Chapter 7 was published as a technical report (S-CORE 0501) in 2005 [281]—now
pending submission.

Chapters 8 and 9 were written during the latter part of 2004 up until 2005/2006.
Chapter 8 has been submitted to the journal Software Testing, Verification and Relia-
bility while Chapter 9 has been submitted to The Journal of Systems and Software. In
addition, Chapter 9 has been rewritten in part to better be in line with Chapter 8 and a
revision has been sent to the editors. Chapter 10 has been submitted to the Automated
Software Engineering Journal.

Several of these chapters have beforehand been published as earlier versions at the
Conference on Software Engineering Research and Practice in Sweden. In addition,
Chapters 2–6 have previously been published in a licentiate thesis titled Empirical
Studies of Software Black Box Testing Techniques: Evaluation and Comparison [280].

Moreover, an article entitled Bringing the Monkey to the iPAQ was published, to-
gether with Malte Hildingson, in the August issue (2003) of .NET Developer’s Journal
covering application development on alternative frameworks in handhelds.

Richard Torkar is first author of all chapters except Chapter 4 (a first author has the
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main responsibility for the idea, implementation, conclusion and composition of the
results). Chapter 4 was written together with Dr. Stefan Mankefors-Christiernin and
Andreas Boklund. Richard Torkar was involved in the setup of the experiment as well
as investigating and drawing conclusions on the empirical part. He also took part in the
theoretical discussions and in writing the paper.

In Chapter 3, Krister Hansson and Andreas Jonsson were co-authors, while Dr. Ste-
fan Mankefors-Christiernin is co-author of all chapters in this thesis except for Chap-
ters 7 and 10. Finally, Dr. Robert Feldt is co-author of Chapters 8 and 9.
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Chapter 2

A Survey on Testing and Reuse

Originally published in Proceedings
of the IEEE International Conference
on Software—Science, Technology &
Engineering (SwSTE’03)

R. Torkar &
S. Mankefors-Christiernin

2.1 INTRODUCTION
Software engineering today needs best practices and tools to support developers to de-
velop software that is as fault free as possible. Many tools and methods exist today but
the question is if and how they are used and more importantly in which circumstances
they are (not) used and why. This survey provides an account of what type of trends ex-
ist today in software reuse and testing. The focus was to try to find out how developers
use different tools today and what tools are lacking, especially in the field of reuse and
testing. The population came from different types of communities and organizations,
to better give us a generalized picture of today’s developers.

A few surveys in this field, e.g. The CHAOS report by The Standish Group [279]
which covers software failures in industry and recently (Aug. 2002) the FLOSS sur-
vey by International Institute of Infonomics, University of Maastricht, The Nether-
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lands [139], which is a survey/study about developers in the open source [218] and free
software [110] world, do exist. But they either focus on a specific population, with its
advantages and disadvantages or cover the result of not testing ones software enough.

We believe that there is a need for a more integrated test methodology together
with the traditional configuration management process in order to improve the current
situation. This chapter covers a survey that took place during late 2002, with the aim to
answer some of the questions our research team had with respect to testing and reuse,
two areas not usually covered very well in surveys. We wanted to know to what extent
reuse was taking place and how frequently (reused) code was being tested.

In our survey we asked software developers from several companies, both national
(Swedish and American) and multinational, as well as open source developers from
several projects about what type of problems they faced daily in their work. Not sur-
prisingly the answers varied, but many developers gave us the same basic feedback—
the systems designed today are complex and the tools for creating these systems are
getting more and more complex as well. This indicated that software developers could,
among other things, benefit from more integrated and automated testing in today’s soft-
ware development projects.

Yet, other questions in this survey, focused on reuse and testing of re-usable com-
ponents and code. We wanted to know to what extent reuse was taking place today in
projects, how developers test this type of code and if they use some sort of certification.
Unfortunately, this [testing reused code] was uncommon among the developers in our
population.

All questions discussed in this chapter can be found in Appendix A (pp. 209–216).

2.1.1 BACKGROUND

Many texts today exist concerning the area of testing. Testing Object-Oriented Systems
by Binder [27], The Art of Software Testing by Myers [204] and How to Break Soft-
ware by Whittaker [298] all give a good insight. For more information about testing—
especially unit testing—we recommend reading the IEEE Standard for Software Unit
Testing [138] and An Exploratory Study of Component Reliability Using Unit Testing
(Chapter 3).

Recently the International Institute of Infonomics at University of Maastricht in
the Netherlands [139] published a report (FLOSS) that covered a survey about open
source and free software in Europe. This study is interesting in many ways, especially
so since some of the questions in their survey touch the areas of software development
and software in general. Part IV and V of the FLOSS study [139] is partly being
compared to the survey that was carried out and described in this chapter.
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2.2 METHODOLOGY
The research upon which this chapter is based on, was done in five separate phases. The
first phase was to gather good candidate questions that we considered important. The
second phase consisted of selecting the questions that were of most interest (unfortu-
nately very few developers want to answer 350 questions). The third phase consisted of
selecting the population to use for the survey, and finally in the two last phases we es-
tablished how the questions should be asked and answered and put together additional
questions that were not asked in the first questioning round.

The research method we followed during this research was a survey approach [14].
We wanted to conduct a survey that would point out areas that software developers
found especially weak and in need of attention. We used empirical inquiries from
slightly different populations (open source vs. business) to better examine reuse and
testing in today’s software projects.

One of the disadvantages of a survey is its time factor. It takes time to prepare and
it steals time from the population answering the researcher’s questions. Gaining access
to different company employees, to answer our questions, proved to be the greatest
obstacle during this research project.

Another threat to a survey can be the relationship between the questioner and re-
spondent, in our case we estimated this to non-significant as explained later.

Since this survey aimed at explaining to what extent and how, reuse and testing was
used today, we chose different organizations and type of developers. The main reason
for this was that we wanted to make sure the problems we saw when analyzing the
answers were in fact problems that more or less all developers—regardless of company
or project—found in their daily work.

Since time was a critical factor it meant that a qualitative approach, e.g. interview,
was out of the question. The geographic distribution of the population also indicated
that we should not use a qualitative approach, even though telephones etc. can be used.
A quantitative approach was also considered to be the best method, in our case, to
more easily draw conclusions in a statistical manner. One must, however, add that a
qualitative method probably would have given us a richer set of data on which to base
our conclusions upon.

By following the advice in [14, 307] concerning pretests, a first testing round was
carried out with four developers participating. Thus we could be relatively confident
the questions were of the right type and properly formulated.

The survey used self-administered questionnaires [14], with the addition to a web-
based approach. This, in combination with our quantitative approach, made us sure
that we did not influence our respondents in any way.

The total number of developers contributing to the survey, during late 2002, was
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91 (a further four developers were asked but had no time to participate). Of these 91
developers approximately 43% were from the open source and free software devel-
opment community and 57% from three different companies; one multinational (ap-
prox. 100, 000 employees), and two national; one Swedish (approx. 20 employees)
and one American with approximately 100 employees. All respondents were either
business contacts which have been gathered over time or companies participating in
adjacent research projects.

When the survey finished, the answers were checked and if any ambiguous answers
were found, the survey participant was contacted and additional questions were asked
in order to avoid misinterpretations.

It was stressed, at the introduction of the survey, that the respondent should answer
all questions with question number 4 in mind (Appendix A, page 209).

2.3 PRESENTATION

The results are presented in three categories which are discussed; one brief section with
general questions and two in-depth sections on reuse and testing. As mentioned previ-
ously, all the questions relevant to this chapter, are found in Appendix A (page 209).

The general questions cover areas such as which development environments or de-
velopment kits are being used, and the reuse category covers the area of component
and general code reuse with accompanying test procedures. Finally, the test category
covers questions that more specifically involve different test methodologies and best
practices.

2.4 RESULTS AND ANALYSIS

The results and the corresponding analysis is divided into three parts. First, general
questions as posed in the survey are covered. Second, questions regarding reuse in
software development are presented. Finally, questions formulated with the intent of
uncovering issues regarding software testing are attended to.

2.4.1 GENERAL QUESTIONS

Of the survey participants 55% had an educational level of M.Sc. or higher and only
15% had a high school education or lower. The former number differs from the FLOSS
study where only 37% had an educational level of M.Sc. or higher (question 1).
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Often 

Rarely

Never

Figure 2.1: Moving deadlines.

The above variance can be explained by two factors; our survey having a larger
degree of developers from the business world as opposed to the FLOSS study Part
IV [139] which only focused on open source/free software developers and the fact [139]
that open source developers are younger in general. This was confirmed in question
number three (Appendix A) which indicated that the population we used had a higher
average age (96% over the age of 21). These numbers could, simply put, mean that
we had a more mature population in the sense of working experience and educational
level.

One of the general questions covered the usage of large frameworks—when asked
about different development platforms, such as .NET [277], Enterprise Java [95] and
CORBA [33], the majority preferred Java and in some cases even CORBA as opposed
to .NET. The main reason was that developers felt .NET being too immature at the
moment (mid-2002). Even so the usage of .NET and CORBA was now equal with
∼ 25% each. More recent studies show .NET gaining even more momentum [86], and
there is a high probability that .NET will be used even more in the future since it is
backed by some major interests in industry (question 29).

The question “How often do you move deadlines in projects?” (question 11) clearly
showed one of the biggest issues in today’s software projects (Figure 2.1). The silver
bullet has undoubtedly not been found yet.

With 37% of the developers still moving deadlines often and 59% moving them
rarely there is still room for improvement. According to [279], 9% of the projects in
larger software companies are on-time and on-budget, in our case we have approxi-
mately 4% on-time.

Over 53% of the developers (question 17) claimed that the majority of the projects
they took part in encompassed more than 10, 000 lines of code. According to the
FLOSS study (Part V) [139] the mean value is 346, 403 bytes [of software source code]
in the average project. This indicates that the different communities correlate rather
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well.
As we have seen during the analysis of the general questions not much differs, from

other studies conducted in the area of software engineering. This could indicate that
we had gathered a good sample population that could answer question on reuse and
testing (reflecting the average developer), despite us having a smaller population than
the FLOSS study. We believe that the validity of the larger FLOSS study with its focus
on open source and free software can, in many ways, be generally applicable for the
business world.

2.4.2 REUSE

As mentioned previously, the amount of reuse in combination with testing was one
of two areas we wanted to focus on since we have not found any surveys covering
this area. Nevertheless, some of the surveys that at least touch this subject are [117]
and [201], but they either cover success and failure examples of reuse in small and
medium size enterprises or a particular feature [software repositories] of reuse. Another
paper [249] covers large enterprises which are considered to be successful in the area
of software reuse.

The developers were asked several questions with regard to reuse in software engi-
neering. Both component-based reuse and clean code reuse (i.e. cut and paste). Here
one could clearly see a distinction between open source developers and developers
from the business world. Almost 53% of the developers said that they usually had
some element of reuse in their projects (question 31). But sadly only five of these de-
velopers were from the business sector. One of the main reasons for this, we found out
when asking the respondents, was that consultants usually do not own the code—the
customer who pays for the work owns the code. This, naturally, makes it harder to
reuse code later on.

Only 36% of the developers actively search for code to be reused (question 15). The
low number is not strange when one considers that developers creating components
almost never certify them in any way (neither in-house or commercially, e.g. [96]).
Only 6% use some sort of certification on a regular basis (question 25).

When it comes to buying components the developers were asked if size or com-
plexity matters the most (questions 32-33), 26% of the developers were of the opinion
that size did not matter at all. The complexity aspect of reuse is what makes some de-
velopers see a great advantage. Unfortunately, most developers found that components
performing complex tasks were hard to find. The reason for this, many developers
claimed, is probably that these types of components usually contain business logic
made specifically for one company.
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2.4.3 TESTING

On the question if the developers tested their software, 52% answered yes and another
34% answered that they sometimes test their code (question 19). Unit testing is without
a doubt the most used test methodology with 78 out of 91 developers (question 20)
using it to some extent. Chapter 3 provides a good indication on the benefits of said
testing. Open source developers and developers from the business world test their code
equally according to our survey.

When asked about a unit testing example (question 21), which basically consisted
of a simple method, the most common approach (> 40% of the developers) tested
extreme values only, i.e. boundary value analysis [204]. A few developers (∼ 20%)
tested random values and almost a third of the developers did not test such a method
at all (> 30%). The concept of boundary testing seems to be known, both in industry
and in the open source world amongst developers, in general. Even though boundary
value analysis only catch some of the faults, it is still encouraging to see that at least
this basic test technique is being used, to some extent.

Most developers in this survey used some sort of a testing framework which they
themselves did not develop (questions 26-27). A majority of the developers testing
their code used some of the unit testing frameworks that exist today, most notably
some variant of JUnit [20].

As we showed previously only 4% of the projects the developers took part in were
on-time. Sadly these respondents usually did not test their software in any way but
instead waited for customer feedback as a form of quality assurance. On the other hand
60% of the developers claimed that Verification and Validation (V & V) was the first
thing that was neglected (question 36). This was mostly common in the business world,
unmistakably so since open source developers usually do not have such strict time
frames. Could this lead to higher quality in open source software? Some indications
exists that this might be the case [98, 245].

Almost 53% of our respondents stated that they had some element of reuse in their
code but only 34% of these 53% claimed that they tested the reused code in any way
(c.f. Figure 2.2) (questions 24 and 31).

The reason for this was primarily that they found writing test cases afterwards too
tedious. One developer said that while the component was not certified in any way the
developers creating it should have tested it. The same developer believed that testing
software was more or less unnecessary since customer feedback would give him that
advantage anyway.

One thing was consistent with all developers. They all wanted better tools for
writing tests cases, especially when the code had been written by someone else. Many
of them (∼ 75%) also felt that even though they had written test cases they could still
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Yes

No

Figure 2.2: Developers with elements of reuse in their projects that also test the reused
code.

not be certain that the tests were good enough (question 37). They, simply put, wanted
some statistics on how well their tests were written and how well they tested a given
method, class or code snippet (e.g. code coverage [299]).

Developers preferring Java had the highest element of testing in their work—this
could be explained by developers having the knowledge of JUnit [20] which is con-
sidered to be a mature unit testing framework (questions 26-27 and 29). The only dis-
crepancy to this was developers in the open source world, they used several different
frameworks [147, 212].

Most developers thought that unit testing was tedious and many times not worth
the time spent (“What is the main disadvantage with the test methodology you use?”;
question 38). As an alternative test methodology, they focused primarily on testing the
software under simulated circumstances as soon as possible e.g. a variation of accep-
tance testing [266]. We find this to be an alarming sign since unit testing is considered,
by many, as being the first vital step in the testing process. By neglecting unit tests
many, much harder to find, failures might emerge later on.

If we make a comparison between open source and business, we can see that open
source developers in general have a better knowledge of which type of frameworks
exist for software testing (question 27); they could, in general, mention several more
frameworks they used for covering their needs.

Furthermore, if we combine questions 4, 7-8, 10-11 and 34 it implicates, not sur-
prisingly, that developers in industry, in most cases, have less freedom, higher workload
and a lack of time. The lack of testing in combination with reuse could be explained by
developers claiming that V & V is the first thing being diminished in a project (question
36).
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2.5 DISCUSSION
Before we continue, it might be worth mentioning that, our survey had approximately
±5% of pure statistical errors, while the FLOSS study with its large number of par-
ticipants, probably ended up with a ±1% error margin. These numbers are to be con-
sidered worst case scenarios but, nevertheless, must be taken into consideration when
comparing results throughout this chapter. Even so, we find our numbers being more
representative for our purposes than the FLOSS study. We needed a broad population
with different backgrounds (business and open source), while the FLOSS study con-
centrated on open source/free software developers only—with no focus on reuse and
testing on the whole.

The results from this survey are in line with other surveys conducted before, when
comparing general questions. Some discrepancy exist which can largely be explained
by other surveys and studies having a larger contribution from the development com-
munity in terms of participation, as well as a different mix of business and open source.

Concerning testing we do not have much to compare with, this is one of the few
surveys as of now that have such a strong focus on testing and reuse. Some papers
cover some aspect of reuse, as already mentioned, while other [99] cover a combination
[quality and productivity].

Simple tools for developing software are still widely used. This is explained by the
respondents as being simpler to use while at the same time letting the developers keep
the control over their code (question 18). This might also indicate why developers find
it tedious to learn new test methodologies and tools—Keep It Simple, Stupid (KISS)—
is still very much viable in today’s projects. It gives us a hint that whatever tools, that
are introduced to developers, must be kept simple and easy to learn. The best tool
would be one that the developer does not even notice.

With respect to different development platforms that are in use today—Enterprise
Java is holding a strong position. This could very well change soon since already 23%
of the developers find (in late 2002) .NET being their primary choice. We believe that
this number will rise even more and that this will be one of the two target groups [of
developers] where simple and automatic tools could come to the rescue. The second
group, of course, being the Java developers.

Developers seem to reuse code to a fairly high extent, but unfortunately they do not
test the reused code much. In Chapter 3 we show what the effect of such a behavior
might be, especially regarding software that is reused a lot.

In this study, we see developers asking for help to test code that is about to be
reused. In addition to that, many developers would like to see a tool that could give
them an indication on how well their test cases are written (e.g. test coverage)—again
KISS.
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Developers today need to have a better knowledge on the importance of unit testing.
If the foundation which certain software lies upon is not stable, by not using unit tests,
then it risks deteriorating everything. Since the workload is high and deadlines creep
even closer, developers must be presented with more automated tools for test case
creation and test execution. Also tools that give developers an indication on how well
the tests cover their software are wanted.

What we found somewhat surprising is the low level of component/library certifi-
cation taking place. We believed that certification of software had evolved further—
beyond academic research [259, 287]. This was not true except for a few cases.

2.6 CONCLUSION
In short, to summarize it, some of the key findings in our survey were;

1. developers reuse code but do not test it to the extent we expected,

2. simple to use tools are lacking when it comes to test creation and test analysis,

3. knowledge on the importance of testing in general and unit testing in particular
seem low and,

4. certification of software and/or components seem to be more or less non-existent.

Since 96% percent of the developers are exceeding their deadlines, at least occa-
sionally, one can claim that there is still much room left for improvements.
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3.1 INTRODUCTION
The use of Commercial-Off-The-Shelf (COTS) software components has increased
over the years. The continued success of COTS components, however, is highly de-
pendent on the reliability of the software at hand. In the previous chapter, one of the
key findings was that developers reuse components, but they seldom test software be-
fore incorporating it in the implementations, especially unit testing is seldom used in
this context. At the same time the majority of the developers did not test the compo-
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nents during original development either (Chapter 2), hence leading to a paradox of
untested software being used again and again.

We do not believe that components and code in general are tested well enough. This
makes, in some respect, component-based development (CBD) a potential nightmare.
According to Parnas [226], every software product should be evaluated before being
used at any later stage in the development process, something that is only partly done. If
we are to really succeed in component-based software engineering and reuse in general,
we must make sure that developers test [252] their code even more than they currently
do. This to ensure that any faults in the product are detected as early as possible, and
more importantly, is not ‘inherited’ with the use of COTS components. Boehm [29]
pointed out already 20 years ago that the longer a fault stays in a software system the
more expensive it is to remove.

In this chapter we report on an explorative case study on a component already in
use in the software community, applying unit testing to it as a third party developer
would (should) have, before incorporating it. By doing this, we want to, in a practical
case, investigate the reliability of an actual component already in use. In order to try to
choose a component that is relatively representative of ‘high reliability components’ in
terms of expected frequent reuse, we tested a core class component (System.Convert)
in the Mono framework [208]. Since the framework will be a foundation for potentially
thousands of applications using it in the open source world, any undetected fault will
have very severe repercussions. The component at hand was furthermore already to
some extent subsystem and system tested, deemed reliable and reused. No unit tests
had to our knowledge been applied, however.

Different persons from the ones actually implementing the class or method, closely
mimicking the situation of a developing team testing a COTS component before re-
using, wrote all tests. Using a straightforward unit test approach we tested all available
methods in the class, finding a total of 25 faults.

We find that even applying a straightforward basic suite of tests to a component
before re-using it is of interest to the developers, as well as extra test cases performed
after the formal development of the software. The remaining parts of this chapter are
devoted to the technical background, results, analysis and the broader scope and impact
of our findings.

3.2 BACKGROUND
Software Verification and Validation (V & V) intends to answer two basic questions.
Are we building the product right and are we building the right product? In our case: is
the product being built, conforming to ECMA International’s specifications 334 [76]
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and 335 [77]? The former being the C# Language Specification and ECMA-335 being
the Common Language Specification, as submitted to the ECMA standardization body
by Microsoft, Intel, Hewlett-Packard and Fujitsu Software in December 2001.

These two standards are likely to have a great impact on COTS, CBD and reuse
in general the next couple of years. Thus, a need to make sure that the foundation
whereas several thousands or even tens of thousands of application will be built upon, is
stable. ECMA-334 is further considered to be a standard, which has clear component-
based aspects in it and combined with ECMA-335 in conjunction with the framework
library, gives the future developer a platform with which (s)he can reuse large parts.
The framework is in other words a large collection of components that can and will be
reused. Hence, the reliability of these fundamental components must be high.

The component that was tested in this study came from the Mono project [208].
Mono is an open source version of .NET [277], which was hosted by Ximian Incorpo-
ration (now Novell Inc.). The goal for Mono is to provide several pieces of components
for building new software, most notably a virtual machine, class library and compiler
for the C# language.

3.2.1 UNIT TESTING
Unit testing is a well-known technique [38] and has increasingly been used in the last
couple of years, especially since the arrival and success of object-oriented languages,
such as Java, C++ and more recently C#. Lately also development processes such as
XP has made unit testing a closely integrated part of the development. Furthermore,
the survey in Chapter 2 shows that unit testing is one of the most common software
testing technique used by software developers today.

In unit testing [138] the smallest piece of code (unit) is checked to ensure that it
conforms to its requirements. These tests are written once and used many times, during
the development cycle, to ensure that code regression is kept at a minimum. Usually
the tests are written in the same programming language, which is used to build the
software itself. Unit testing should not be used to test relationships or coupling in an
object-oriented framework. If that is what one would like to test, then other sub-system
testing techniques do exist [290].

3.3 METHODOLOGY
Taking the starting point in the difficulty a developer has in reusing a software com-
ponent from a third party, we apply a straightforward unit testing scenario. We also
assume the software development taking place within the Mono framework, the open
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source implementation of .NET, as supposedly being one of the most component- and
reuse-oriented platforms today.

As mentioned in the introduction we needed a fairly large class to use in our study.
We evaluated several and finally chose the Convert [75] class in the System names-
pace. The main reason for choosing this class was its significance and its large number
of methods, which would be in need of testing, before using the component in an ap-
plication. The class provides all standard methods for converting a base data type to
another base data type in the framework. This is a typical task delegated to a frame-
work or library in most applications, handling e.g. conversions between hexadecimal
and decimal numbers or integers to strings. Hence, possible failures in this class would
affect base functionality in a vast number of applications relying on this framework.
The namespace System also indicates that this class is a core part of the framework.

Assuming the typical limited resources allocated for testing in software develop-
ment projects (Chapter 2) we chose to only implement a basic suite of test cases. We
did not strive, in any way, towards completeness in test coverage, the reason being
that we set out to show that even a very basic suite of tests still could find faults in a
widely used part of a framework. The basic test cases we are referring to in this case,
consisted of testing the boundary conditions and off-nominal cases in which this com-
ponent should degrade gracefully, without loss of data. Finally, some random input
was also carried out on each method being tested.

Since the tests in our case derived from the knowledge of the specification and to
some extent, structure of the class(es), a black box approach with some elements of
white box testing [149], was used. The tests written had only one objective in mind
and that was to find flaws in the implementation according to the specification.

Several tools are available to a developer when performing unit tests of the type
mentioned above. Most notable is JUnit [20], which is described by Gamma and Beck
as being a regression testing framework and is Open Source [241]. Since JUnit is open
source, other developers can port it to different languages. NUnit [212], by Philip
Craig, is such a port.

Several programming languages are supported by NUnit, but in our case the C# pro-
gramming language was the most important. The NUnit framework consists of several
classes. These classes contain methods, which the developer uses when constructing
test cases.

To compare resulting values, which is very often the case, different Assert [182]
methods were used in this study. Especially the AssertEquals method was used exten-
sively, since if used correctly generated a message that makes it easier for the developer
to establish exactly which test case failed.
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Listing 3.1: AssertEquals example.
1 A s s e r t E q u a l s ( " ID " , e x p e c t e d O b j e c t , r e c e i v e d O b j e c t ) ;

In Listing 3.1, when the expected object is not the same as the received object,
an exception is thrown. The exception includes the value of the expected/received
objects and the test ID, so that the developer can easily see where and why it failed
(Listing 3.2).

Listing 3.2: Example error message.
1 A s s e r t E q u a l s ( " #A00" , ( i n t ) 2 , ( s h o r t ) 2 ) ;
2 TestChangeType ( MonoTests . System . C o n v e r t T e s t )
3 : # A00 e x p e c t e d : <2 > b u t was : <2 >

The reason the test failed (Listing 3.2) was that even though the value was equal,
the type was not. Notice how the method ChangeType is being tested by the method
TestChangeType. A Test prefix is added to a test method so that it will automatically
be included into the testing framework when being run the next time.

It is not uncommon to write several tests that manipulate the same or similar ob-
jects. To be able to do this in a controlled environment a common base must be estab-
lished. This base, also known as the fixture, makes sure that the tests are run against
a known and well-established foundation (Chapter 8 elaborates on the different enti-
ties of a typical software testing technique). The next step is to create a subclass of
TestCase, add an instance variable for each part of the fixture, override SetUp() to ini-
tialize the variables and finally use TearDown() to release the resources one allocated
in SetUp() (see Listing 3.3).

Listing 3.3: A simple test case.
1 p u b l i c c l a s s C o n v e r t T e s t : T e s t C a s e {
2 bool b o o l T r u e ;
3 bool b o o l F a l s e ;
4 [ . . . ]
5 p r o t e c t e d o v e r r i d e void SetUp ( ) {
6 b o o l T r u e = t rue ;
7 b o o l F a l s e = f a l s e ;
8 [ . . . ] }
9 [ . . . ] }

Once the fixture is in place (Listing 3.3) the developer can write many tests manip-
ulating the same units. If the developer wants to run several tests at the same time, the
NUnit framework provides the developer with the class TestSuite which can execute
any numbers of test cases together.

43



An Exploratory Study of. . .

3.3.1 UNIT TESTING OF SYSTEM.CONVERT
As already mentioned previously, the class Convert in the System namespace, was
selected for a number of reasons. The System.Convert class consisted of one public
field and 22 public methods, all in all 2, 463 lines of code (LOC). Furthermore, each
overridden method should be tested to ensure progressive reliability.

The routine for constructing the test method was easily established. First, the spec-
ification was read carefully; secondly, boundary, off-by-one and at least one legal input
value test was written for each method belonging to System.Convert, and finally the
tests were run. This process was repeated several times until all methods had tests
written for them that covered all contingencies. To ensure all test’s integrity we imple-
mented and executed them under the .NET framework [277] before applying the test
cases within the Mono framework.

A unit test made for FromBase64CharArray, a method which converts the specified
subset of an array of Unicode characters consisting of base 64 digits to an equivalent
array of 8-bit unsigned integers, will illustrate the principles of the general methodol-
ogy. The method takes three arguments, the inArray, the offset (a position within
the array) and the length (number of elements that should be converted). The array
inArray is only allowed to consist of the letters A to Z, a to z, numbers 0 to 9 and +,/.
The equal sign, =, is used to fill empty space. To make sure that the conversion was
correctly made the result and the expected result, both arrays, must be looped through
and compared (Listing 3.4).

Listing 3.4: A test comparison.
1 f o r ( i n t i =0 ; i < r e s u l t . l e n g t h ; i ++)
2 A s s e r t E q u a l s ( " #U0" + i , e x p e c t e d B y t e A r r [ i ] , r e s u l t [ i ] ) ;

The next two examples are test methods for ToBoolean. ToBoolean is overridden
18 times in System.Convert, one for each built-in type, twice for Object, twice for
String and once for DateTime. Since the different examples are quite similar only
Int16 and Char will be covered. In Listing 3.5, Int16 is tested; if it is anything but
zero it will be converted to true.

Listing 3.5: Testing Int16.
1 A s s e r t E q u a l s ( " #D05" , true , Conve r t . ToBoolean ( t r y I n t 1 6 ) ) ;

Next the Char example, shows that testing exceptions is just as easy. Since a con-
version from char to bool is not allowed an exception should be thrown (Listing 3.6).
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Listing 3.6: Catching an exception.
1 t r y {
2 Conve r t . ToBoolean ( t r y C h a r ) ;
3 } catch ( E x c e p t i o n e ) {
4 A s s e r t E q u a l s ( " #D20" , t y p e o f ( I n v a l i d C a s t E x c e p t i o n , e . ge tType ( ) ) ;
5 }

The test cases written are thus fairly straightforward and test every method’s input
and output while the specification decides the legality of the outcome of each test.

3.4 RESULTS
By using the described unit testing approach all in all 25 faults were discovered. The
test case consisted of 2, 734 LOC while the tested class holds 2, 463 LOC. This is more
or less a 1:1 ratio between class LOC and test LOC, which is considered as being the
default in XP [66].

This result in itself clearly indicates the severe problem of reliability in reusable
components. That the findings occur in a core class in a framework makes this point
even more severe. Virtually any type of fault in such a class could be expected to lead
to failures occurring in a wide range of applications. Hence, all the found faults have a
very high degree of severability. Because of the nature of the class at hand, i.e. being
a core component in a framework in use, the relative reliability is extensively impaired
by even a single or a few faults.

Turning to the technical details of the test cases, we cover a few examples fully,
before continuing with a summary, in order to keep focus on the general component
reliability rather than the individual fault.

Some of the faults detected were clearly the result of a misinterpretation as can be
seen in Listing 3.7.

Listing 3.7: A simple fault depicting a misinterpretation of the specification.
1 s h o r t t r y I n t 1 6 = 1234 ;
2 Conve r t . T o S t r i n g ( t r y I n t 1 6 , 8 ) ;

In Listing 3.7, the code snippet should, according to the specification, convert the
short value 1234 to an octal string, i.e. 2322. What really happened was that the value
1234 got parsed as an octal value and converted to 668. This could easily be proved by
changing tryInt16 to 1239, since the octal number system does not allow the number
9. The result in Mono was now 673, clearly wrong since a FormatException should
have been thrown. We find it a bit strange that no developer had reported run-time
failures of this kind when using the Convert class.

Yet another test case discovered a flaw in how hex values were treated (Listing 3.8).
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Table 3.1: Overview of results. Faults in italic belong to the misc. exception category.
LOC class 2463
LOC test 2734
Misc. exception failures 15 (1)
Logic fault 4
Incorrect control flow 2
Signed/Unsigned fault 6
Data/Range overflow/underflow 3
Misinterpretation 9
Unknown 1

Σ 25

Listing 3.8: Example of executing an overflow fault.
1 Conve r t . ToByte ( " 3F3 " , 1 6 ) ;

The line in Listing 3.8 should convert 3F3, which is a hex value, to the byte equiva-
lence. Since, in this case, there really is no byte equivalence, 3F3 is 1011 in the decimal
number system and the byte type is only allowed to contain values between 0−255, an
OverFlowException should be thrown. This was not the case in the current implemen-
tation, instead the method returned the value 243. So the converter started over from 0,
thus leading to 1011− 3 · 256 = 243.

As can be seen from these two simple cases, all the test cases tested a minimum
of two things, crossing over the maximum and minimum values for a given method or
type, simply by using maxValue+1 and minValue−1. This is something that should
have been tested during the implementation since it is considered to be one of the
standard practices [204].

The above two underlying faults, which were uncovered in the implementation,
would naturally lead to strange behavior in an application using System.Convert.
Probably the only reason why this was not discovered earlier was that the above meth-
ods were not exercised in a similar way [as in this survey] by other developers.

As already mentioned, in total 25 faults were found in the Convert class. These
faults were mainly of two types (Table 3.1) that caused exception failures, e.g. excep-
tions of type OverflowException or FormatException, and secondarily, misinterpre-
tation of the specification when the component was created, as we already saw previ-
ously, i.e. Convert.ToString(tryInt16, 8).

One unknown failure was found where we could not pinpoint the exact reason. The
Convert.ToString method (Listing 3.9) should have returned the expected result, but
instead it returned −1097262572.
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Listing 3.9: An unknown failure which should throw an exception.
1 long t r y I n t 6 4 =123456789012;
2 A s s e r t E q u a l s ( " #O40" , " 123456789012 " , Conve r t . T o S t r i n g ( t r y I n t 6 4 , 1 0 ) ) ;

Clearly this is a case of overflow, but no exception was raised, which should have
been the case.

What then, could the uncovered faults lead to? In the case of reliability, ISO-
9126 [140] mentions maturity, fault tolerance and recoverability. Clearly several of the
flaws we found showed relatively immature aspects, e.g. faults that should have been
uncovered if the framework had been used more extensively by developers. These
faults probably would have been uncovered over time when the framework had been
used more. But as we have already mentioned, Boehm [29] has pointed out the need
for uncovering faults early in the development process for several reasons.

Fault tolerance implementations in a framework, such as this, should be able to
identify a failure, isolate that failure and provide a means of recovery. This was not the
case with several of the exception failures we uncovered. Identification and isolation
of a failure could in several of these cases be implemented by examining the input for
validity, isolate non-valid input and notify the developer of the fault.

Finally, when an exception is thrown because of a fault in a core component, a
developer would have problems recovering, since a stable foundation is expected. On
the other hand, an overflow occurring without an exception being thrown would cause
a very strange behavior in the application using the method. If it is possible to differ
between severability of faults in a core class in a framework such as Mono—all faults
being of a very serious nature—a fault that does not cast an exception holds, if possible,
an even higher severability than other faults.

3.5 CONCLUSION

CBD is often promoted as one of the great trends within the area of software develop-
ment. A fundamental problem, however, is the degree of reliability of the individual
components, something clearly indicated by our current study.

Mimicking the situation of a third party developer, we chose to apply straight-
forward unit testing to a core component from the Mono framework, being the open
source implementation of .NET. Employing off-by-one, boundary testing and certain
legal input for each method we were able to uncover in total 25 faults in the implemen-
tation of the class at hand. Although always serious when it comes to a core class like
System.Convert, some failures did not result in any exception being thrown. A fact
that must be—if possible—considered even more severe.
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This component had already been subject to certain sub-system and system testing
and makes up one of the core parts in the framework. The fact that the component
already was in reuse, clearly shows the seriousness of the reliability problem of CBD.
Combined with the non-systematic evaluation of components from third parties (evi-
dent in Chapter 2) by software developers, i.e. lack of testing before usage as opposed
to what was done in this study, the reliability not only of the components but a wide
range of resulting applications is jeopardized.

Based on our findings we propose that some sort of low level testing of components
should be a foundation for further testing methodologies, more or less without excep-
tion. Trusting the foundation, when adding module and sub-system tests, is vital. It is,
to put it bluntly, better to add low level testing after implementation or even usage of
a piece of software, than not doing it at all. In the specific case at hand a third party
developer performing the test cases in this study would have avoided failures late in the
development and at the same time aided the CBD community. Sooner of later one will
experience failures if testing is not performed properly. The question is; can you afford
trusting the origin of a component? Since no de facto certification is widely used today,
as could be seen in Chapter 2, we believe the answer is no to that question.

One important thing must be stressed throughout any software project—if a devel-
oper finds a fault, they should immediately write a test case for it. That way, the fault
will show up again, if the present code deteriorates. This could be considered as a best
practice and somehow forced upon the developers during check-in of new or changed
source code. If this practice had been followed in the project then some of the faults
we found would probably have been found much earlier.
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4.1 INTRODUCTION
Testing and evaluation is of major importance for all software and has been the subject
of research for some 30 years. Although exhaustive testing in principle can prove
software correct, in practice most software has to be tested in some approximate way,
trying to uncover most of the faults. Even highly tested systems like the NASA Space
Shuttle Avionics software displays a fault density of 0.0001 defects/line of code (at a
cost of 1, 000 USD/LOC), which is considered to be close to what is achievable with
modern methods [128].

In this respect one of the most difficult questions is the issue of to what extent a test
can be trusted, i.e. the quality of a test. The current state of affairs is not entirely satis-
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factory since most methods are not possible to quantify in detail at the moment, while
others do not compare easily with each other (see [196, 251] for a critical review). Re-
cent theoretical efforts have, however, produced some good results [103, 299] in this
field. Taking a more pragmatic point of view, a large number of experimental evalu-
ations have been performed of test methods in order to try to compare the quality of
different test approaches, see e.g. [71, 136, 156, 163, 184, 185, 306]. There are also new
approaches to improve the choices of test data using data dependency analysis [159]
during execution as opposed to a traditional flow analysis.

Although inspiring, more exact results for many methods are lacking. Put in a
different way, paraphrasing Dick Hamlet [121], a “success theory is missing”; there
are no good ways to determine how good a test that found nothing was. In the area
of coverage testing, [71] and [121] do provide theories towards this aim, but since
absolute coverage does not in itself constitute fault free software they only provide
partial answers.

Given the context, statistical test methods (random testing) are unique in that
they do provide a type of answers about possible remaining faults or execution fail-
ures [122]. The downside with this information is its probabilistic nature and inter-
changeability between failure probability and test reliability. In addition to this, ran-
dom testing suffers from other well known inadequacies, e.g. the inability to detect
rare failures. Despite this situation, statistical testing remains one of the major testing
approaches, if nothing else as a sort of scientific baseline. Random testing does also
provide massive quantitative data, something usually lacking otherwise. Finally ran-
dom testing may very well in many circumstances outperform other test methods per
time unit—if not per test—due to the simpler test data generation (random input). It is
thus of significant importance to extend the current work on random testing to include
solid quality estimations and eliminate the reliability-probability evaluation problem as
far as possible.

In this chapter we present distinct quality estimations and results for random test-
ing, enabling much improved use and interpretation of a random test collection (a col-
lection is by us defined as being a number of test inputs grouped together for the sake of
testing on unit, software item or testee). We subsequently make this quality estimation
subject of empirical scrutinizing, to ensure the strength of the results using massive
simulations encompassing hundreds of billions of inputs. The remaining parts of this
chapter are consequently divided into a more general overview of random testing, fun-
daments for quality estimations and empirical evaluations of the suggested estimation
using massive test simulations.
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4.2 PROS AND CONS OF RANDOM TESTING
There is no absolute consensus on what statistical testing (or fault detection) is. Partly
this is due to the large number of available methods, e.g. modern methods in code
inspection [300] are based on a classical statistical approach. To be clear on this point
we will from now on strictly refer to test cases, with randomized input and comparison
of the output to a well known correct answer, as random testing (this follows e.g. [122]).

Even so, the issue of the exact use of random testing still remains open. Why
use random testing at all? Intuitively it is clear that by choosing input on a random
basis you always come up short compared to e.g. equivalence partitioning [204] or
someone inspecting the code or specification closely and constructing the test based
on this information (unless a systematic error is made in the non-random approach).
It should also be clear that random testing usually samples only a very small fraction
of all possible input. A straightforward if-statement that compares two long integers
and is executed if found equal (see Listing 4.1), stands a chance of 1 in 4 · 109 to be
exercised for a single random test input.

Listing 4.1: The combinatorial aspects of a simple if-statement.
1 a=random ( 1 ) ;
2 b=random ( 2 ) ;
3
4 i f ( a==b ) t h e n
5 {
6 / / some LOC
7 }

On the other hand, similar arguments, although not as strong, can be made about
coverage testing. Borrowing the following example from [196] (see Listing 4.2), we
note that branch testing with the input value of (3,2) will not result in a failure, while
values (2,3) is going to result in an erroneous result.

Listing 4.2: Branch testing.
1 i n t m u l t i p l i e r ( i n t n , i n t m)
2 {
3 i n t r e s u l t =0 ;
4 whi le ( n >0)
5 {
6 r e s u l t = r e s u l t +n ;
7 n=n−1;
8 }
9 re turn r e s u l t ;

10 }
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The strongest argument in favor of random testing is that mathematical tools pro-
vide a possibility to calculate the successes as well as the shortcomings of the method.
Blunt or not, random testing possesses a potential industrial robustness. Given a way
to fast and easily check if the output result (or operation) is correct—something that
usually is referred to as the oracle assumption [122]—random testing is both easy and
straightforward to implement. This combined with its random nature (more about this
later) allows for extensive, mathematical analysis. Short of AI-like testing approaches,
mathematically inspired methods still remain the most powerful tools available in test-
ing. Possibly advances in genetically programmed testing algorithms [190, 194] will
render this kind of basic tools superfluous, but at the moment it would be hazardous to
draw that conclusion.

An important issue at this stage of reasoning is the actual user’s (machine or human)
input and the input used in random testing, something that has been improved and well
examined in [175] and [202], respectively. Although it is well enough to consider a test
collection of 1, 000 inputs with correct behavior as an indication that the method, or
similar, usually behave well (i.e. has a low probability of returning the wrong result on
a general input), this has not to be true for all input subspaces. Differently put, faults
in software are not any more random than, say cards in a game of poker. There is a
definitive answer to whether player X has the ace of spades, and it will not change
from one time to the next if nothing happens in between in the game (corresponding to
no one rewriting the code).

This also means that a method may give completely correct results for all long in-
teger inputs except in the range of 0-100. Given uniformly distributed non-biased input
from the user, the method will behave correctly 39, 999, 999 times out of 40 millions.
In this circumstance—unless the method is executed extremely often—the software at
hand can be considered as next to flawless. The mean time to failure (MTTF) will be
closing in on one year of continuous operation if the software has an execution time
around 1 second. On the other hand random testing will most likely—unless used
massively—not uncover the fault at all. In the perspective of uniform input this is
correct, i.e. the failure frequency is extremely low (1 in 40 millions).

Unfortunately this line of reasoning may be very misleading in certain circum-
stances. If the user is a human being, the application happens to be a computer
based calculating aid and the user is free to choose input, it is intuitively clear that
the probability for the user to choose low numbers as input is extremely much higher
in everyday life than to choose high end numbers, e.g. between 1, 907, 654, 1000 and
1, 907, 654, 1100 (which has the same input range as 0-100). Hence such software,
subject to a well-performed random test collection, with asserted high MTTF based on
uniform input, will still be perceived by the user as quite flawed due to the non-uniform
nature of the user profile.
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It is therefore of outermost importance that the testing conditions, and especially
the use of a certain distribution of random input, is clearly defined and declared for
any tested software. The necessity of clear definitions and routines is a general truth in
all testing activities, but unusually important in random testing because of the complex
mathematical nature.

A direct consequence of the poor sampling of rare events is that some extreme
values in a method’s or object’s input/attributes will never, or at least very rarely, be
tested using random methods. This is especially true since a Pseudo Random Number
Generator (PRNG) usually is used to produce input in random testing. Given the fact
that PRNGs produce output in a certain legal range, illegal values are not possible to
obtain (unless the legal range is larger than the input, e.g. long integers are used to
probe an input domain of short integers). The wisdom to draw from this is that extreme
and illegal values should be tested in connection to, but separately from pure random
testing of legal input, see e.g. [190, 306] for a practical example. In addition, illegal
values are nowadays caught by most modern compilers.

Despite these problems, random testing—given properly handled input distributions—
have certain great advantages as pointed out earlier. Random test data is usually very
fast to produce due to the automatic and straightforward nature of the PRNGs generat-
ing the input. Given a method and corresponding oracle that perform reasonably well
and execute in a few seconds, random testing may cover tens of thousand cases in 24
hours. Automatic over-night testing can give tabulated test results ‘en masse’ for tested
software units.

It has to be admitted though that the oracle assumption makes random testing much
more difficult above unit-level. At the same time random testing is not, and has never
been, suitable for subsystem or system testing; the possible combinations of input is
so huge and almost always subject to a specialized user input that the random test
collection ends up probing the wrong corner almost regardless of its size, unless it is
uniquely tailored for the system.

Random testing hence offers advanced brute force testing of units where straight-
forward oracles are available. The results have to be carefully used, but as one of very
few methods, random testing offers the possibility of genuine mathematical analysis.

4.3 FUNDAMENTS OF QUALITY ESTIMATIONS

Quality estimations of random testing has traditionally been connected to classical sta-
tistical instruments, i.e. confidence levels and believed performance.

Given enough time we would find the true failure frequency θt for uniformly dis-
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tributed random input:

θt =
Number of test data causing failures

Number of all test data
(4.1)

Normally θt is only possible to determine exactly by exhaustive testing, or approx-
imately using massive testing. It should also be noted that we, due to the assumption
of uniform distributions, do not care about in which sub-domain of the input the fail-
ures take place—all input is equally probable, and hence the related failures too (with
a different distribution the different inputs would have to be weighted or measured
differently).

In most software it is not possible to even come close to a value of θt determined
by exhaustive testing. Given a single float number as input, there are 4 · 109 different
possible input values (see Section 4.2). By testing the software, using a limited number
of randomly chosen inputs it is possible to apply statistical analysis to the results for a
quantitatively controlled estimation of θt though.

When M failures are found by running N tests, Nelson’s probabilistic theory [278]
gives that a guessed (estimated on the basis of the tests) failure frequency θg has an
upper confidence bound α according to:

1−
M∑

j=0

(
N

j

)
θj

g(1− θg)N−j ≥ α (4.2)

The confidence bound determines the probability of the test suit being a represen-
tative one, while θg is the software engineer’s guess of the true failure frequency. To
be close to certain that the tests are ‘good’ means that the software engineers become
restricted in the range of failure intensity they can guess at; a ‘squeeze play’ [121] takes
place between testing and failure probabilities.

Although straightforward, the above theory fails to offer unambiguous quality esti-
mation but leaves extensive parts of the interpretation to the testing crew. Secondly the
nature of testing makes a statement like: “Given the failure frequency θg the probability
for experiencing no failures at runtime ten times in a row is (1 − θg)10”, highly dubi-
ous if there are input domains with very high (or absolute) failure intensity. Strictly
speaking the combinatorial term would be domain dependent and from a random input
perspective, subject to a non-trivial probability distribution in itself. More extensive
reviews of the constant failure frequency assumption and domain-partitioning problem
can be found elsewhere, see e.g. [121, 122]. As we will see, there exists an alternative
formalism that avoids this kind of reasoning though.
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4.3.1 FAILURE FUNCTIONS
Given the nature of software and the problem of the under-decided solutions above, we
choose to introduce the concept of failure functions as a mathematical tool. Intuitively
it is clear that a piece of software either fails or succeeds for a specific set of input,
regardless of the input type (numeric, text, logic etc.) and software at hand. This pro-
cess is non-random, and very much repeatable. It also matches existing mathematical
problems, i.e. integrals.

To be able to be more exact in our reasoning we start out by defining the input space
X for a specific software S.

Definition 1 (INPUT SPACE) A software item’s regular input set X is defined to be
all combinations of values legal with respect to the input variable types of S.

The above definition is neither ‘white box’ nor ‘black box’, since the regular set
(input domain) is defined by the legal input types. This implies, first, that exceptions
and overflows are not included in the regular domain, but should be treated separately
(see [306] for an example). Second, that the domain could be concluded from the
specifications, given a detailed enough level of description (it could equally well be
defined by information collected in a white box process).

Definition 2 (FAILURE FUNCTION) Each software item S has a failure function
FS defined on the regular input set X. FS(x) = 0 for a given value x ∈ X if no failure
occur, and FS(x) = 1 if a failure is detected when S is executed.

The function FS matches the behavior of the software exactly, although detailed
knowledge of the function can only be obtained with exhaustive testing. Assuming
that the regular input space is large enough to let us approximate FS with a continuous
function (this rules out e.g. pure logical input domains though) and using integration
instead of summation, we find that:

θt =

∫
x

FSdx∫
x

1dx
=

∫
x

FSdx

|X|
=< FS > (4.3)

The bracketed term implies the mean value of FS . Finding the true failure fre-
quency, the mean value if exact in Equation 4.3 hence becomes identical to integrating
(or sum up, if we let go of the continuous approximation) the failure function and di-
viding by the size of set X. Although trivial as far as relations go, this enables a new
variety of tools. It also allows us later on to go beyond the somewhat limited use of just
finding θt. It should be noted though that this equivalence is only meaningful for input
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Figure 4.1: The general problem of integration of a failure function FS and the relation
to testing.

with a reasonably large legal span of values (integers, strings, floats etc.) Otherwise the
small size of |X| will render the notion of average and continuity quite meaningless.

Turning to the integration (summation) of FS we notice that we somehow have to
integrate (sum) an unknown function; a problem identical to the evaluation of random
testing (since it is just another formulation of it), see Figure 4.1.

Unfortunately the ‘unsmooth’ nature of the failure function limits the number of
available tools for integration. One of the most straightforward methods, Monte Carlo
integration [237], applies well, however. The idea is to sample the function (FS in our
case) by random input, calculate the mean and multiply it by the volume the integral is
defined on. More strictly we have:∫

x

FSdx = |X| < FS > +ε = |X|

(
1
N

N∑
i=1

FS(xi)

)
+ ε (4.4)

The < FS > term is the mean value of the failure function in the N randomly
chosen xi points in the regular input set |X|. The expression is of course of limited
use before the mathematical error terms are estimated. It simply indicates that if one
by random choose a large number of points in the legal range of the failure function
and take the average, one should come in the vicinity of the absolute average (compare
Equation 4.3). Drawing on our established correspondence to random testing, Equa-
tion 4.4 just states the fact that an approximation of θt is the number of failures found,
divided by the number of tests performed.

4.3.2 QUALITY ESTIMATIONS: ELEMENTA
The definitions and equations in the previous subsection, merely cast the problem of
random testing in a different form, although it circumvents some of the more traditional
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formulations and associated problems. All the more interesting is the estimation of the
mathematical error terms in Equation 4.4. As long as each input xi is chosen statisti-
cally independent of each other, the exact nature of how representative the associated
FS(xi) values are (i.e. the probability distribution of errors) is irrelevant if the number
(N ) of input values xi is large enough relative the input space (typically a number of a
hundred up to a few thousands inputs).

In this case the central limit theorem guarantees that the resulting probability dis-
tribution of errors (mathematical mismatch) will be close to a Gaussian distribution
(see e.g. [154] for a proof and explanation of the central limit theorem). Differently
stated, random testing will, with its randomized input, ensure that the mathematical
error terms in Equation 4.4 approximately follow a Gaussian distribution.

This approximation is valid for all cases when the number of tests is large relative
to the input space, i.e. at least decently samples each input variable space. This is an
extremely important point to be made since it eliminates any assumption about ‘evenly
distributed execution failures’ or similar which has troubled some of the earlier results
in the literature, see e.g. [121, 122] for a discussion.

Although this could have been argued for without using the formalism of integrals,
we will retain the form due to reasons revealed later in the text. In accordance with
standardized statistical estimations, we identify the mathematical uncertainty (error) in
Equation 4.4 with the number (k) of allowed standard deviations (σ):∫

x

FSdx ≈ |X| < FS >

(
1± kσ

N < FS >

)
(4.5)

Taking all values within one standard deviation (i.e. k = 1) from the mean value
< FS > covers 68% of the statistical possibilities, while using two standard deviations
(k = 2) covers 95%, k = 3 covers 99.7% and k = 4 approximately 99.99% (see [238]
or similar for tables). Although we a priori do not know the variance (σ2) of the failure
function FS , the sampling of FS provides a good approximation:

σ2 ≈ N

( 1
N

N∑
i=1

F 2
S(xi)

)
−

(
1
N

N∑
i=1

FS(xi)

)2
 (4.6)

In standard short hand notation this becomes:

σ2 ≈ N(< F 2
S > −(< FS >)2) (4.7)
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The average is taken over the N sampled input points. It should be noted that given
a very large N approaching the size of the regular input set, this relation becomes exact.
Now, using Equation 4.7, Equation 4.5 transforms into:∫

x

FSdx ≈ |X|

(
< FS > ±k

√
< F 2

S > −(< FS >)2

N

)
(4.8)

Since the failure function FS in our case only takes on the simple values of 1 and
0, < F 2

S > becomes degenerate with the value of < FS >. Hence for uniform input
distribution we have the following result:

Result 1 (TOTAL NUMBER OF FAILURES WITH LARGE ENOUGH INPUT)
If a software S with regular input set X and an associated failure function FS exists
and the number of test inputs is large enough, the total number of failures for S on X
are given within k standard deviations by:

∫
x

FSdx ≈ |X|

(
< FS > ±k

√
< FS > −(< FS >)2

N

)
(4.9)

Knowing the average failure rate in N inputs then immediately returns the qual-
ity estimation. As a practical example, using the limit of k = 4 standard deviations
(returning a coverage certainty of 99.99%), 2, 300 tests and 45 found faults, we get
an estimated failure rate of 1.95% ±1.15% (i.e. a maximum of 3.1%). The absolute
number of faults increases linearly, however, as does the quality uncertainty with the
size of the regular input set.

At this stage it is important to stop to scrutinize the validity of the approximations
made so far. The central limit theorem returned the result above under the assumption
of a ‘large enough number of input values’. Hence the results so far are mathematically
valid in all cases where the statistics is good, i.e. much test data is used and a reasonable
amount of failures are found. The ‘demand’ for failures arises from the fact that the
number of input values is not only important as an absolute number by itself but also
relative the number of observed failures in Equation 4.9 (see the discussion below). In
the case of worse numbers, the approximation becomes less precise.

4.3.3 LOWER END QUALITY ESTIMATIONS
The approximate approach to the full-scale probabilistic problem presented here offers
a great reduction of complexity in the evaluation of random testing, enabling solid
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hands-on quality estimations and calculations easy enough to do on a sheet of paper.
It also offers straightforward tabulating of the quality of software units, as well as
robustness in performance as the empirical evaluation below shows. The drawback is
that the result above does not cover the lower end of the failure frequency in a strict
mathematical-statistical sense.

In order to extend the quality estimations to encompass the full range of frequencies
we identify the limitations of the approximation and adjust it accordingly below. The
necessity of this becomes self-evident considering the lower boundary of the quality
estimation in Equation 4.9: given few enough faults the lower quality boundary will
become less than zero.

This is a pure complication due to too few input values since σ is divided by the
square root of N relative the average of FS . That is, in the case of few found faults,
going from 200 recorded tests to 400 tests will in general do little to the found average,
but reduce the boundary term by a factor of

√
2. The normal software engineer could

not be expected to extend the number of test cases in order to meet the demands of an
academic result though.

Instead we conclude that if the lower boundary given in Equation 4.9 falls below
zero, a reasonable quality estimation to make within the current approach is to assume
that the entire quality boundary is given by [0, 2kσ]. This ensures that the total span
of the quality estimation remains intact, while the failure frequency might be overesti-
mated, but hardly the other way around. More precisely stated we get:

Result 2 (TOTAL NUMBER OF FAILURES WITH N TEST INPUTS) If a soft-
ware item S with regular input set X and an associated failure function FS exists,
which has been probed by N test inputs, the total number of failures in S on X are
given within (at least) k standard deviations by:

∫
x

FSdx ≈ |X|(< FS > ±C);σ =

√
< FS > −(< FS >)2

N

< FS > −C = max(0, < FS > −kσ)
< FS > +C = max(< FS > +kσ, 2kσ) (4.10)

For normal fault frequencies Equation 4.10 becomes identical to Equation 4.9, but
in the case of very small frequencies it shifts the quality boundary upwards to avoid a
spill-over to negative (and hence impossible) values. More strictly put, Equation 4.10
expresses the statistical limits of Equation 4.9 in conjunction with the provided tests in
each individual test collection.
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This limitation is also directly connected to the quality demands raised by the soft-
ware engineer. Obviously the ‘spill over limitation’ will be enforced for smaller fre-
quencies if the software engineer chooses a ‘2 standard deviation quality’ boundary, as
compared to 4 standard deviations (compare the maximum functions in Equation 4.10).
The reason for this seemingly strange behavior is an intrinsic part of the statistical ap-
proximation used here. If we want the statistical results to be true for 3 or 4 standard
deviations, the demands on the statistical quality, and hence the test collection itself,
simply grow essentially larger compared to if we are satisfied with 1 or 2 standard
deviations.

Although the results in Equation 4.10 seemingly just provides a crude cut-off in
the lower end of the available failure frequency range, it in reality compresses the very
same ‘cut-off’ together with the falling failure frequency, something that is observed
empirically to fit data very well (see below). This is so since σ is still estimated trough
the observed failures in Equation 4.6 and hence grows smaller together with the failure
frequency.

It would now appear that the quality estimation in Equation 4.10—despite corrected
lower limit behavior—suffers from the same limitation as other theories. For zero de-
tected failures, Equation 4.10 returns an estimation of exactly zero due to the variance
compression discussed above. The inability to prove a test collection successful is a
trivial illusion, however, since a reasonably bad scenario is that the very next (not yet
executed) test in the collection would have found a fault. Assuming that the true vari-
ance (i.e. what would be given by exhaustive testing) corresponds to this scenario we
get a possible failure rate of:∫

x

FSdx ≈ |X|

(
2k

√
1

N(N + 1)
− 1

N(N + 1)2

)
≤ 2k

N
(4.11)

It should be pointed out at this stage that even if one assumes something along the
lines of ‘the next two tests would have failed if we did not stop’, the quality bound still
only increases by

√
2 due to the square root expression. Alternatively, the statistical

certainty falls from 4 to slightly less than 3 standard deviations. In addition to this,
one should keep in mind that statistics can only properly be used on large collections
(which is not always practiced [306]), which in turn ensures highly modest deviations
along the lines suggested above. Despite these objections, the simplistic approach used
here is sufficient for many purposes and withstand the empirical evaluation quite well
as we will see below.

A rightful question to ask now, is to what extent the results in Equations 4.9-4.11
contributes to random testing, apart from an apparent re-formulation of the theory for
uniformly distributed inputs?
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First of all it is a different approach based on a statistical evaluation instead of
Nelson’s combinatorial approach and thus not a re-formulation. It also offers a great
reduction of complexity as noted above—the software engineer can in Equation 4.10
and 4.11, choose the desired quality boundaries as in an ordinary engineering problem,
and get a solid estimation. Something practically put to the test in the empirical section
of this chapter with very good results.

Furthermore Equation 4.10 represents a definitive simplification—the example of
2, 300 tests and 45 faults found, is far from easily assessed in Equation 4.2. In ad-
dition it offers both a simple ‘success theory’ as well as the access to a vast set of
existing advanced numerical methods for Monte Carlo evaluation of integrals [237].
The straightforward method presented here is the simplest possible, but makes a solid
ground for further work, one being the possibility to introduce multiple user profiling
based on an already executed (used) random test collection.

4.4 EMPIRICAL EVALUATION
No matter how powerful a theoretical result may be, it has to be empirically validated
if it is going to be of any practical use to engineers. This is true in all engineering dis-
ciplines, including software engineering. We therefore turn our attention to simulated
testing, that is, the mimicking of real test situations where controlled software faults
are seeded. By looking at the mutation coverage (i.e. how many of the artificial faults
that are found) it becomes possible to analyze the effectiveness of a test method, or as
in this case, validate the theoretical quality estimations.

In order to use this approach, for verification of the results in the previous section,
we have to undertake massive test simulations. Only extensive testing will give the
‘true’ failure rates and variances. Differently put: performing 100, 000 tests, will the
results of Equation 4.10—especially the ‘upper quality bound’—hold to be true?

It should be pointed out that it is only by performing this kind of analysis, one really
can say anything with relative certainty, about a statistically based theory. Once shown
to be reliable on the other hand (which, of course, demands repeated validation beyond
this chapter), the theories could readily be used in everyday software engineering in
the same way as numerical integration and statistically based methods are used in other
engineering disciplines daily.

4.4.1 METHODOLOGICAL FRAMEWORK
Using mutation analysis to estimate the absolute number of faults, failure rates etc.,
one should seed faults in software that is known to be defect free and well known
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in the software community in order to establish a common baseline. This presents a
problem since not even extremely reliable software can be said to be absolutely fault
free [128] and far from all software is ‘well known’. One way to solve this problem
is to employ common, well-trusted software for mutation analysis. Some of the more
popular benchmark software units are TRIANGLE [64, 146, 306] and FIND [302, 306]
which are programs to determine the type of a mathematical triangle and a highly
straightforward sorting algorithm respectively.

However, a problem with small and well controlled pieces of software is that they
have small bearing on ‘real life’ software. Furthermore a general criticism exists, con-
cerning random testing, for performing well on small ‘toy programs’, but considerably
worse on software used in real life, see e.g. [306]. The benefit of very small pieces of
software on the other hand is the high degree of control in the experiment they allow. It
becomes increasingly difficult to tune the failure frequency and behavior of the seeded
mutations with the growing complexity of the code.

Trying to resolve this problem and meet the criticism in the field we have employed
both a straightforward modulus error in order to allow ‘massive testing’ as well as ex-
tensive material of more realistic cases. A number of well-known numerical methods
from [237], some being more than 30 years old in their initial form, are used to host
more realistic mutations/faults. The numerical methods at hand have also been con-
tinuously and extensively used in real life research and industry for a similar period
of time. More extensively corrected, tested and used software is hard to find, possibly
short of embedded industrial systems.

Because the methods can be assumed to be defect free, they also provide testing
oracles in themselves. That is, we assume that the methods behave properly before
mutation and replace the absolute failure frequency with the relative one where com-
paring the outcome from the original and the seeded code establish the failure. Finally
the code is available on CD, which eliminates the human factor in transferring the soft-
ware to the platform to be used in the simulations (which sometimes renders a defect
free software highly dysfunctional).

Turning to the simulations, we have chosen to seed artificial defects with variable
failure rates, in each individual software. The combined failure rate is subsequently
calculated theoretically or determined by massive testing (tens of millions of inputs
or more). In the second phase we perform a vast number of tests for each software
and fixed (true) failure rate. The statistically determined variance from the combined
number of tests is calculated as well as the theoretical predictions for each individual
test collection. A comparison is then made between the different theoretical predictions
based on the minor test collections and the actual failure rates. Varying the failure rate,
the full experiment is repeated for each rate and software.
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4.4.2 TECHNICAL DETAILS

The random input was generated using the PRNG Ran2 from [237]. All software
subject to testing was written in Fortran and thus non-object oriented. The methods
in [237] are readily available in the C programming language as well [236], but the
Fortran version was chosen out of convenience. In addition to the numerical meth-
ods chosen, we implemented a simulated modulus fault for massive testing (see List-
ing 4.3).

Listing 4.3: Simulated modulus fault.
1 i = abs (Mod( t e s t i n t e g e r , E r r o r F r e q u e n c y ) )
2 i = i + E r r o r F r e q u e n c y / 2 . 0
3
4 k1=0
5 i f ( i . g t . E r r o r F r e q u e n c y ) then
6 k1=1
7 e n d i f
8
9 k2=0

10 i f ( i . ge . E r r o r F r e q u e n c y ) then
11 k2=1
12 e n d i f

This kind of fault, e.g. by mistake using > instead of ≥, typically appears in type
conversions, boundary controls, checksum methods or similar. Admittedly it is a type
of fault that different kinds of coverage testing techniques normally would find. Still it
is a type of defect that is readily found in modern software development (see Chapter 3
for further discussions). It also holds the basic properties of most software errors, being
exact (non-random), repeatable and a typical subject of human mistake. Furthermore it
is a test with one of the shortest possible execution times, which allows massive testing.

To properly exploit the fast execution of the ‘mutation error’ we performed tests
with the individual batch size of 10, 100 and 1, 000 inputs in each series. The cut-off
at 1, 000 inputs was made out of practical considerations (see the total number of tests
run below) but could in principle easily be raised to cover extremely long test series
(millions of inputs in each run). Although the lower end with 10 inputs hardly state a
test series we included these short series for a more complete picture. For each batch
size, we varied the error frequency (as per previous code listing) through the values
1/10 down to 1/1500 in a 15 steps procedure. In each case, for each failure frequency
and batch size, 10 million inputs were used, resulting in a total of 166.5 billion test
executions. Hence we utilized the modulus fault to severely challenge the theoretical
results in terms of statistical validity.
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Table 4.1: Schematic listing of the type of defects seeded in the two numerical methods
used for empirical evaluation.

Type of fault
1. Parameter error, rare execution
2. Parameter error, executes more often
3. Branch-defect, executes moderately often
4. Combination of 1 and 3
5. Combination of 2 and 3

Turning to the non-trivial software examples, we have chosen to investigate two
real-life methods used in engineering disciplines over the years. This choice has been
made in order to test the theoretical approach against not only a laboratory environ-
ment, but also realistic problems.

We employed the CISI and SVDCMP methods from [237], seeding well controlled
mutations. The former method calculates the cosine and sine integral for a given input
value (float) and consists of 70 lines of code. The second method is of a more com-
plicated nature, larger (240 lines) and performs a singular decomposition of any given
(mathematical) matrix. The input size of the matrix was chosen to 4x4, with all entries
consisting of random float numbers.

In both cases we used two types of seeded defects, typical of human errors: param-
eters offsets and mutated if-statements (conditions shifted). In the latter case the code
will end up executing the wrong part of the code, depending on the exact nature of the
input. Changing a parameter value will only affect the outcome if it interferes destruc-
tively with the execution, e.g. if it is used as a multiplier or is large enough relative a
key variable it is added to, in order to tip the balance in an if-statement.

Furthermore, these defect types represents two types normally found by different
testing methods. While the branch-defect should be detected by a branch-coverage
test, a parameter shift could prove intrinsically difficult to find using code coverage.
Hence the two fault types not only represents common human mistakes, but also pose
a challenge for the current random approach due to the different nature of the two.

To further test the theory at hand we mixed both types of defects, resulting in a
more realistic scenario with different levels and numbers of problems (Table 4.1).

As in the case of the previously listed modulus fault, we performed test series of 10,
100 and 1, 000 tests in each. For every type of defect and collection size we performed
10 million test series, resulting in 111 billion tests of the two methods. At each stage
the randomized input was fed to the original method to create the answer (as per a
traditional oracle approach), which subsequently was compared with the answer from
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the seeded methods.
In order to avoid recording round-of errors we controlled each manipulated soft-

ware method with the seeded defects switched off by running 100 million tests where
the answers were compared in the same way as above. No failures were recorded,
which strongly suggests the absence of round-of errors or similar. To establish abso-
lute certainty with exhaustive testing was not a viable alternative due to the humongous
size of the input space.

4.5 EMPIRICAL RESULTS AND DISCUSSION
Statistical results, especially when it comes to quality estimations or similar, tend to be
less hands on than absolute numbers. Neither are the implications always very intuitive
or self-explanatory. The results from Section 4.3 are an attempt to solve some of the
former ambiguity, and the interpretation of our findings is very straightforward: the
probability that the true failure frequency is within the predicted rate (< FS > ±σ)
is given by a tabulated number. This on the other hand implies that if the software
engineer uses e.g. two standard deviations in her quality estimation in Equation 4.10,
the probability of the test collection at hand actually returning an estimation that does
not match (within bars) the true failure frequency should be no more than 5%. If one
is not satisfied with this (rather high) probability, one should use three or four standard
deviations which would give 0.3% and less than 0.01% respectively (see Section 4.3).

If the quality estimations in Section 4.3 are to hold true, the portion of test collec-
tions that under- or overestimates the failure frequency may thus not exceed the given
numerical limits. More strictly should the resulting distribution of quality estimations
comply with the assumed Gaussian approximation when it comes to variance and stan-
dard deviations in order to be useful.

Alternatively and more practically formulated, the extremely unlikely 1 in 10, 000
(the case of k = 4) test collection which provides an unusually bad sampling of the
code at hand should—despite it being a ‘pathological’ (bad) test collection—still result
in a quality estimation that actually encloses the true failure frequency. That is, the
upper quality boundary should coincide with the true failure frequency for the 1 in
10, 000 (k = 4) test collection. Only tests being extremely rare are allowed to fail and
actually underestimate the true failure frequency (see above).

4.5.1 MODULUS EVALUATION
We now turn to the modulus fault case described above where we compiled all per-
formed test collections for the different batch sizes and failure frequencies (see Sec-
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tion 4.4). For each fixed failure frequency we calculated the total average and variance
employing all test cases in all available test collections. In all cases both the average
and variance agreed with theory, confirming the theoretically tuned failure frequency.

Continuing with the quality estimations we have plotted the upper quality bound of
the pathological test collections (1 in 10, 000 k = 4, 1 in 333, k = 3 etc., see above)
versus the true failure frequency for all investigated collections encompassing 1, 000
tests in Figure 4.2.

An overall very good match is found, with the upper quality bound being very
close to the true failure frequency. This directly implies that the quality estimation
in Equation 4.10 (Section 4.3 on page 53) does hold the level of certainty introduced
there, even when pushed to the limit in massive simulations.

As the number of observed failures goes down to zero, the estimation in Equa-
tion 4.11 ensures a constant upper quality bound which properly encompass the true
failure frequency. This is illustrated by the leveling out of the failure frequency es-
timations, turning into constant minimum value (2k, see Equation 4.10) plateaus in
Figure 4.2. The upper ‘success’ bound in this case is quite crude, however, even if
fully functional as pointed out earlier.

The low frequency result is especially noteworthy since the data points before the
minimum value plateaus sets in, corresponds to a single recorded failure in a test col-
lection of 1, 000 tests. What more is, this happens in highly unrepresentative test col-
lections (where the ‘proper’ number of failures should have been much higher), which
represents the case of 1 in 10, 000 (1 in 333 etc.) of all performed test collections.
Still the upper bound of the quality estimation virtually coincides with the true failure
frequency, something that clearly indicates the strength of the approach and the lower
end adjustments in Subsection 4.3.3.

In the case of the test collections with fewer tests (100 and 10 in each collection
respectively), the agreement in the 100 case was just as good as in the case of more
extensive 1, 000 case. The minimal upper bound (the plateaus) sets in earlier though,
due to the lower number of tests in each collection.

Also the ‘collections’ of 10 test cases did conform to the theory presented in Sub-
sections 4.3.2-4.3.3, but on the other hand does even a single failure imply an estimated
upper quality bound of 0.8 failures per run (using k = 4), which render most compari-
son useless. This effectively shows the absolute need for proper statistics using random
testing.

4.5.2 CISI AND SVDCMP EVALUATION
Turning to the evaluation of the tests of the mutated numerical methods we notice the
same level of agreement. It should be noted though that in this case we do not have
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Figure 4.2: The upper boundary of estimated failure frequency in the case of ‘unfortu-
nate’ test collection (1,000 tests each) corresponding to 1, 2, 3 and 4 standard deviations
(in the case of 4 deviations, the figure indicates the upper boundary value in the quality
estimation made for the ‘1 in 10,000’ worst test collection). The triangles mark the
total average found for each investigated true failure frequency (see the text).
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Figure 4.3: Match between the upper quality bound and actual failure frequency for
‘worst case’ test collections. Triangles mark the failure frequencies for the different
defects (see Table 4.1). Panel a) is based on mutation of the CISI method while panel
b) is evaluated using SVDCMP. The scale is the same as in Figure 4.2 on page 67.

access to any theoretically calculated failure frequency but simply define the recorded
average failure frequency as the ‘true’ failure frequency. Now, performing the same
kind of comparison between the upper quality boundary for the ‘pathological’ (see
above) test collections and the actual failure frequency, we find very good agreement
between the theoretical results and the empirical evaluation (Figure 4.3). The ‘plateau’
phenomenon in the case of four standard deviations (left in both panels) is recognized
from the modulus case, but the over all agreement is of the same quality.

The failure frequency is confined to a smaller interval as compared to the modulus
fault, but contains on the other hand only five defects in each case due to the consid-
erably longer execution time. Still, there is no difference in agreement between the
simple modulus failure and the mutated numerical methods. Nor did we find any dif-
ferences between agreement for the branch, parameter or mixed defects for the two
methods.

Perhaps even more interesting is that the accuracy of the presented method ac-
tually is rather independent on the complexity of the input as long as the statistics
is good enough for the integral evaluation process underlying our results in Subsec-
tions 4.3.2–4.3.3. Otherwise this is a much-debated issue. Hamlet has in several pa-
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pers, see e.g. [121], compared the effectiveness of random testing with investigating
the fauna of the great lakes by putting in one day’s effort of commercial fishing. From
this follows the apparent logical conclusion;

the greater the lake, the poorer a method.

In our current formulation, however, it becomes evident that the input to the failure
function FS is of less interest since we are sampling the failure profile (the integral in
Equation 4.3 and 4.4, see also Figure 4.1). A complex input does complicate the use of
a more realistic user profile than the uniform distribution used here though, but only in
the input generation process itself.

Finally we note that the test collections with fewer tests conform well to the the-
oretical results in Equation 4.10, but generally the minimum value plateaus sets in so
early that most failure frequencies are covered by them in the same way as with the
modulus fault.

4.6 CONCLUSION
In this chapter we have presented a short exposé of arguments against and in favor
of random testing. Although outperformed per test, random testing may still perform
better per time unit than other test techniques and offers a set of mathematical tools that
is otherwise lacking in much testing, especially considering early phases of testing. The
drawbacks have so far been evident despite this: ambiguous evaluations and no unique
benefit over other approaches.

We have shown, however, that it is possible to transform the issue of random testing
into an equivalent problem, formulated using integrals. By applying Monte Carlo eval-
uation techniques in conjunction with the central limit theorem, it becomes possible to
evaluate the software reliability using a given test collection in a very precise manner.
Upper bounds on the true failure frequency (as given by exhaustive testing) are easily
established within this framework. Furthermore our results allows us to establish an
upper bound on the quality of a test collection returning zero failures, i.e. it provides a
limited but working success theory.

Massive empirical evaluations with simulated testing scenarios encompassing hun-
dreds of billions of tests have been used to verify the current theory successfully not
only for small artificial failures but also seeded faults in two extensively used methods.
Taken together this present a relative advancement of the state of random testing and
ads a special feature in the case of the success theory. This clearly indicates that there
is still room for random testing in today’s testing practice.
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5.1 INTRODUCTION

To test software is probably the most common way to verify a certain degree of reli-
ability. Today’s methodologies have all, more or less, evolved around two basic prin-
ciples [149] white box and black box testing. White box testing, or structural testing,
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relies on the tester having knowledge of the logic of the program, while black box test-
ing treats the software as a black box e.g. comparing output and requirements. Even
though improvements have been made, the key issue today is still the same as it was
two decades ago [204]:

What subset of all possible test cases has the highest probability of detect-
ing the most errors?1

Despite that computer hardware has been following Moore’s law [199], it still is im-
possible to test everything (i.e. exhaustive testing) due to similar exponential growth in
available software (see Chapter 4 for an elaborate discussion concerning this matter),
thus making developers focusing on quality instead of quantity [301]. Code inspec-
tion [264] is one way to ensure quality, i.e. faults being found earlier in the development
process, but the question is if this is a viable alternative for small- and medium-sized
enterprises, especially as the number of code inspectors are not growing as fast as the
size of software. Anyway, using code inspection only, is not a viable alternative in any
case [165].

Since testing is considered by some developers as being more or less forced upon
them [152], the need for automated test tools is in demand (see Chapter 2). Automated
testing can contribute to increased productivity and be used for repeated regression
testing, among other things. Creating random test input automatically is not something
new [143], and the concept of creating stubs has already been covered by others in,
e.g. [180]. As component-based (CB) software engineering grows, Korel [160] has
already shown the need for better black box testing techniques for CB and commercial-
off-the-shelf systems.

The main question this chapter tries to answer is therefore:

What candidates [black box methodologies] are suitable and efficient in
a potential robust and straightforward implementation of automatic test
creation on unit level?

By using the word suitable we imply, e.g. a method that has a high(er) probability of
finding faults which might cause high-severity failures and/or can easily be automated.
Of course, simply finding a lot of faults makes a particular method a good candidate
as well. Previous work in this field is e.g. Ntafos’ [211] theoretical comparison of
partition and random testing, and Rothermel’s et al. [82] discussion on how to best
prioritize test cases for regression testing, even though their reason for prioritizing test
cases [test suites running for several weeks] is not valid in our case. Finally, Reid’s

1The IEEE definitions of error, fault and failure is used throughout this thesis and hence this should in
our context read faults.
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contribution [244] is interesting (an empirical study comparing several different test
methodologies).

The results of the comparison, which this chapter covers, were derived from inject-
ing faults in a software, a Just-In-Time (JIT) compiler [114], already in commercial
use, thus giving us real-life conditions and furthermore software that has already been
tested extensively by both developers and users. By applying code inspection [87], unit
tests [138] and system testing [267] on a sub-domain [the Input/Output layer], before
seeding 240 faults of different severity categories, the software was deemed as being
as fault-free as could possible be the case with the limited resources at hand. All tests
that were executed on the software used Check [186], a unit test framework for the C
programming language [153], since the software was written in the C programming
language.

5.2 METHODOLOGY
As mentioned previously, one of the arguments for choosing an already shipped, com-
mercial software, was its maturity and the fact that it was not academic research soft-
ware. The academic community has faced criticism before, for evaluating software
with no real bearing on the reality [306]. Commercial software usually is a bit more
complex though, lacking the type of clear boundaries academic research software has,
e.g. having a small footprint in terms of lines of code. It also poses some initial dif-
ficulty to understand, since a researcher usually is completely new to the design and
architecture, affecting the time it takes to really start using the software for her pur-
poses. Furthermore, using commercial software in research can lead to other prob-
lems; commercial interests could influence the researcher and not all documentation is
always willingly available. At the end of the day, the importance of realistic software
examples out-weights the difficulties, however.

Usually, a developer creates test cases in the same language as the software is writ-
ten in, thus a unit test framework for the C programming language was needed. In
particular two frameworks were evaluated; Check and cUnit [7]. Check was deemed
as being the more mature of the two, especially so since Check allowed a test to fail
without tearing down the whole test suite.

Since the complete JIT compiler (171, 000 lines of source code [297]) was too
large for our purposes a delimitation was needed. The I/O-layer of the JIT compiler
was regarded as being a preferable sub-domain to test. This layer is responsible for
all input and output the JIT is performing during execution. All in all, approximately
12, 000 lines of code were being tested directly and furthermore an additional 35, 000
lines of code was indirectly affected by our test cases.
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Table 5.1: Classification of faults according to severity level.
Failure class ] of seeded functions
Transient/Recoverable 85
Permanent/Recoverable 25
Transient/Unrecoverable 85
Permanent/Unrecoverable 25

Table 5.2: Seeded faults.
Total ] functions tested 220
Functions with seeded single faults 200
Functions with seeded double faults 20

When applying the test methodologies previously mentioned, eight faults were un-
covered. Only one of these faults could, in the long run, have affected the JIT compiler
in a serious way, i.e. introducing an unrecoverable runtime failure.

Next, several types of faults, with different severity levels [267], were seeded into
the software (Table 5.1).

As shown in Table 5.2, one fault per chosen method was seeded and an additional
20 faults were added, thus having 20 functions encountering a ‘two fault’-scenario for
which we employed a straightforward homogeneous distribution. Furthermore we used
an 80:20 ratio between the transient and permanent failure severity types for the func-
tions containing single faults, since we especially wanted to challenge the test method-
ologies concerning severe failure types. Thus a major part of the seeded functions
included faults of a type that typically does not result in runtime failure for a homoge-
nous input, but still are vital for the overall functionality, e.g. failure resulting from a
null argument. This is especially important when discussing possible automatization,
since a common critique of e.g. random testing is that it only finds ‘simple’ faults.

Included in the 240 faults, were 24 boundary type faults (10%) while 40 of the
faults were placed in 20 functions resulting in a 10:1 ratio between functions with
single and double faults respectively. To summarize it, there were 200 single faults
seeded in different functions (SFF). Furthermore, an additional 40 faults were added in
20 functions, thus simulating a double-fault scenario (DFF).

Finally, several candidates were collected that could be used as black box tech-
niques in our evaluation. By using [204] as a foundation certain ‘prime suspects’ were
gathered. Figure 5.1, (c.f.) depicts the methodology used in this experiment. Worth
noticing here, is that code review was used only in preparing the test item, since it is
considered to be a white box technique, and this study deals with black box techniques.
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S e l e c t s u b �d o m a i n t o t e s t
F i n d b l a c k b o xc a n d i d a t e s C o d e r e v i e w o fs o u r c e c o d e

R e m o v eu n s u i t a b l ec a n d i d a t e s
D e c i d e t e s ts t r a t e g y

C r e a t e p a r t i t i o nt e s t c a s e s C r e a t e t e s t s u i t ef o r r a n d o m t e s t i n g
B o u n d a r y v a l u ea n a l y s i s

E x e c u t e a l l t e s t s
Figure 5.1: Principal overview of the methodology used in this experiment.
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5.3 RISKS

Before continuing, some factors that could have affected this study were identified, and
are worth pointing out:

• Is seeding faults a viable alternative or are only real faults of interest?

• Is the selection of the sub-domain and faults relevant for our purposes?

• Do any potential bias, among the developers, affect the results?

• Is a case study on a single domain a validity threat?

We believe the first question to be somewhat irrelevant, in our case, since we origi-
nally found few real faults (only eight). Furthermore, this question has been tended to
by implementing different kind of faults e.g. single/double faults and boundary faults,
which are common in today’s software development. Yet, it is worthwhile having
knowledge regarding some of the problems fault injection can contribute with [183].

The second question is harder to answer. A different sub-domain would naturally
let us find other faults. Our selection of faults and domain, however, have been based
upon some of the more typical problems found in today’s software [144, 149, 183].
Thus, we believe that the findings in the current chapter, concerning the efficiency of
the investigated test methodologies, only to a minor extent are affected by the current
choices. Furthermore, we have had the support in reviewing test cases, by one of the
senior developers responsible for designing the original software. Taken together, this
should imply the relevance of the test cases created.

The developers testing the application were never personally involved in designing
and implementing the software which should indicate a low probability of bias.

Overall, in our opinion this study design prevented any serious validity threats to
the results. Only the last question, might be considered to be a serious validity threat.
But extending our study by using other applications in combination with the answers
to the second bullet will, in the future, clarify this matter.

5.4 CANDIDATE EVOLUTION

As mentioned previously, several candidates were collected that could be used as black
box techniques in our evaluation. Today’s literature and common practice was studied
and in the next few subsections each of the found candidates are examined.
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5.4.1 PARTITION TESTING

This test technique, has been covered both theoretically [45, 124, 144, 296] and in
empirical studies [16]. The references show that partition testing has reached favorable
results.

Input data normally falls into different categories [partitions] and software normally
behaves in the same [equivalent] way for all members of a particular category [22]. By
partitioning the input domain, according to some rules [267], a developer can test very
large parts of it without needing to traverse the whole input domain. The difficulty in
this specific case, would be to automate the partitioning of input domains in a satisfac-
tory way. Nevertheless, partition testing is considered as being a prime suspect in our
case, since it holds a promise of both good results and a high degree of robustness in a
potential implementation.

Test cases were implemented by dividing the input domain in partitions, following
the specification, source code and the developer’s previous experience regarding which
input values are likely to produce failures.

5.4.2 BOUNDARY VALUE ANALYSIS

Since boundary value analysis (BVA) is a variant of partition testing, the same reasons
[as for partition testing] apply for including BVA in the comparison.

Test cases were implemented by having every boundary tested on all functions.
This involved testing the actual boundary value and the values directly below and above
the boundary value.

5.4.3 CAUSE-EFFECT GRAPHING

One weakness with partitioning and BVA is their inability to examine the compound
of input situations. The complication when dealing with this argument is more or less
the same as with exhaustive testing—the number of combinations are astronomical.
Cause-effect graphing [204] helps the developer to select the right combinations, in
some cases by directly adhering to the specification [221]. By creating Boolean graphs,
subsequently showing cause vs. effects, test cases can be created.

However, since one of the incentives for this chapter was automatization, we believe
cause-effect graphing to initially be somewhat difficult to implement in a straightfor-
ward and robust way due to the sheer complexity involved.
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5.4.4 ERROR GUESSING

Error2 guessing is not as some might think black magic. A somewhat experienced
developer can use error guessing, i.e. guessing were the fault might be, as a complement
to other testing strategies, something Myers [204] once described as “smelling out”
errors.

Since error guessing is highly intuitive and typically a human process, we regard
it unsuitable for automatization. Only some, more advanced, types of artificial intel-
ligence would make this a viable alternative. The implementation of such a tool in
commercial software development seems highly unlikely in the near future.

5.4.5 RANDOM TESTING

The derivative anti-random [184] and especially random [71] testing have been used
as statistical test methods, and are unique in that they provide answers about possible
remaining faults (see Chapter 4). Test case creation for random testing is also possible
to automate to some extent [143], however the problem with needing an oracle [giving
correct answers] is likely to show up sooner or later when automatization is at stake.
Anyhow, random testing will be included in this comparison due to its possibility to be
automated and it showing good results in previous empirical comparisons [244].

Additionally, in this context, it is especially important to notice random testing’s
good ability to cover input ranges having a large volume, establishing a limit on the
failure frequency, even if not necessarily finding all faults. Random testing can thus
be used as a technique to estimate the reliability of certain software aspects (see Chap-
ter 4), hence having the potential to work as an automated quality estimation.

All 196 functions (within Faults in Legal Range scope, FLR) were tested with
1, 10, 102, 103, 104, 105 and 106 different input values. The input values were allowed
to be randomly picked from all legal values, e.g. integer, and tested on the functions
containing faults in legal range, i.e. the Func. with FLR column in Table 1 (Appendix
B, page 217).

5.4.6 EXHAUSTIVE TESTING

As has already been mentioned, the combination of all possible inputs, makes exhaus-
tive testing a mission impossible. But it would be careless to disqualify exhaustive
testing for all occasions. Exhaustive testing could be used in extremely small sub-

2The IEEE definitions of error, fault and failure is used throughout this thesis and hence this should in
our context read fault or failure guessing depending on the aim.
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domains, e.g. boolean input or testing some of the most critical functions in a software.
This is, of course, also the case when it comes to random testing.

Extensive random testing, instead of exhaustive testing, could instead be a viable
option on extremely small sub-domains covering critical parts of the software. In this
comparison, exhaustive testing was not used.

5.4.7 NOMINAL AND ABNORMAL CASE TESTING

Both nominal case testing, i.e. test cases using ‘correct data’ as input, and abnormal
case testing, i.e. the opposite, were used during this comparison. A successful test is
one that detects a failure when a method, seeded with faults, is executed. This can be
achieved both with nominal and abnormal case testing.

5.5 RESULTS

As mentioned earlier, there were eight (8) faults uncovered during the preparation of
this comparison. One fault was considered more serious, being of a transient and un-
recoverable type, creating a run-time failure without possibility to recover. The initial
EP tests did uncover this serious fault and six other faults. One real fault was not un-
covered with partition testing, but instead was found when applying random testing.
The reason partition testing did not uncover this fault was because errors were made in
the partition identification. This particular problem will be discussed more in the next
section.

Table 1 (Appendix B, page 217), is a compilation of all the faults that were seeded
in the different functions and the detection rates of the different failing functions. The
original faults are included in the total amount for each test technique.

The functions, in Table 1, are categorized into functions containing Boundary Value
Faults (BVF) and failures occurring with input in the legal range (Faults in Legal
Range, FLR). The number of detected failures due to seeded functions are listed for
the EP, random and BVA testing techniques (number of detected failing functions con-
taining double faults within parenthesis).

There were 24 (10%) boundary value faults (BVF) included in the total 240 faults.
When analyzing the result of random test cases, one must take this into account. The
probability for a random test case to hit a BVF is extremely low, consequently there is
a need to subtract these types of faults from the random test case category. In Table 1
this is illustrated by the Func. with FLR column, i.e. this is the actual fault quantity
that random test cases should be compared to and not the total number. Obviously, this
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is also the case when looking at the Equivalence Partitioning (EP) column, since BVA
is illustrated by itself.

For the sake of clarity one example can be drawn from Table 1. The first row
covers Transient/Recoverable (T/R) failure types. All in all, 80 single fault functions
(SFF) and 5 double fault functions (DFF) were of this type. Included in these 85 faults
were six functions of BVF type (always in the SFF category). In total there were 79
functions with Faults in Legal Range (FLR). Using EP, 64 SFF and 4 DFF (presented
in Table 1 as 4D) were uncovered out of the total 79 FLR. On the other hand, random
testing uncovered 7 SFF and 2 DFF out of the total 79 FLR. Finally, all the seeded
boundary value faults (6) were found using BVA.

5.6 ANALYSIS AND DISCUSSION
As can be seen from Table 1, Equivalence Partitioning (EP) is by far the most effec-
tive methodology when it comes to uncover functions containing faults. In the Tran-
sient/Recoverable category, EP found approximately 86% ((64 + 4)/79) of the total
number of seeded functions with Faults in Legal Range (FLR), while at the same time
discovering 4 out of 5 functions containing double faults (DFF). Similarly, in the Per-
manent/Recoverable category, 89% FLR and 80% (4/5) of the functions with double
faults were found.

When looking at the unrecoverable category, e.g. run-time execution failure, the
results are similar—if somewhat lower. The Transient/Unrecoverable severity category,
while using EP, had a 72% discover ratio for FLR, while at the same time discovering
80% of the double fault functions. Finally, in the Permanent/Unrecoverable category,
EP found 68% FLR and 80% of the DFF. Figure 5.2 (next page), gives a combined
picture of how well each test methodology performed in finding the total number of
faults.

By applying stricter partition identification techniques, combined with further re-
search in this area, we believe that these numbers can improve even more. On the other
hand, it is worth noticing that in this particular case, EP had a high discover ratio when
it came to finding functions with double faults.

Turning to random testing, it is important to compare the number of found functions
with faults and the number of random tests actually executed, since it is a statistically
based methodology. Consequently 1, 10, 100, . . . etc. random tests per method were
executed, with the result of no additional detected failures after 104 tests (per function),
to an upper level of 106 tests (c.f. Figure 5.3). All in all, random testing found close
to a total of 12% of the functions containing FLR (23/196), while at the same time
discovering 25% of the double seeded functions. As Figure 5.3 illustrates, already 100
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Figure 5.2: Fault discovery distribution. Random testing found one fault which equiv-
alence partitioning did not find.

Figure 5.3: Efficiency of random testing applying 1, 10, 100, . . . test cases per method
in the legal range input. No new additional faults were found beyond 104 random test
cases per function.
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tests per method discovered more than 6% of the faults (50% of the total number of
faults that random testing found).

As expected, we found that random testing initially discovered ‘large-partition-
faults’, i.e. faults that could be easily found by giving a method nearly any value, since
the value would fall within a fault’s scope. After a certain amount of random tests,
these ‘large-partition-faults’ were discovered, and the rate of new detected faults per
random test case decreased rapidly. This should not be seen as a failure on the behalf
of random testing though. Comparing the input range connected to the seeded faults
(fault input range, FIR) with the total legal input range, random testing detected all
faults with a FIR/FLR of more than 10−7. The remaining seeded faults made up less
than a 10−6 fraction of the total legal input range of the entire software investigated.
Hence, random testing did perform flawlessly in its own context and established a limit
on the failure frequency well in accordance with theory. However, the rare failure
types, resulting from e.g. null input, should clearly be handled by other means such as
e.g. partition testing.

When comparing effectiveness of different test methodologies and their potential
use in an automatization process, it is not only important to apply test cases to real-
life code, but also test real-life (similar) faults. The research in this chapter, is mainly
built on the seeding of simulated faults in a ‘cleaned’ real-life code. However, looking
only at the original uncorrected faults, although making up a statistically very poor
example, we found that 7 out of 8 original faults (87%) were uncovered by EP, while
random testing uncovered the 8th fault (there were no BVF in the original code). This
indicates a reasonable agreement between the findings regarding seeded faults and real-
life faults, although further studies are needed since the conclusion can not be said to
have a statistical significance.

On the other hand, it is important to realize that there is no silver bullet when it
comes to testing, each test technique has its strengths and weaknesses. By applying
stringent rules when identifying partitions and combining several test methodologies
there is a higher probability of detecting more faults.

Regarding severity, a straightforward model was employed based on a linear scale
classification of the seeded functions. Although somewhat crude, this gives a reason-
able tool to judge the efficiency of the methodologies in finding faults which could lead
to severe failures. Unrecoverable failure types, for obvious reasons, were considered
more serious than recoverable. In a similar manner, transient failure types were deemed
more severe than permanent, since they are generally more difficulty to find due to their
inconsistent behavior, thus leading to Table 5.3 (next page).

By multiplying the effectiveness (%) in finding functions containing faults (in each
category) with the weight (c.f. Table 5.3), it was found that partition testing had a
severity coverage of nearly 75.5% (c.f. Figure 5.4). The only minor weakness the in-
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Table 5.3: Weight classification of the severity associated with different failure types.
Severity Weight

Transient/Recoverable 2
Permanent/Recoverable 1
Transient/Unrecoverable 4

Permanent/Unrecoverable 3

Figure 5.4: Chart A highlights the EP severity coverage, while B shows random testing
severity coverage (both with respect to FLR). The white pie by itself symbolizes faults
not found of varying severity. Clockwise from the white pie we have the different
severity categories; P/U, T/U, P/R and T/R, as explained in Table 1 (Appendix B,
page 217).

vestigation of partition testing exposed, was its somewhat lower effectiveness at finding
faults in the Transient/Unrecoverable failure category (72%). This, however, should be
considered being a rather good number, since it is the most serious type of failures (by
weight). Random testing, however, demonstrated a severity coverage of just slightly
more than 14%.

Taking the number of faults uncovered, and the severity coverage of the different
methodologies, we find EP to be the most efficient and promising test methodology
investigated. Combining two or more methods, including EP, in an automatization
scheme appears to have a definitive potential to uncover a majority of faults at the unit
level. Furthermore, improving the partition identification technique, could give even
better results.
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5.7 CONCLUSION
Using commercial software and seeding faults, we investigated the efficiency with re-
spect to finding (severe) faults for three different black box test methodologies. Equiv-
alence partitioning (EP), random testing and boundary value analysis (BVA) were cho-
sen for their possible inclusion, in robust and straightforward implementations, of au-
tomatic test creation on unit level.

Seeding a total of 240 faults, in four different severity categories, in a ‘clean’ ver-
sion of the software, we found EP to uncover more than 79% of the total number of
functions containing faults in legal range. Classifying the severity of the different cat-
egories, using a linear weight scale, we discovered that EP addressed 75.5% of the
introduced fault severity. 72% of the faults resulting in Transient/Unrecoverable fail-
ures (deemed the most severe) were uncovered, possibly indicating a lower efficiency
when using partition testing for more severe type of faults.

Random testing detected all faults with a connected input range fraction larger than
10−7 of the total legal input range, encompassing 23 functions containing faults with
one single fault method not detected by EP or BVA. To ensure that we used a high
enough number of random tests per method, we employed 1, 10, 100, . . . etc. random
test input(s) per method. No new failures were detected beyond the rate of 104 random
tests per function. Running EP and random tests on the original faults only, EP found
seven out of eight faults, while random testing found the 8th.

Boundary value analysis, on the other hand, proved to have a high discover ratio
(100%) concerning seeded boundary value faults. Naturally, no other types of faults
were detected by BVA.

We conclude that the single most effective test methodology, of those investigated,
concerning uncovering faults leading to severe failures, is equivalence partitioning. By
combining EP with its ‘relative’ BVA, we consider it [the combination] to be of vital
interest in an automatization scheme. On the other hand, if random testing is allowed
to be a ‘turbo’ option for especially interesting (most used or critical) sub-domains
of a particular software, it could provide an additional edge in testing. This could be
implemented by using different profiling schemes combined with coverage analysis.

In addition to that, the characteristics of random testing, with respect to quality
estimations (as could be seen in Chapter 4), is yet another reason to not disqualify it.
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6.1 INTRODUCTION

Computers are becoming faster, while software is growing rapidly in complexity, thus
the need for and possibilities in using automated testing will most likely increase in
the future. This research subject holds many interesting aspects and challenges, one
of them being automatic creation of test cases and the combination of different testing
techniques in an automatization scheme.
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According to Frankl et al. [101] there are two distinct types of testing methodolo-
gies: statistical testing and defect testing. The former being a way to test the software
under operational conditions, e.g. performance and reliability, and the latter a way to
find deviations between the software and its specification. In this chapter we focus on
the latter.

Defect testing can be further divided into black box and white box testing tech-
niques based on how the test engineer views a certain piece of software. Black box
testing or functional testing is used when a software is treated as a black box and the
engineer studies the input and corresponding output, while white box or structural test-
ing allows an engineer to create test cases derived from the knowledge of the software’s
internal structure. In this chapter we focus on the former.

Random testing, is one of the more common black box techniques. An important
strength of random testing is its ability to indicate the quality of a test [122] (in addition
see Chapter 4), i.e. to give a statistical indication of the extent to which a test can be
trusted. If an engineer can get numbers such as; ‘there is a probability of less than 4%
that there exist faults in component X’, it is ultimately better than the current state of
the art, i.e. ‘component X has been tested for Y hours using methodology Z’.

However, random testing has been subject to severe criticism, especially concern-
ing the need of an oracle to evaluate the black box answer and the difficulty to find
hard found faults, i.e. faults displaying a very low failure frequency (see Chapter 5).
Nevertheless, random testing offers a fairly easy path towards automatization, given
an existing oracle—a situation common when e.g. porting code. It furthermore of-
fers a mathematical toolbox and robustness that many other approaches lack. In the
specific case of partition testing any potential mismatch between specification-derived
partitions and actual partitions might prove hard to find.

Partition testing has unfortunately, despite rather good results concerning test effec-
tiveness, not made any great leaps in small- to medium-sized enterprises. The lack of
automated tools is certainly one reason. Hence, software engineers [not test engineers]
usually restrict themselves to only use simple boundary value analysis [204], while at
the same time check one valid and one invalid input (Chapter 2).

Striving for improvements in automatization of testing, partition and random test-
ing present themselves as good candidates for a robust implementation, as Chapter 5
showed. To evaluate the potential increase in effectiveness, when combining these two
techniques in a future automatization scheme, thus becomes highly interesting.

Hence, the question we are trying to answer is:

Aiming for a future automatization; what is the potential, with regards to
effectiveness, in combining partition and random testing?
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In this chapter we present an evaluation of combining partition and random testing,
using a real-life well established software method. Employing 40 separate clones,
i.e. copies of the same software, using the single fault assumption, we inserted one
fault in each clone and performed subsequent partition and random testing.

This evaluation clearly indicates an increase in effectiveness when adding random
testing to partition testing. At the same time, the increase in efficiency inevitably fades
because of the added number of random test inputs being used. Nevertheless, the po-
tential in an automatization scheme for creating and executing test cases is visible, thus
indicating that a future implementation combining the best of two worlds, i.e. partition
and random testing should be pursued.

The remainder of this chapter is organized as follows. Next, a background is given
regarding related work. The experimental setup is covered in Section 6.3 and the fol-
lowing subsections, while the results are presented in Section 6.4. In Section 6.5 there
is a discussion of the results; in particular on how the results affect our research ques-
tion and the future goal of automatization. We then conclude this chapter in Section 6.6.

6.2 BACKGROUND
Others have looked at the effectiveness when combining different testing techniques
before. Chen and Yu’s paper [48] on the relationship between partition and random
testing gives an insight on the differences and similarities of the two testing tech-
niques. Boland’s et al. work on comparing these testing techniques via majorization
and Schur functions [32], provides us with an empirical validation using different, but
nevertheless, valid tools. Recent investigations have compared the effectiveness of ran-
dom testing and partition testing [119, 211], finding a substantially complex picture
concerning the effectiveness of the different test approaches. In addition to that, we
can see a need for continuously researching this subject as partition and random testing
techniques constantly improves.

Software testing and especially the automated aspects thereof is an interesting re-
search topic where there is still room for improvements. Nevertheless, Korel’s [159]
and Meudec’s [191] papers on automatic test data generation are interesting even
though they focus on dynamic data flow analysis during software execution or extract-
ing test cases from formal specifications. Using formal methods for creating partition
tests has been covered by e.g. Jeff [8]. However, this approach is not pursued in this
chapter. In a similar area we can find Yin’s et al. [306] work regarding automatization
aspects appealing. However, they have a slightly different focus and use anti-random
testing, which is not the case in this study.

When looking at the research in the area of testing techniques, especially parti-
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tion and random testing, several accomplishments are worth taking into consideration.
Equivalence class testing, equivalence partitioning or simply, partition testing, has been
covered theoretically to a large extent the last decades, e.g. [45, 124, 144]. Empirical
studies made, e.g. [16, 244] and Chapter 5, give an indication on the difficulty of empir-
ically validating the theoretical work made and examining the possibilities to automate
the execution and creation of partition tests. This leads to, in some cases, having mas-
sive number of test cases and thus the need to prioritize them increases [254].

Boztas’ work [37] on trying to improve partition testing, especially when com-
pared to random testing, is also an interesting follow-up on some of the weaknesses of
partition testing.

Apart from partition testing, random testing, i.e. the technique of randomizing input
for a given method and then comparing the output with a known correct answer [122],
has been used extensively in academic research. However, the last three words, “[. . . ]
known correct answer” usually provides a test engineer with enough problems. To be
able to verify the correctness of a given piece of software the correct answer must be
known. This is usually done by creating and using an oracle of some sort [81].

One additional matter is worth mentioning concerning random testing, i.e. the ques-
tion of profiling [175, 202]. Machines might be pseudo-random, but users are anything
but random. A user, executing a software, usually behaves in a reasonably predictive
way, at least compared to true random input.

6.3 EXPERIMENTAL SETUP

Combining testing techniques will always ensure a fault finding effectiveness equal or
greater to the most effective technique of the ingoing approaches. While this truth is
self-evident, the exact nature of the improvement in effectiveness is less obvious.

Since we are focusing on automatization and the potential gains in combining par-
tition and random testing, we need to clarify the assumptions made. One of the central
issues is the definition of effectiveness:

Definition 3 (EFFECTIVENESS) Effectiveness in a test methodology is measured as
the number of faults (or associated failures) detected for a given piece of software.

We furthermore define efficiency to be the effectiveness measured per resource unit.
In this respect it is important to point out that the relevant resource is computational
power, since time spent on testing in a future fully automatic implementation will solely
depend on the available computer. Thus we reach the following definition:
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Definition 4 (EFFICIENCY) Efficiency of a test methodology or combinations thereof,
in the context of automatization, equals the effectiveness divided by the number of
CPU-cycles necessary to reach the current number of detected faults for a given piece
of software.

Many types of faults will be easily revealed with a relatively small numerical effort
spent, displaying a high degree of efficiency. However, faults difficult to find, e.g. only
triggered within very small input domains not agreeing with straightforward partition
schemes, partly challenge the strive for maximum efficiency. These faults are often
difficult to find manually as well, which still makes the automatic approach prefer-
able, especially when counting the development in hardware, which economically will
improve the benefit of ‘low efficiency solutions’. Thus, the effectiveness in detecting
these types of faults is of greater importance for a potentially automatic testing scheme
to be considered useful, than the immediate efficiency.

Any test methodology (or combination thereof) deemed suitable for automatization
should display a high effectiveness in finding faults with small input domains triggering
the associated failure, or otherwise being difficult to detect.

The effectiveness/efficiency ratio should not bee too large, though, rendering a so-
lution unpractical for decades to come. Hence, the current investigation assume large,
but not infinite resources. The trade-off and the impact on the potential automatization
are discussed in detail later.

6.3.1 OBJECT EVALUATION
In this evaluation two categories of seeded fault types are used (both being ‘hard to de-
tect’) to evaluate the effectiveness of the combination of partition and random testing
with respect to automatization. We furthermore make use of the single fault assump-
tion, seeding only one fault per piece of software.

After choosing a suitable method (see below), multiple identical copies of the soft-
ware at hand (clones), were made and subsequently seeded by hand with individual
faults. This resulted in 40 different fault seeded software clones (FSSC) which were
subsequently tested separately. The original non-permutated method was used as an
oracle.

The CUnit [7] test framework was used to run the test suites. The main reason for
using CUnit was that the chosen object was written in ANSI C [257] (see next subsec-
tion). Hence, this lead to all test cases being written in ANSI C as well, since using the
same language as the tested object is usually preferable in unit testing frameworks.

All data gathering was performed by redirecting output to files and then using stan-
dard UNIX tools for extracting significant data, e.g. if a fault was found or not.
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6.3.2 CHOICE OF METHOD
Different types of software units, i.e. methods, were examined, looking for a number
of characteristics. First and foremost, the unit had to be as fault free as possible and
preferably a real-life example. Secondly it needed to have a certain size. Testing a
method consisting of only 20 lines of code would probably prove to be quite hard
when injecting faults.

In the end, the SVDCMP method found in [236], was considered to be a good
choice. Consisting of 184 lines of code written in ANSI C it allowed faults to be
injected in a straightforward way. A supporting method, pythag, which computed
(a2 + b2)2 without a destructive underflow or overflow, was left intact, while only
consisting of five lines of code.

The SVDCMP method constructs a singular value decomposition of any matrix and
is declared in Listing 6.1:

Listing 6.1: The SVDCMP method definition.
1 void svdcmp ( f l o a t ∗∗a , i n t m, i n t n , f l o a t w[ ] , f l o a t ∗∗v )

In [236] one can read: “Given a matrix a[1..m][1..n], this routine computes its
singular value decomposition, A = U · W · V T . The matrix U replaces a on output.
The diagonal matrix of singular values W is output as a vector w[1..n]. The matrix V
(not the transpose V T ) is output as v[1..n][1..n]”. For further reading concerning the
underlying algorithms please see [112, 271].

This method has, basically, three input variables that are of concern to us. First,
we have the actual matrix that should be computed (float **a), and then there are
the variables m and n which contain the number of rows and columns the given matrix
has. The correctness of the method can be verified by checking the variables w and v

respectively.

6.3.3 FAULT INJECTION
What types of faults, and what number of faults should be injected into a software when
testing for effectiveness? Selecting the right faults for injection is not easy and is in
itself an elaborate research subject [25, 286].

To properly challenge the possible benefits from using random testing, on top of
partition testing, two different fault types are chosen, with 20 faults of each type, using
all in all 40 FSSC. The first category (type A in this evaluation) consists of faults where
lesser/greater than (<, >) control statements have been changed to the opposite, or the
‘lesser than’ statement to ‘lesser than or equal to’ (<=) etc. By changing the flow of
execution, even a—in theory—perfect partition scheme would come to divert from the
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‘true’ partitions and thus stand a substantial risk of not detecting all faults. It should be
pointed out that this fault type is readily detected using e.g. code inspection [217], but
this evaluation is done under a complete black box assumption.

The second type (B-type) of faults injected into the different software clones con-
sists of different parameter faults, such as ‘off-by-one’ and bitwise faults where values
are changed to simulate human mistakes. These kind of faults can be extremely hard to
detect even in a white box approach since the correct parameter value has to be known
and be compared with. It is also a fault type that sometimes is very hard to detect using
partition testing since the detection of run-time failures depends on the exact interac-
tion between input values and parameters; a major shift in parameter value might block
the entire method from executing properly, while a small shift might only interact with
very specific input.

While both types of faults typically provides a challenge for partition testing, they
are also chosen to challenge random testing—some of the type A faults (e.g. the ex-
change of < to <=) holds extremely small fault volumes, while the parameter faults are
tunable in failure frequency. Generally lower end failure frequencies have been chosen
to properly exercise the challenge that no rare faults are found by random testing.

6.3.4 PARTITION SCHEMES
Several techniques, for creating partition tests, have evolved during the years. In [146],
four basic equivalence class testing cases are covered, that might serve as a good base-
line:

• Weak normal.

• Strong normal.

• Weak robust.

• Strong robust.

The last two class test cases, i.e. robust, are usually not necessary to cover with
today’s programming languages. These test cases deal with, e.g. invalid input. These
types of faults will usually produce a compiler error or in some cases a compiler warn-
ing in most, if not all, strongly typed programming languages. Even though the use
of dynamically typed languages has increased in recent years, statically typed ones are
probably still the most used and thus what we focus on here

The first two normal class test cases, on the other hand, are still very valid when
testing software today. Weak normal equivalence class testing is built upon the single
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fault assumption, implying that only well defined input in specific partitions is assumed
to trigger any failures at run-time.

Strong normal equivalence class testing, as opposite to weak, tries to cover all pos-
sible combination of inputs. The Cartesian product (also known as the cross product)
guarantees that we cover the equivalence classes.

Turning to the method at hand we notice that numerical functions such as SVDCMP
tend to converge slower for large input. Furthermore, it is generally numerically dis-
advantageous to use large numbers due to round-off errors. Taken together, this often
leads to an increased usage of smaller (normalized) numbers in the input. Hence, we
have chosen a restriction on the float input range. The exact choice here is unimportant,
but to investigate defects sensitive only to high end numbers would be unrealistic and
of little interest in this case.

Although the usage of small numbers in the input has a relatively general validity
in this case, different end-users are still going to formulate different additional require-
ments and hence lead to discrepancies in the specification. Using a black box approach,
such discrepancies in specifications or requirements would potentially lead to different
partitions in a real-life situation, despite that the singular value decomposition is clearly
defined for all ‘valid’ matrices.

In order to acknowledge these problems, to at least some degree, we have chosen to
utilize three different partition schemes (3PS, 4PS, 10PS). If, for example, the method
will be used in calculating small numbers, but there exists no special preference, it is
reasonable to partition the input range into positive and negative numbers, and also
differ between ‘high’ and ‘low’ numbers. Hence a reasonably valid partitioning to use,
for the entries (x) in the input matrix is:

• −2.0 ≤ x ≤ −1.0

• −1.0 ≤ x ≤ 0.0

• 0.0 ≤ x ≤ 1.0

• 1.0 ≤ x ≤ 2.0

The second partition scheme (3PS) is based on the imaginary requirement that the
‘high-end’ partitions have different boundaries, and all ‘low-end’ numbers are equiva-
lent, regardless of sign. This leads to the partitions [−1.8, −1.0], [−1.0, 1.0] and [1.0,
2.2].

Finally we have also utilized a third ‘fine-meshed’ partition approach of brute force
type, i.e. ten equally spaced partitions over the interval [−2, 2]. It should be noted
though, that the testing scenarios at hand, are of course neither unique nor self-evident.
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Figure 6.1: Variable I partitioned into three partitions.

The inclusion, however, of different partition schemes here, only intend to uncover
the potential sensitivity of the partitioning done in a process such as this. If a parti-
tion scheme is implemented in a non-effective way, then other testing techniques will
hopefully uncover these flaws.

6.3.5 TESTING SCENARIOS
The two most straightforward testing scenarios, in choosing the effort of the random
testing for each partition, are to either use proportional distribution, based on the direct
size of each sub-domain, or to assume an equal importance of all partitions. While the
former is close to ‘normal’ random testing—on average random testing with uniform
input would result in a similar distribution, but with different variance—the latter fo-
cuses on the concept of equivalent partitions. In a genuine partition testing approach
there is no obvious way to determine how one equivalent partition would outweigh
another.

Taking the above discussion into account, and at the same time remembering that
one of the future main goals was automatic execution of tests and setup of test cases,
the following two scenarios were chosen:

S1 Generate randomized input, with the size of 106, on each of the partitions in an
input variable.

S2 Generate randomized input, corresponding to the size of the partition. Also
known as proportional partition testing [211].

An explanation of one of the scenarios is appropriate. In S2, if a method has one
variable as input, while 3 · 106 random tests are going to be performed and the parti-
tioning is analyzed to be as per Figure 6.1, then 3

5 · 106 random input should be tested
on partition P1, while partition P2 and P3 should be tested with 1 1

2 · 106 and 9
10 · 106

respectively.
Using small matrices (i.e. 2x2) for convenience, we apply the two testing scenarios,

S1 and S2 (Table 6.1). First by executing one value in each partition corresponding
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Table 6.1: Partition schemes and maximum number of random test data per partition
used. 4PS, 3PS and 10PS is short for four-, three- and ten-partition scheme respectively.

Scenario Partition schemes

0.25 · 4 (4PS) 0.2 + 0.5 + 0.3 (3PS) 0.1 · 10 (10PS)

S1 106 106 106

S2 (4 · 106) · 1
4 (106 · 3

5 ), (106 · 1 1
2 ), (106 · 9

10 ) (10 · 106) · 1
10

to traditional partition testing, then performing random testing for each partition using
10, 100, 103, 104, . . . etc. tests within the stipulated range. All results are averaged over
the total number of available tests, e.g. the number of faults for 104 tests is averaged
over 100 · 104 tests. Utilizing strategy S1, the random test series continues up to 106

for each partition, while in the proportional case (S2), tests will be distributed over the
available partitions in direct relation to their size.

The partitioning of the method and distribution of random tests are summarized in
Table 6.1.

As a side note it is worth mentioning that the method, in addition to the above
schemes, should be tested with variables m and n being incorrect with respect to the
actual size of the matrix. In this particular case, all faults falling into this category
were discovered immediately by the function’s own self-check parts, why none of these
faults were included in this experiment.

6.3.6 VALIDITY THREATS

Before examining the results of this evaluation, some factors that could have affected
this study are worth pointing out. First of all, the choice of what method to test, can be
discussed. In the end, a well established method which have been used for many years,
was deemed necessary for our purposes. By using several copies of the same method,
instead of using many different methods, some certainty could be reached with respect
to the method being identical for each test run—except for the seeded faults. A more
general validity could be reached by repeating the procedure with additional methods,
however.

The types of faults used in this evaluation does not represent the most common
fault types but that was not the intent either. This evaluation explicitly aimed at testing
the effectiveness of different testing techniques when it came to uncovering faults with
low failure frequencies. Other studies, as mentioned in Section 6.2 and partly discussed
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in Chapter 5, have already showed that some faults are easier to uncover with certain
testing techniques.

Since the method used in this evaluation did not have any real users, an artificial
specification was used. This is an obvious weakness since any such specifications have
an element of subjectivity to it. On the other hand, it is essential for a fault seeding
procedure, that the method used, is as trustworthy as possible and the real-life example
of general interest. This, however, tend to result in non-exclusive specifications making
partitioning problematic.

The main threats can thus be summarized as follows:

• Usage of a single method.

• Representation of faults.

• Artificial partitioning.

In the end, there will always be a problem when evaluating and comparing different
testing techniques. Even though they, in this case, build upon the same assumption
(black box), the steps these techniques take to uncover faults are radically different.

6.4 RESULTS
In Table 6.2 (page 98) a summary of the results is presented. Note, however, that a
detection limit for EP (partition testing) was set to a minimum of 5% on average, in
order to allow for a fault to be counted as ‘detected’. In Figures 6.2 and 6.3 (next
page) the results are presented with respect to the 4PS and the in-homogeneous 3PS
respectively.

Examining the results from this evaluation, we notice a very low detection rate for
partition testing (as can be seen from the first value on the x-axis in Figures 6.2–6.4 on
pp. 96–97). This can partly be derived from the artificial specifications and partition
schemes used, but is mainly connected to the type of faults seeded. Compiling the
results from random testing, we also notice a typical ‘detection build up’ with the
increasing number of test cases, see Figure 6.4 (please note that the first test case in the
figure corresponds to the simple partition testing situation on average).

Although the fault finding ratio increases, together with increasing numbers of ran-
dom tests performed, it is something that should be generally expected (sufficiently
many random tests will be equivalent to exhaustive testing). However, the investigated
FSSCs at hand clearly demonstrates the benefit of adding random testing to partition
testing for the hard to detect fault types at hand. The full results as found in Table 6.2,
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Figure 6.2: Number of detected faults (types A+B), using equivalent distribution of
random test data on the 4PS (note the switch from logarithmic to linear scale).

Figure 6.3: Compilation of detected faults using proportional (lower line) and equiv-
alent (upper line) distribution of random test cases for the 3PS, i.e. inhomogeneous
partitions (note the switch from logarithmic to linear scale).
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Figure 6.4: Number of detected faults (types A+B), using equivalent distribution of
random test cases on the 10PS (note the switch from logarithmic to linear scale).

clearly indicates that no ordinary weak partition testing would have detected the seeded
faults at hand, mainly since the faults not found by partition testing were discovered
very few times by random testing (between 12 and 967 times).

While the 4PS (Figure 6.2) and 10PS (Figure 6.4) are rather similar, the inhomo-
geneous 3PS, with partitions of unequal size, makes the distribution of random testing
important. The equivalent distribution of random tests assumes all partitions to be
equally important, but the proportional distribution directs more effort to the largest
partition. In this investigation it results in a less favorable outcome, which is demon-
strated in Figure 6.3 by the lower-end proportional distribution line.

The different number of tests in each partition furthermore results in differences in
the statistical validity of the results for each partition, while the equivalent distribution
ensure identical quality estimations for each sub-domain (please see Chapter 4 for a
wider discussion).

6.5 DISCUSSION
As we have seen, random testing initially find faults with a large size with respect to
the variable’s volume [211]. At the same time, it is not strange to find that running
more random tests on a given partition also uncovers more faults.

Nevertheless, if a partition would have been classified in an incorrect way, random
testing has a high, or at least higher, probability in uncovering any potential faults. In
this evaluation, Table 6.2 (next page) indicates that random testing found faults that
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Table 6.2: Fault detection rate for partition and random testing. Crosses marks ‘de-
tected’ (partition testing) and numbers the number of times the seeded fault in each
corresponding FSSC actually were detected by random testing.

Fault type A Fault type B
Fault no. EP 3PS EP 3PS

1 111
2 43
3 X 1, 131, 342 44
4 141 X 3, 445, 677
5 64 X 2, 322, 112
6 X 864, 554 762
7 X 2, 298, 533
8 X 8, 556, 512
9 12

10 X 4, 444, 421
11 37
12
13 967 43
14 23
15
16
17 373
18 34 112
19 143
20 67
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would have been difficult to uncover by partition testing, even if the partition classifi-
cation would have been done in a different way, e.g. Fault no. 13, Fault type A.

It is also well known that while partition testing displays difficulties in finding faults
deviating from the equivalent assumption, e.g. faults depending on exact input, or sim-
ply changing the partitions themselves, random testing makes no use of any additional
information about the software. Thus, employing proportional random testing within
a given partitioning can be proven to be at least as good as only using (homogeneous)
random testing [48].

On the other hand, the achievement of any degree of homogeneity within the cho-
sen partitions will automatically improve the effectiveness drastically [55]. Thus, as-
suming truly equivalent partitions, and furthermore assuming equal importance among
the partitions, the resulting effectiveness should be higher if this (equivalence) can be
achieved. This is also indicated in our findings, although the underlying data is not
enough to draw definitive conclusions from (see Figure 6.3 on page 96). An additional
side effect is that an equal number of random test input ensures identical statistical
quality boundaries for each partition.

Looking at the effectiveness, the results clearly indicate a definitive increase using
random testing on top of partition testing. For the types of fault at hand, partition test-
ing performs rather badly. In an automatized scheme, only relying on partition testing
would consequently miss out on a large portion of low failure frequency faults. Hence,
simply adding random testing in itself to partition testing increases the effectiveness
for this type of faults. A properly conducted partition scheme would, on the other
hand, increase the effectiveness of the random (like) testing further as noted above.
Thus performing random testing, not only as a complement, but actually in combi-
nation with partition testing is of clear value to any automatization schemes. This is
especially so since it is relatively straightforward to apply random testing automatically
(given an oracle) within the sub-domains of the input, as defined by the partitions. Dif-
ferent weighting of the partitions would further increase the effectiveness of such an
approach.

The indicated effectiveness/efficiency ratio in our findings is, however, not that ad-
vantageous. In order to find a reasonably large portion of the faults at hand, massive
testing has to be performed, see Figures 6.2–6.4. Since the computational resources
necessary for the random test cases executed, basically scales proportional to the num-
ber of test cases, the current approach becomes increasingly inefficient. It should be
pointed out though, that the limits pursued in the current scenario is in the lower end
of failure frequencies. Furthermore, the initial high efficiency of partition testing is of
little use, if the associated effectiveness is too low, since no additional faults are found
after the first test cases.

Implementing the partition and random combination approach on more powerful
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computational resources (e.g. parallel execution) would reduce the efficiency prob-
lem even further. The possibility to implement an automated test generator/executor
should also be taken into account; while the efficiency is lower than some other test-
ing schemes [40], the implementation is likely to be correspondingly simpler. Taken
together this clearly indicates the potential in using a combination of partition and ran-
dom testing in future automatization despite the slightly low efficiency.

Since efficiency is one crucial factor to take into consideration in many software
development projects, it might be worth noting that if a test runs for one minute then,
looking at the effectiveness of e.g. random testing, letting it execute for ten minutes
instead might be an easy choice to make. While, if a test takes eight hours to execute,
it makes it somewhat harder to execute as a regression test during nighttime when
developers are at home. Hence, the following question must be answered:

When is it economically motivated to continue to test software?

By executing tests in parallel using e.g. cluster technology, a software engineer
might decrease the time it takes to test software considerably, thus postponing the an-
swer to that question.

6.6 CONCLUSION
Creating multiple identical copies (clones) of a well established numerical method and
seeding 40 different individual faults into 40 different clones, ensuring the single fault
assumption, we investigated the practical benefits in combining partitioning and ran-
dom testing in a black box testing scenario. The seeded faults consisted of 20 parameter
faults, changing default values, and 20 faults concerning control statements, each fault
injected in its separate copy of the software. All but a few of the seeded faults were
low failure frequency faults, intentionally chosen to properly challenge both method-
ologies.

The input space was partitioned according to three straightforward artificial specifi-
cations. The performed random tests were furthermore distributed both proportional to
the size of the partitions, as well as equivalently among the different sub-domains, as-
suming equal importance of all partitions. Additionally partition testing was performed
(corresponding to a simple one test per partition) in all cases.

The current evaluation presented, demonstrates the added value of combining ran-
dom testing, when an oracle is available, with partition testing. The optimal extent
and usage of random testing, depends on the tested software and available CPU-power,
though. In a future automatization scheme there is most likely a benefit in combining
partition and random testing.
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Chapter 7

A Literature Study of Software
Testing and the Automated
Aspects Thereof

To be submitted

R. Torkar

7.1 INTRODUCTION
This chapter gives an overview (by the use of a literature study) of two relating research
fields with the purpose of finding key areas of interest. The fields covered are software
testing and automated software testing.

A literature study of a field such as software testing is no simple task. During
decades several interesting subjects, methods, techniques and tools have been presented
and in many cases simply disregarded as uninteresting after a short while. Thus, in the
case of describing software testing, including Automated Software Testing (AuST),
one needs to focus mainly on principles that have stood the test of time.

On the other hand, when dealing with newly introduced techniques, tools, etc. one
needs to instead make an educated guess regarding which particular strategy will hold
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a long-lived value for the community. Hence, in the case of this chapter we try to look
into the future by reviewing newly presented techniques, tools, etc. in well-known and
highly regarded sources of publication [109].

This contribution is presented as follows. First we introduce the methodology used
in this study (Section 7.2). Second, in Section 7.3 we present several definitions and the
pattern used for categorizing the references found by applying our methodology. Third,
in Section 7.4 the references found are explained, described and categorized. Finally,
we discuss our findings (Section 7.5) and conclude this contribution (Section 7.6).

7.2 METHODOLOGY
As Kitchenham et al. [155] have explained it is important to justify the method of search
while discussing the risks associated with the search method. This holds equally true
when performing a literature study. To begin with the search was performed using
three widely used search engines: IEEE Xplore [304], ACM Digital Library [2] and
CiteSeer [52]. After finding a body of papers which focused on software testing or
AuST we saw that some proceedings and journals were of more interest than others.
We picked four conferences that showed up the most and performed a manual search
of the proceedings from these conferences ten years back in time:

• International Symposium on Software Reliability Engineering (ISSRE).

• International Symposium on Software Testing and Analysis (ISSTA).

• International Conference on Automated Software Engineering (ASE).

• International Conference on Software Engineering (ICSE).

For each paper that was of interest (i.e. covering software testing in general or
AuST in particular), a short summary was written. We limited ourselves to ten years
since techniques that have been published before this date, and have made an impact,
are likely to be established and thus published in text books.

Certainly there is a possibility that we overlooked papers not presented in any of the
above conferences, but it is worth emphasizing that we, to begin with, used the search
engines to search in the whole of the aforementioned databases and thus not restricted
ourselves to certain proceedings or journals.

Several other journals and proceedings contribute to this chapter, but since the
above four conferences seemed to cover many contributions an additional focus was
put on them. In Figure 7.1 (next page) a view of the process used in this contribution
can be found.
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Figure 7.1: An overview of how the methodology led to a categorization.

Figure 7.2: A general overview of software testing.

7.3 DEFINITIONS USED

To be able to classify such a wide area as software testing and AuST one needs to
classify certain parts of that area. A few sub-areas needed to be established, and in this
case one could see that the contributions found assembled around five main areas:

• Test creation.

• Test execution.

• Result collection.

• Result evaluation.

• Test quality analysis.

Naturally, the above areas could also be depicted as the testing process in general
(Figure 7.2).

Since these areas have been established over many years they were found to be
solid and logical for categorizing the located contributions.
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7.4 SOFTWARE TESTING AND AUTOMATED SOFT-
WARE TESTING

This section, and the following subsections, provides the reader with related work con-
cerning software testing and AuST. When there is a discrepancy between our classifi-
cations (Section 7.3) and the references found it will be discussed in Section 7.5.

With respect to general information regarding software testing (and in some aspects
AuST), the NIST and IEEE standards [49, 283] along with Validation, Verification, and
Testing of Computer Software as published in ACM Computing Surveys [3], are in our
opinion good introductions to these research subjects.

Since software testing and AuST use general techniques which are sometimes hard
to strictly contain in one area, i.e. dynamic and static analysis, we merely refer the
reader to the following papers before we cover the key areas of software testing.

Tsai’s et al. [284], Sy’s et al. [272] and Morell’s contributions regarding fault-based
testing [200], can all be used as an introduction on how to use static analysis as a
supporting technology.

While Gupta’s et al. [118], Artho’s et al. [12] and Michael’s et al. [193] contribu-
tions can be regarded as providing the same introduction concerning dynamic analysis.

For a more thorough description of static and dynamic analysis please see Subsec-
tion 3.1 in [78].

7.4.1 TEST CREATION
TEST DATA CREATION AND SELECTION

The same reference that encompasses information regarding static and dynamic analy-
sis also contains an overview concerning test data generation and selection [78].

Test data creation is an old research topic that has many contributors. We start
by covering some traditional test data creation techniques, i.e. partition or equivalence
class partitioning, boundary value analysis, cause effect graphing and random data
generation.

In addition to these techniques, we also cover the path- and goal-oriented ap-
proaches with their respective relatives constraint-based data generation and, in the
case of goal-oriented data generation, the chaining and assertion-based approaches.

Data generation for partition testing, or equivalence class partitioning, was defined
by Myers [204] already in 1978 as, a technique that partitions the input domain of a
program into a finite number of classes [sets], it then identifies a minimal set of well
selected test cases to represent these classes. There are two types of input equivalence
classes, valid and invalid.
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In other words, test data creation is performed with an introspective selection ap-
proach1, since the test data that will be used is identified before it is actually generated.

Regarding boundary value analysis, NIST defines it as [49], a selection technique
in which test data are chosen to lie along ‘boundaries’ of the input domain [or out-
put range] classes, data structures, procedure parameters. This makes it identical to
Myers’ partition testing technique, even though with a slightly different aim, i.e. bound-
aries instead of partitions.

Boundary value analysis, above, was quite easy to describe as a data generation
technique, on the other hand, cause effect graphing is not as easy to describe when
looking at related work. Cause effect graphing, is an old technique which can be de-
fined as either test case generation, according to Myers [204], or test case selection, as
defined by NIST [49]. We choose to place cause effect graphing under the test data
field instead. The reason for why we do this is that cause effect graphing’s aim is to
select the correct inputs to cover an entire effect set, and as such it deals with selection
of test data. Nevertheless, we do not claim Myers or NIST to be wrong, since cause
effect graphing can be placed into different definitions depending on the surrounding
techniques being used.

Random data generation is another interesting technique, in which test data is gen-
erated in a random manner. Random testing [71, 122] and its derivate anti-random
testing [184, 306] can be used as statistical test methods, and are unique in that they
provide answers about possible remaining faults (see Chapter 4). Test case creation
for random testing is also possible to automate to some extent [53, 143]. A somewhat
newer contribution by Claessen and Hughes [53], where they use random data genera-
tion for testing Haskell2 programs, is a significant addition to this research field and as
such worth examining closer.

Thus, random testing can be seen as a test data generation technique with in some
cases, i.e. anti-random testing, a retrospective approach3, while otherwise with an in-
trospective approach. In addition, test cases can be generated and selected, with an
intro- or retrospective approach, i.e. create many test cases which we choose from, or
create the appropriate test cases directly.

After covering the traditional test data creation techniques we now turn our atten-
tion to a few techniques that have been seen somewhat more recently in literature. First
of all, path-oriented test data generation [168] is using dynamic, and in some cases
static analysis, during its execution step. Secondly, Beydeda et al. [26] also defines
it as, a data generation technique which makes use of control flow information to de-

1The selection process is implicitly performed during generation.
2http://www.haskell.org
3The selection process is performed after generation.
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termine paths to cover and then generate test data for these paths. Thus, this makes
path-oriented test data generation an introspective data generation technique.

Constraint-based test data generation [26, 65, 240] is based on the path-oriented
techniques and described as, a data generation technique which makes use of algebraic
constraints to describe test cases designed to find particular types of faults.

Finally, the goal-oriented test data generation technique with its two derivations, the
chaining approach and the assertion-based approach, can generally be described as data
generation techniques which aim to find program input and a sequence on which the
selected statement is executed. According to Ferguson et al. [92] the chaining approach
is described as, a technique for automated software test data generation for distributed
software. The goal is to find program input and a rendezvous sequence on which the
selected statement is executed. The chaining approach uses program dependency anal-
ysis to identify statements that affect the execution of the selected statement. These
statements are then used to guide the test data generation process. Diaz et al. further
refines this approach using meta-heuristic search techniques, i.e. genetic algorithms
and simulated annealing [67].

The assertion-oriented approach can be described, according to Korel et al. [158,
161] as, a technique which identifies test cases on which an assertion is violated. If such
a test is found then this test uncovers a fault in the program. Worth noting here is that
Korel et al. do not make the distinction between test data and test cases. Andrews and
Benson covered this technique already in 1981 in their paper An Automated Program
Testing Methodology and its Implementation [9].

Hence, in the case of the assertion-based approach, the problem of finding input on
which an assertion is violated may be reduced to the problem of finding program input
on which a selected statement is executed [161]. Both the goal-oriented sub-categories
can be seen as data generation techniques with an introspective approach, i.e. the ap-
propriate test data is generated immediately and a selection process afterwards is not
necessarily needed.

In Figure 7.3 (next page) an overview is shown depicting how the different tech-
niques are related to each other. Another picture of this research field (test data se-
lection and generation) can be found in [282], even though Tracey et al. exclude the
path-oriented approach.

TEST CASE GENERATION AND SELECTION

The previous subsection covered test data generation approaches and the corresponding
supporting techniques for generating test data.

As can already be seen, we make a distinction between test data and test cases.
The main reason for making this distinction is the risk of having them treated as one.
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Figure 7.3: Different test data creation and selection techniques and their relationship.

Figure 7.4: Test case creation and selection techniques.

Presently, there are difficulties in distinguishing between these two topics in literature,
due to the unfortunate fact that researchers usually do not separate them. Nevertheless,
we recognize that in some cases it is hard to distinguish between the two.

Related work covering test case generation can be divided into, when disregarding
manual creation, specification-based and statistical (‘intelligent’ as defined by Pargas
et al. in [224]) test case generation (see Figure 7.4). Since the word intelligent is, by
us, considered to be inappropriate in this context, we intend to use the word statistical
instead. After all, several statistical tools are used in this context.

Describing the specification-based approach to test case generation is straightfor-
ward, especially so if we first turn our attention to the IEEE definition of the word
specification [283]:

. . . a document that specifies, in a complete, precise, verifiable manner, the
characteristics of a system or component.

Hence, the above implicitly states that, and this is also supported by the contribu-
tions found, a specification-based test case generation and selection technique can use
a formal [13, 214] or natural language [181] to automatically or semi-automatically
generate and/or select test cases. Specification-based test case generation and selection
has seen a lot of work the last decades [4, 58, 173, 188, 214, 220, 225, 262, 263, 269].
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The above research provide different views on specification-based test case gener-
ation, e.g. Avritzer and Weyuker’s work on Markov chains [13] and Lutsky’s work on
information extraction from documents [181] somewhat deviates from the more tradi-
tional specification-based approaches, but are nevertheless highly interesting. Chilen-
ski and Newcomb’s work [50] on using formal specification tools for coverage testing
is, albeit not directly relevant in the case of test creation, still interesting as an overview
on how to use specification-based technology for other purposes than ‘traditional’ test
case generation.

Statistical test case generation and selection techniques, on the other hand, are a
mixture of several topics. Simply put, we describe statistical test case generation and
selection as a technique that relies on statistically based computations to identify test
cases. These techniques can consist of e.g. mutation analysis [18] and genetic algo-
rithms [176]. With respect to mutation analysis and genetic algorithms much research
has been presented lately. Some of the more interesting contributions, in our opinion,
are [67, 90, 113, 145, 195, 291].

It is worth mentioning that several other test creation and selection techniques
do exist, but they are, as far as we can see, different combinations of statistical or
specification-based test case generation and selection.

In this context we find it worthwhile to stop for a while and look at how literature
treats the classification of different automation levels. Test case selection is a topic
where, usually, the authors make a distinction between different levels of automation.
Additionally, the distinction we made regarding the intro- and retrospective approaches
corresponds well with literature as we will see next.

Test case selection, is a subject that covers e.g. graphical user interfaces for viewing
large amount of feedback and select test cases that should be stored for later execution,
or techniques for selecting the right test cases to run, in a more automatic manner,
e.g. by prioritizing test cases [254].

Test case selection can be divided into three distinct categories, with respect to
automation. To begin with there is the manual test case selection, whereas a software
engineer or researcher manually select which test cases should be executed.

Automated test case selection is, as mentioned previously covered in Rothermel’s et
al. work on prioritizing test cases [254]. This is also an example on using a retrospective
approach, i.e. where there are a large number of test cases and a selection must occur
for some reason.

On the other hand, Baudry’s et al. [18] and Jamoussi’s work [143] on trying to
improve test cases during the actual creation of said test cases, i.e. generate the cor-
rect test cases immediately, is by us considered to be an example of an introspective
approach, which is highly resource-intensive during the creation, as opposed to Rother-
mel’s concept [254] where computational resources are needed after the creation of test
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cases.
Concerning semi-automatic test case selection a nice example can be found in

Choi’s et al. work on the Mothra tool set [51], while Feldt’s discussion (Chapter
2, [90]), concerning the possibilities and problems of semi-automatic test case selec-
tion, is recommended reading.

As we have shown, related work in this area corresponds well with the concepts of
different levels of automation along with the intro- and retrospective approaches.

7.4.2 TEST EXECUTION AND RESULT COLLECTION
Related work, with respect to test execution and result collection, can today be found
in literature by mostly looking at software testing environments. The definition of
software testing environments can include a wide range of environments and frame-
works and consists of both commercial offerings and research contributions. The en-
vironments can be very large, covering several techniques [70], but also very specific,
focusing on one technique [305].

Kropp’s et al. work on automated robustness testing [162] and Schimkat’s Tempto
framework [258] are both interesting software testing environments. Additionally, Vo-
gel’s CONVEX environment [288], which is used for testing significant software sys-
tems, is very interesting since it covers something rather rare, i.e. testing large systems.

Saff and Ernst’s work on continuous testing [255], with the accompanying evalua-
tion [256], should also be mentioned here as an enabling technology where automated
testing is playing a key role. Finally, Eickelmann and Richardson’s evaluation of soft-
ware test environments provides us with a reference architecture [80].

Several of the above mentioned frameworks and tools collect, and in addition store,
results according to some automation criteria.

7.4.3 RESULT EVALUATION AND TEST QUALITY ANALYSIS
At the moment, a fully automated result evaluation technique would in most cases
involve artificial intelligence and since this research field is not yet fully applicable on
software testing, researchers presently, by large, concentrate on oracles; and it is also
here one can find most contributions.

The oracle approach, or the oracle problem [293], is according to Chen et al. [47]
one of two fundamental limitations in software testing. By using the description pro-
vided by Chen et al. as a basis, we can describe the oracle approach as, a technique
used for automatically creating an oracle. The oracle can then be used for validating
the correctness of test output. In other cases there is no need for an oracle and only a
comparator is used, which returns true or false depending on the test result.
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The oracle approach can, when looking at related work, be divided into three cat-
egories. First, as is usually the case, manual creation, which is labor intensive and
prone to errors. Secondly, oracle creation using specifications [89, 91, 247] and finally,
automated oracle creation which basically aims to remove the need for an oracle all
together [47].

As we mentioned, a completely automated oracle creation process is at the mo-
ment probably not feasible. This, we believe, has lead to researchers focusing on
specification-based approaches, a technique wherein a formal or natural language is
used for expressing a specification and then generate oracles.

It is worth keeping in mind that an old version of a software, that has been verified
as behaving in the correct way, can under certain circumstances act as an oracle when
developing a new version. According to Binder this is known as the gold standard
oracle (pp. 925 in [27]).

In the area of test quality analysis we find statistical tools for examining test quality
with respect to test coverage [312, 313], software test data adequacy criteria [294, 295]
and general measurement theory [250]. As can be seen, test quality analysis deals
mainly with measurement of test adequacy. One way to categorize test quality analysis
is to divide it into context insensitive and context sensitive approaches according to
Zhu et al. [314].

The context insensitive approach generates test data at random using a probabil-
ity distribution (see Chapter 4 for an example). Here we find probability-based [43],
confidence-based [133] and reliability-based [123] measurements. The context sensi-
tive approach on the other hand, is based on test data being selected from a specific do-
main and constitutes techniques such as e.g program-limited (testing on the domain of
the software), specification-limited (testing on the domain of the specification), struc-
ture coverage (control-flow and data-flow criteria) and fault-based measurements [200].

7.5 DISCUSSION
By first establishing a methodology to use (described in Section 7.2) and then strin-
gently applying it, we believe that we have minimized the risks regarding not finding
significant contributions in this research field. Of course, minimizing means that there
might still be contributions worth covering in this chapter. On the other hand, we be-
lieve that all major fields that might be of interest when describing software testing and
AuST, have been found. This, in addition to dividing this research field into logical
topics and describing everything as a process, should further strengthen the thesis that
all vital areas have been covered. The various papers covering, what we refer to as
supporting techniques, are to some extent covered in this chapter but not seen as main
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contributions.
A few key areas are worth discussing with respect to this contribution. First, the dis-

tinction we make between test data and test cases. Presently, in literature, researchers
sometimes do not make this distinction. We find this to be unfortunate, since in our
opinion there are differences regarding problems, solutions and methodology when
creating either test data or test cases. Unfortunately the problem regarding definitions
and classifications of terms is more widespread and covers many areas; words, classi-
fications and different terms are used interchangeable thus leading to confusion.

Secondly, since no researcher follows one and the same methodology or model for
describing their research, it leads to even more confusion. This, in the end, makes it
more difficult for researchers to get a good overview of this research field altogether.

Finally, the question of viability regarding some of the tools and techniques that
we covered might be questionable. How do we know that the more recent techniques
etc. will have an impact on this research field in the future? In our case we answer
that question by simply selecting contributions that are published in proceedings and
journals that are considered by researchers to be of high quality [109].

7.6 CONCLUSION
In this contribution we covered a large research field that has been active for several
decades. By carefully following a described methodology, and then divide this field
into naturally formed classifications, we believe that all major topics have been found.

In total, this chapter covered 69 references in the area of software testing. Of these,
45 were focused on test creation, 8 looked at test execution and result collection and
16 focused on result evaluation and test quality analysis.
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Chapter 8

A Model for Classifying
Automated Aspects Concerning
Software Testing

Submitted to Software Testing,
Verification and Reliability

R. Torkar, R. Feldt &
S. Mankefors-Christiernin

8.1 INTRODUCTION

The total cost of inadequate software testing infrastructures, in the USA alone, is esti-
mated to be as high as $59.5 billions per year [205]. Even source code which has been
thoroughly scrutinized, averages three faults per hundred statements [22]. Boehm [30]
has previously pointed out that about 60 percent of total product defects can be uncov-
ered using inspections; the remaining faults show up in different types of application
testing. In addition to the above it has been shown that application testing takes at least
50 percent of the total product labor costs [22].
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One obvious conclusion is that software engineers in general need to write bet-
ter software, but the people who write software are just - people. Another conclusion
that can be made is that software has grown in size the last decades while computer
resources (such as CPU hours) have become cheaper when at the same time human
resources remain quite expensive. Thus, certain tasks which can be suitable for au-
tomation, e.g. software testing, should be automated to a high(er) extent. Tools are a
vital contribution to the software engineer’s landscape, and in the future these tools are
likely to become even more focused on automation.

The last couple of decades more and more tools and frameworks have evolved.
Most notably, different unit testing frameworks [138, 305] have gained widespread
acceptance, helping test engineers to some extent create test cases by facilitating rudi-
mentary support in creating skeletons which the developer then fill out. But the true
value of these frameworks is not the support for developing test cases, but rather the
role they play as regression testing frameworks [21, 255].

In our opinion software testing and especially the automated aspects thereof is and
will continue to be an interesting research field in the future, with the potential to
increase project success by automating a task that is often discarded when deadlines
creep closer (see Chapter 2 for an overview regarding some of the problems facing
software industry).

As such, (automated) software testing needs to be clearly defined, enabling re-
searchers to understand each other in a satisfactory and concise manner. To further
prove the point, we can see how software vendors describe their tools to be fully au-
tomatic with no additional need for developers to interact with the tool. A closer ex-
amination usually reveals that the tool might have some automatic aspects but by large
is manual. The same problem area exists in academic research as well, e.g. searching
databases for research contributions and in the end discovering that the contributions
found, has in some cases nothing to do with automated software testing.

Compare this to Marinov and Khurshid’s TestEra framework [188] where they
make a more humble claim:

TestEra automatically generates all non-isomorphic test cases [. . . ]

The problem today is not that there is a lack of definitions per se, but rather that
these definitions are interpreted differently. The definitions need to be collected and
assembled into one comprehensive and uniform model, so as to provide researchers
and developers with a clear taxonomy of this topic, thus hopefully increase researchers’
comprehension of this topic in addition to avoid miscommunication. Marinov and
Khurshid’s claim above, is an example of how researchers should present their work—
precisely and delimited if possible.
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The model and its accompanying definitions, which we present here, are intended
to be used mainly in three ways:

• To identify different characteristics, especially concerning automation, in present
software testing tools, techniques and processes (technique t is classified accord-
ing to definition X in our model).

• As guiding laws (technique t must support 1 . . . n, hence definitions X and Y
in the model should be part of the requirements specification, thus fulfilling the
requirements with respect to automation).

• To classify to what extent a tool, technique or process is automated.

In this chapter the model will be used for describing automated software testing,
while later (Section 8.5) elaborated on as a framework for the software testing area as
a whole.

The next section (Section 8.2) introduces the reader to automated software testing
and its subtopics. In this introduction we also try to, as precisely as possible, define
each entity in this area. The following section then present the model we propose
(Section 8.3), while we later discuss the applicability of the model (Section 8.4). In the
subsections following Section 8.4, a number of examples are covered when we apply
them on our model. Finally, this contribution ends with a discussion (Section 8.5) and
conclusion (Section 8.6).

8.2 SOFTWARE TESTING DEFINITIONS
By software testing we imply the process of identifying the correctness, completeness,
security and quality (i.e. functionality, reliability, usability, efficiency, maintainability
and/or portability [140]) of developed software. Automated software testing is no dif-
ferent, in the sense that it is applied to the exact same process as software testing, but
with the addition that the process should be automated to some extent.

To be able to describe automated software testing in particular, and software testing
in general, we need to systematically define and cover entire research areas, i.e. by
simply collecting and systematizing what is available. Since we are covering a large
research area, the model will be generally applicable for most types of software testing.
But as will be evident, the strength will be in the way the model can be used to describe
specific disciplines of software testing—in our case, automated software testing. To
begin with, some basic definitions need to be established when covering automated
software testing, i.e. the definitions of automatic, manual and semi-automatic.
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According to The Oxford English Dictionary [261], the original definition of auto-
matic is:

ORIGIN Greek automatos ’acting by itself’

Taking the Greek definition into account, and further conclude that one part of a
software has the responsibility to fulfill a major task and a software is defined by the
integration of N parts, we thus define automatic, manual and semi-automatic as:

Definition 5 (AUTOMATIC) A software or a part of software is automatic if, and
only if, the task executed by the software/part is performed autonomously with respect
to human intervention.

Remark 1 (HUMAN INTERVENTION) Human intervention is not allowed, but in-
teraction with other entities, e.g. a system, is.

The above nevertheless means that a human, in most circumstances when it comes
to software testing, must actually execute, i.e. start, the process. On the other hand, a
human must not interfere with the execution as such.

Definition 6 (MANUAL) A software or a part of software is manual if, and only if, the
task executed by that software/part is performed by a human which takes all decisions.

Definition 7 (SEMI-AUTOMATIC) A software or a part of software that is neither
automatic nor manual.

A future extension of the above definitions is of course to define different, more
fine-grained, levels of automation. Obviously there exist a wide spectrum ranging from
manual to automatic [222, 223, 260], and we are well aware of the intricate problems
of defining different grades of automation due to the vast amplitude of technologies (as
will be discussed in Section 8.5). Despite that, the above three definitions are sufficient
for our current purposes.

Next the reader will be provided with, what we consider to be, a reasonable classi-
fication of (automated) software testing into different entities.

8.2.1 ENTITY DEFINITIONS
Automated software testing can be divided into several entities by looking at how tradi-
tional software testing is defined by different people and organizations, notwithstand-
ing the somewhat broader definitions by Dijkstra that “program testing can be used to
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Figure 8.1: A general overview of software testing. Several iterative movements can
be discerned—here depicted with dashed arrows.

show the presence of bugs, but never their absence”, and Myers claiming it to be “the
process of executing a program with the intent of finding errors.”

A more practical, hands-on, view [204] of software testing is the need to exercise
the software under test by using a set of test cases. By then performing a series of
steps (possibly executing the software itself) the result is collected, evaluated and test
quality analysis is performed (Figure 8.1). It might be worth noticing that, in some
cases, different steps can be performed several times, while test quality analysis is
executed last, after several iterations have been performed.

Some researchers’ view on software testing resemble our view [93], while others
prefer a somewhat simpler view [150, 233] in that they define it on a meta-level. We
believe our view to be a good middle road i.e. neither too detailed nor too abstract.

Using Figure 8.1 as a basis, we now define the fundamental entities of our model,
starting with the software under test.

Definition 8 (TESTEE) A testee, denoted T, is a part of, or an aspect of, a software
under test.

Thus, one aspect of T is the entire software, which is the case in e.g. system testing.
Other aspects might be e.g. security, performance or domain-specific behavior.

Evidently we diverge from IEEE’s definition of ‘software item’ [283]. The main
reason for this is that it is not always the software item per se that is tested, but rather
certain aspects of the testee. Thus, to not confuse the reader with IEEE’s definition, we
introduce the word testee.

We next define several fundamental entities using a ‘bottom-up’ perspective.
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Table 8.1: An overview of how the automation levels are inherited.

Man Semi Auto
Man man semi semi
Semi semi semi semi
Auto semi semi auto

Definition 9 (TEST DATA) Test data, denoted Γ, is the input(s), needed for testing
the testee.

Obviously, Γ can equal ∅. In addition, it seems, Γ can equal one input as can be the
case in e.g. unit testing. When it comes to automation aspects, Γ can be generated or
selected manually as is done in e.g. unit testing, or semi-automatically or automatically
as is the case in e.g. random testing.

The question of generation and selection is interesting since if a technology imple-
ments both, then in our model, to be able to be classified as automatic, both generation
and selection needs to be classified as automatic (logical conjunction). In all other
cases, the rule ‘semi-automatic is king’ establishes the automation classification (see
Table 8.1 for an overview). This rule is also applied on all entities in this case.

Definition 10 (TEST FIXTURE) A test fixture, denoted Φ, is the environment wherein
Γ acts.

Thus, Φ sets up and tears down the surroundings in which T with Γ is executed,
e.g. the steps taken before and after T is tested. In some cases, e.g. certain types of
system testing, Φ is simply equal to T and thus in effect makes Φ non-existent, while
in other cases Φ consists of T itself and a variant thereof (T

′
), i.e. as is the case in

mutation testing [132].
With respect to automation aspects, Φ can be classified as being selected or gener-

ated:

• manually—e.g. a human implements SetUp() and TearDown().

• semi-automatically—e.g. a human selects a specific Φ from {Φ1,Φ2, . . . ,Φn}
depending on T or Γ.

• automatically—e.g. using genetic algorithms the software generates and/or se-
lects Φ.

118



A Model for Classifying. . .

The same applies to Φ as to Γ concerning inheritance of classifications of automa-
tion, i.e. ‘semi-automatic is king’.

Definition 11 (TEST EVALUATOR) A test evaluator, denoted ∆, is a superset of the
expected output ô (∆ ⊃ ô). ∆ compares the output o with the expected output ô.

* The output o can have one of three states:

* o = ô

* o 6= ô

* o ≈ ô

Remark 2 (THE NATURE OF OUTPUT) The last state, o ≈ ô, occurs when an
output can be approximately correct, i.e. the output needs to adhere to certain proper-
ties and not a particular value per see.

∆ can be classified as being selected or generated:

• manually—e.g. a human is ∆.

• semi-automatically—e.g. from {∆1,∆2, . . . ,∆n} a human selects the ∆ to be
used.

• automatically—e.g. ∆ is an old version of the software which can provide the
known correct answer (this is also known as the gold standard oracle [27]).

Definition 12 (TEST CASE) A test case, denoted Θ, is a tuple {Γ,Φ,∆}.

Thus, if all elements of the tuple are classified as being generated or selected au-
tomatically then Θ is classified as automatic (logical conjunction). To put it simple,
for an entity (in the above case a tuple) to be classified as automatic all its sub-topics
need to be automatic, i.e. boolean operator AND (see Definitions 5–7 and the paragraph
covering the aspect of inheritance on the previous page).

Worth taking into account, e.g. in the case of the test case entity, is how automation
levels are inherited upwards in the model. If we want to classify a technology that
has automatic test data generation but manual test fixture generation (disregarding test
evaluator for now), the definition of test case is to be classified as semi-automatic. As
another example, if the test data entity is classified as semi-automatic, the test fixture
as manual and the test evaluator as automatic, the test case will, again, be classified as
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semi-automatic. Table 8.1 (page 118) provides an overview on how different classifi-
cations are inherited. So in short, semi-automatic properties are emphasized.

The above application of automation levels in our model leads to some interesting
results when, in Section 8.4 and its subsections, our model is applied on a number of
different tools and technologies.

Definition 13 (TEST RESULT COLLECTOR) A test result collector, denoted Π,
collects, and in some cases stores, the output o from the execution of a test case Θ
or a set thereof.

Definition 14 (TEST SUITE) A test suite, denoted Ξ, is a superset of Θ (Ξ ⊃ Θ).

Definition 15 (SPECIFICATION) A specification, denoted β, provides the require-
ments T needs to adhere to.

Definition 16 (TEST SPECIFICATION) A test specification, denoted β̄, is a subset
of a specification (β̄ ⊂ β) and stipulates e.g. a set of test cases {Θ1,Θ2, . . . ,Θn}.

Definition 17 (TEST ANALYZER) A test analyzer, denoted Σ, provides the neces-
sary functionality to determine if data provided by a test result collector Π is sufficient
for determining if a set of test specifications {β̄1, β̄2, . . . , β̄n} are fulfilled. In addition,
Σ might be able to answer if β has been fulfilled and to what extent this is the case.

Σ can thus be used for e.g. prioritizing test cases, providing input for creating new
test cases or changing the order of test case executions. Additionally, Σ can be classi-
fied as being conducted:

• manually—e.g. a human is the test analyzer and decides if T fulfills β.

• semi-automatically—e.g. a software provides a human with several alternatives
concerning test prioritization, which the human can select between.

• automatically—e.g. a software is the test analyzer and decides if T fulfills β by
e.g. concluding that all β̄ ∈ β have been found.

Note here that Σ has a slightly different focus on the automation aspects since we
here look at how Σ is exercised, and not how Σ is generated or selected as is the case
with Γ, Φ and ∆.

120



A Model for Classifying. . .

T e s t S u i t e C o l l e c t i o nT e s t S u i t eT e s t C a s eT e s t D a t a T e s t F i x t u r e
T e s t E v a l u a t o r T e s tR e s u l tC o l l e c t o r

T e s t A n a l y z e r

A u t o m a t i cS e m i � a u t o m a t i cM a n u a l

Figure 8.2: Proposed model for characterizing automatic aspects concerning software
testing.

8.3 PROPOSED MODEL
All definitions are appropriate to classify according to the automation levels and as
such can have an accompanying circle which would indicate the level of automation.
The circle can be either empty, half filled or completely filled to indicate the degree of
automation (as per Definitions 5–7). By assembling all definitions that apply, one ends
up with Figure 8.2 which in this case is the proposed model.

By comparing our model (Figure 8.2) with the original process description as in-
troduced in Figure 8.1 (page 117), one can see that they look somewhat differently.
First of all, several entities has been created from the process model (and thus also
defined as nouns). Secondly, due to the iterations, that are usually part of software test-
ing, we chose to define our model with an iterative perspective as well. The iteration
is illustrated by an arrow going from the test analyzer entity to the ‘highest common
denominator’, i.e. the test suite collection entity (Figure 8.2). Thirdly, since we use an
entity perspective, we have chosen to include the test evaluator to the test case entity
(as per Definition 12). Finally, by allowing the aspect of quantity in the model (illus-
trated by e.g. 1 . . . ∗), we make a clear distinction between running a simple test case,
test suite or a collection of test suites.

As is shown later, the focus on entities simplifies the automation classification
tremendously, since, if all entities are defined as being automatic (for a specific tech-
nology) then the technology is automatic per definition.

It is now appropriate to look at some other models and definitions, and compare
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how they relate to our classification model. First of all, models in literature can be
divided into two categories when it comes to software testing, either methodologies
in software testing (pp. 4–5, [146]) or different levels of software testing (pp. 187–
188, [146]). In some cases we see other models such as Sommerville’s description on
the software testing process (pp. 539–540, [267]); unfortunately that model, as other
similar descriptions of software testing, is not detailed enough to be used for classifying
and comparing techniques or simply lack the distinctions concerning automation levels
which we emphasize. These models were never intended, in the first place, to be used
for that purpose—our model is.

Secondly, considering definitions, it is worth emphasizing that we lean towards
Parasuraman’s et al. [222, 223] and Sheridan’s [260] work on the levels of automation
of decision and action selection. But, in our model we provide rudimentary definitions
of the different levels of automation. We do this mainly so as to facilitate the usage of
the model in a straightforward way since we find Parasuraman’s et al. and Sheridan’s
definitions to be somewhat misleading to use in the context of automated software
testing (this will be covered more in Section 8.5).

We will demonstrate that our model is more fine-grained and thus provides the user
with more freedom, especially regarding establishing the level of automation.

8.4 APPLICATION OF MODEL
Before adopting a model as the one we propose, the questions of validity and usability,
needs to be investigated.

Validity was mainly ensured by searching research databases for literature con-
cerning (automated) software testing. As Kitchenham et al. [155] has explained it is
important to justify the method of search while discussing the risks associated with the
search method. To begin with we performed our search using three widely used search
engines: IEEE Xplore [304], ACM Digital Library [2] and CiteSeer [52]. After finding
a body of publications which focused on software testing and automated software test-
ing we immediately saw that some publications were of more interest than others. We
picked four proceedings that showed up the most and performed a hand search of the
proceedings from these conferences at least ten years back in time:

• International Symposium on Software Reliability Engineering (ISSRE).

• International Symposium on Software Testing and Analysis (ISSTA).

• International Conference on Automated Software Engineering (ASE).

• International Conference on Software Engineering (ICSE).
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For each contribution that was of interest, i.e. covering software testing in general
or automated software testing in particular, a short summary was written and the main
parts were assembled in Chapter 7.

It is worth pointing out that each search engine was used for searching the entire
database and thus not restricted to certain proceedings or journals to start with. In
our opinion, in this way, a significant portion of the interesting contributions were
gathered. In addition, this procedure should minimize experimenter bias and the risk
of faulty selection (internal validity) [36, 41, 207]. It is worth pointing out that we did
not need to assemble all references in this area; we simply needed a sample with which
to evaluate the model with.

In the end, the model is applicable for all references found by our research as de-
scribed in Chapter 7. This of course means that it is not unlikely that some references
are lacking but, suffice to say, a portion of related work taken from Chapter 7 is pre-
sented, described and categorized in this chapter, which in the end would lead to having
a theory that best explains the results (construct validity) [41].

The references found were divided into three populations: test data/fixture genera-
tion and selection, result collection and, finally, result evaluation and test analyzer.

The test data/fixture generation and selection population consists of [3, 4, 9, 13, 18,
26, 49, 50, 51, 53, 58, 65, 67, 71, 78, 90, 92, 113, 122, 143, 145, 158, 161, 168, 173,
176, 181, 184, 188, 195, 204, 214, 220, 224, 225, 240, 254, 262, 263, 269, 282, 283,
291, 306] in addition to Chapter 4, while the result collection population is described
by [70, 80, 162, 255, 256, 258, 288, 305].

Finally, result evaluation and test analyzer is covered in the following contribu-
tions [27, 43, 47, 89, 91, 123, 133, 200, 247, 250, 293, 294, 295, 312, 313, 314].

Next, one reference was randomly selected from each population as defined above.
By randomly (ensuring an unbiased selection [155]) selecting one reference from each
population (applying blocking as discussed on pp. 102–104 in [36]), one can thus
present different cases for a deeper analysis while at the same time control external
validity [41]. The randomly selected references and the total sum of references per
category can be found in Table 8.2.

By using the definitions introduced in this chapter, one can now establish where
a certain technique can be placed. Before covering two introductory examples, three
randomly selected examples from a defined population, and a comparison of two tech-
niques, we first describe several ‘old school’ techniques. Note here, that we are not
covering a specific implementation of these techniques, but rather look at them from
a more general point of view (more comparisons of different techniques etc. will take
place in Chapter 9).

To start with, partition testing [204, 267, 296], which boundary value analysis can
be considered to be a subset of, is traditionally part of the test case entity as per our def-
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Table 8.2: The number of references and the selected reference for each population.

Category Num. of refs Selected ref
Test data & test fixture 45 van Aertryck et al. [4]
Result collection 8 Schimkat et al. [258]
Test evaluator & Test analyzer 16 Fenkam et al. [91]

inition. As such, these technologies focuses on selecting the right partitions or values
to test (defined as the test data entity).

Examining structural testing [209] closely, one reaches the conclusion that it basi-
cally belongs to the test analyzer entity, due to the fact that it provides answers on how
well a software is exercised under test.

Finally, mutation testing [132, 216], in which two or more program mutations are
executed using the same test cases to evaluate the ability to detect differences in the
mutations [283], is somewhat more trickier to define. In this case one needs to look at
the testee (T) and its mutations {T′

1,T′
2, . . . ,T′

n} as part of the test case (Θ) and,
more specifically, the test fixture entity Φ.

Next, as an example, Claessen and Hughes’ QuickCheck tool [53] is to be cate-
gorized (a technology which in many ways ‘breaks’ with current views on software
testing in its implementation, thus providing the reader with a non-traditional and, per-
haps, unknown case).

After that we cover a more widely known case—the XUnit framework [305]—a
technology probably known by researchers and industry which, in addition, is a de
facto standard with respect to test execution amongst other things.

8.4.1 CLASSIFYING QUICKCHECK
According to Claessen and Hughes, the QuickCheck tool can be used for random test-
ing of Haskell1 programs [53]. QuickCheck has a data generation engine which, by
using a test data generation language, generates random data. These values can be of
different types, and custom values can be specified manually (even though most types
are defined already). By looking at the definition of test data (Definition 9) it is obvious
that QuickCheck qualify for this criterion, in addition to being an automatic test data
generation technique with a semi-automatic selection approach (thus classifying it in
the end as semi-automatic). Test fixtures are created manually, as far as we understand.

1http://www.haskell.org
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Figure 8.3: A classification of QuickCheck according to our model.

In addition to this, according to Claessen and Hughes, QuickCheck uses specification-
based oracles [53]:

We have taken two relatively old ideas, namely specifications as oracles
and random testing[. . . ]

Thus, since QuickCheck uses property-based specifications when generating ora-
cles it would fall into Definition 11 (test evaluator) with a semi-automatic approach,
as is shown in Figure 8.3 (oracles are more or less always executed automatically, but
here we look at generation and selection).

Next we continue by going through the rest of the model. Result collection (with
no storage) is performed in an automatic way in QuickCheck. Finally, there is no
indication [53] that a test analyzer (Definition 17) is part of QuickCheck.

8.4.2 CLASSIFYING XUNIT
Different unit testing frameworks [305] have, the last decade or so, gained a widespread
acceptance. Many developers usually mention unit testing in the same sentence as
automated software testing. Is this correct? What is so automatic about unit testing
frameworks?

First of all, by looking at any description of unit testing frameworks, one can see
that test data generation and selection, in the case of unit testing frameworks, usually
is performed manually.

Test fixture creation can, in some circumstances be considered semi-automatic (the
framework generates stubs which the developer needs to fill in). In the same manner
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can test case selection be seen as semi-automatic (when there is a selection process and
the developer selects the test cases to run).

Result collection and execution is automatic. This is considered to be one of the
strengths with unit testing frameworks, and as such indeed further refined by Saff and
Ernst in [255, 256].

Comparison, in the case of unit testing frameworks, can be performed in an auto-
matic way as long as there exist oracles. Oracles, on the other hand, need to be created
manually and are usually (in the case of unit testing frameworks) seen as part of the
test case creation step, i.e. the developer is the oracle by providing the correct answer
when writing an assert. Finally, unit testing frameworks traditionally provides a test
engineer with information from the test execution (fail and pass flags, execution time,
coverage)—thus the test analyzer entity should be classified as being semi-automatic
since unit testing frameworks can not, usually, decide if all β̄ ∈ β has been found.
Rather, unit testing frameworks, present the engineer with information if β̄ has passed
or failed.

In Figure 8.4 we now see how different levels of automation are scattered through-
out our model. Thus, XUnit is according to this classification not automated as such,
mainly since the techniques for generating and selecting test data, evaluators and fix-
tures are usually performed manually. But, and this is important to emphasize, XUnit
has some entities that are automatic.

Especially worth noticing in Figure 8.4 is that the test evaluator is classified as
being manual according to our usage of automation levels. This is rightly so since
the creation of an evaluator, traditionally, is performed manually. Of course, the much
simpler comparison process is automatic, but that on the other hand is more or less a
rule in most software testing processes. To classify the result evaluator automatic in
this case would be grasping for too much.

8.4.3 RANDOM EXAMPLE I—TEST DATA AND TEST FIXTURE
GENERATION AND SELECTION

CASTING, a formally based software test generation method, as presented by van
Aertryck et al. in [4], is a method for generating and selecting test data and fixtures.
The initial version of CASTING describes test cases to be generated by using the B
Formal Development Method notation [1]. This way a developer can build testing
strategies, translate these to test case specifications and, in the end, execute them on
the software.

When categorizing CASTING we end up with Figure 8.5. The selection tech-
nique is automatic while the generation technique is considered semi-automatic since
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Figure 8.4: A classification of XUnit according to our model.
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Figure 8.5: A classification of CASTING according to our model.

it evolves from a B specification [1] (which is usually created manually). Thus, since
we are applying logical conjunction on this level, the end result is a semi-automatic
classification of test data and test fixture.

The one question mark one can find in this particular case is if CASTING implicitly,
by using a constraint solver, can be seen as containing a test analyzer. In our opinion
this is not the case, since a constraint solver is considered to be a compulsory part when
extracting and generating test cases from a B specification.

8.4.4 RANDOM EXAMPLE II—RESULT COLLECTION
In Section 8.4 several test execution and result collection references were presented and
from these, Schimkat’s et al. Tempto framework [258] was randomly selected. Tempto
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Figure 8.6: A classification of Tempto according to our model.

is, according to Schimkat et al., an object-oriented test framework and test management
infrastructure based on fine-grained XML-documents. The Tempto framework focuses
on test execution, result collection and to some extent result evaluation.

Tempto supports automated test execution (from prepared test suites), collection
and storage of results and, finally, manually written comparators. In Figure 8.6 one can
see the Tempto framework classified according to our model.

The authors mention that external management components, e.g. an expert system
which could analyze test reports, can be added to the framework. Unfortunately, we
did not find any proof that this had been done at the time of the writing.

8.4.5 RANDOM EXAMPLE III—RESULT EVALUATION AND
TEST ANALYZER

The final, randomly selected example, is Fenkam’s et al. work on constructing CORBA-
supported oracles for testing [91]. Fenkam et al. show a technique for constructing
oracles by using a specification. The specification is used to “automatically verify the
results of operations”, according to the authors.

Since the specifications for creating oracles are semi-automatically created and we
are not dealing with ‘traditional’ comparators, there are no difficulties categorizing
that particular part (Figure 8.7). Somewhat more difficult to understand is the authors’
claim that they support automatic test creation and test case execution since they have
no actual example [91]. Ultimately, it is clear that the specifications for creating oracles
could be re-used (from the earlier test creation phase).

Finally, the test analyzer can be classified as manual since, in the end, it adheres to
the test specification which is manually created.
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Figure 8.7: A classification of Fenkam’s et al. work according to our model.

8.4.6 COMPARING AUTOMATION ASPECTS

The previous examples provide some insights with respect to the usage of the model.
While the question on how one should use the model is important, the question on why
is equally so.

In this subsection we will classify two similar approaches which, nonetheless, dif-
fers in how automation aspects are implemented. By doing so, we intend to show one
of the strengths with this model, whereas it provides support in deciding what is more
suitable to use from a strict automation perspective.

As an example we have chosen to compare Tempto (Random Example II, Subsec-
tion 8.4.4) with Eclipse [74]. Since Eclipse’s default setup does not have any substantial
software testing features, we include the following plug-ins: GERT [60], djUnit [69],
EclipsePro Test [83] and continuous testing [57]. Both Tempto and Eclipse have sup-
port for, or are focused on, the Java programming language. In addition, Tempto and
Eclipse (with the included plug-ins) attempt to support the developer with automated
features (in this case, in particular, software testing), while at the same time being seen
as frameworks which can be extended with miscellaneous features.

Figure 8.8 (next page) illustrates the differences, concerning automation aspects,
between Eclipse and Tempto. In this case a developer might look at the figure and ask
the question: “Does Tempto or Eclipse support automation in those areas where we
have a weakness and how does that fit into the rest of our software testing process?”

Obviously, by looking at Figure 8.8 one can see two issues being revealed. First,
none of the frameworks support automation to any higher extent (this by itself is note-
worthy). Second, if one must select one of the frameworks then Eclipse (due to having
more entities classified as at least semi-automatic) might be tempting to select. But on
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Figure 8.8: A comparison between Eclipse (upper figure) and Tempto (lower figure).

the other hand, in the case of Tempto, a software development team might have good
test evaluators and test fixtures in place beforehand, hence making Tempto the obvious
choice. In the end, the question of language support (in the case of Eclipse the Java
programming language is very much supported) might be the point tipping the scale,
which ultimately leads us to the next section (more comparisons and analyses will be
presented in Chapter 9).

8.5 DISCUSSION

Applicability. The previous section presented several contributions and how they
mapped against the model. However, the question of applicability, even though sev-
eral examples have been presented and many more have been covered in the feasibility
studies for this chapter (i.e. Chapter 7), is an interesting one since there will always be a
risk that some tools and technologies might not be applicable to the model. During the
review process of this chapter some contributions were brought forward which made
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us reassess the model, usually by altering some details (e.g. by adding the distinction
between test data and test fixture). What is the point of having a model which can not
be used for describing the most common cases of reality?

One issue, not dealt with in our examples, is how one illustrates the behavior were
a tool changes automation aspects over multiple iterations. In this case the model
provides the user with two choices. Add new circles for each iteration to each entity
(and as a subscript add a number indicating the order of iteration) or, if the iterations
are few, show each iteration in its own view of the model where the new classification
is shown for that particular iteration. After all, the different entities, e.g. Γ,Φ,∆,Θ,
can simply be placed in a table for even easier comparison of different iterations if one
would like.

Distinctions. One critique this model might face, is the distinctions made on the
different definitions concerning automation—it might be worth mentioning that re-
searchers and industry partners using automated software testing have been remark-
ably relieved by the clear distinctions, something many believe is lacking in marketing
and research descriptions today. While, on the other hand, engineers and researchers
developing these tools have been more dismissive in some cases.

The reason for the above critique is clear to us. A researcher working on developing
these types of tools and a company selling them are, ever so interested in using the
magical word automatic in either the title of their research paper or in the adds for their
products. Unfortunately, neither of them are aware of the frustration end-users feel,
when not being able to find the right tool for the job.

As an example, take contract-based software testing. If a developer needs to man-
ually develop e.g. contracts for their oracles—then should the word automatic be used
at all, as it is in some cases? After all, a comparator or oracle is usually performing the
actual comparison automatically when being executed. Again, a more careful use of
certain words might be useful to better describe ones research or product.

In our opinion, in the future, the levels between automatic and manual will proba-
bly be numerous. As an example we have Parasuraman’s et al. [222, 223] and Sheri-
dan’s [260] work on defining different levels of automation. Unfortunately the current
levels they propose are not applicable directly to automated software testing, hence
indicating that more work is needed in this area.

Extensions. The question of future extensions is an interesting one since it is likely
that the model might be used for more purposes than originally expected. For example,
if an engineer searches for a technology with a certain level of automation, it is also
likely that (s)he needs it for a particular domain, programming language, paradigm,
or focusing on different levels of testing (e.g. unit, sub-system or system). For this
purpose we propose a note next to the model describing certain aspects which would
simplify a search when added to a classification (c.f. Figure 8.9).
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Figure 8.9: A note describing various features not part of the actual model. In this case
an imaginary technology is described which is implemented in the C programming lan-
guage, targeting software built in Java (using the object-oriented paradigm), contained
in the real-time domain and with a high maturity.

8.6 CONCLUSION
In this chapter we defined several key parts of software testing especially focusing
on the automated aspects thereof. Using these definitions, we created a model which
can be used to e.g. compare, classify or elaborate on automated software testing. The
model had its origin in the traditional software testing process but was then further
refined using several supporting definitions which acted as a foundation to the model.

The validity of the model was covered by exemplification (two), by applying the
model on three samples from a random population, and by comparing two similar tech-
niques with each other. In addition several other traditional technologies were covered
and the question of applicability, distinctions and future extensions was discussed and
elaborated on.

In short, the proposed model can be used by the research community as a way to
classify tools and technologies while at the same time significantly reduce the time
spent to understand a technology as well as clearly grasp different automation aspects.
In addition, industry could use the model to more clearly present how and in what way
a specific technology adheres to a particular automation aspect.

The software engineering community needs to stop being fragmented and start con-
tributing to a wider research agenda, while at the same time agree on some standard
way of communicating. This model might be the first step towards such unification.
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9.1 INTRODUCTION

Software testing plays a vital part in software engineering as a way to ensure that
quality aspects have been reached. A study, performed by the National Institute of
Standards and Technology in 2002 [205], showed that the costs for having inadequate
software testing infrastructures (e.g. software testing environments and frameworks),
in the USA alone, was estimated to be as high as $59.5 billions per year. Thus, the
development of software testing frameworks, or software testing environments, play a
crucial role in industry to reduce costs and improve quality [162, 246, 288].
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Software testing frameworks that help test engineers with automatic and semi-
automatic software testing are today usually concentrated on doing one thing, and most
of the time do that quite well. Most notably, different unit testing frameworks [21, 138,
305] have gained widespread acceptance, helping test engineers to, to some extent cre-
ate, but more importantly ‘administrate’ test cases, thus acting as regression testing
frameworks. In our view, automation is mainly about efficiency (the state or quality of
being efficient [292]), not effectiveness (producing a desired or intended result [292]).
For many software testing techniques, effectiveness is the natural prolongation of effi-
ciency, i.e. by being able to test more within a given time frame, because of increased
efficiency, it will inadvertently lead to more faults being found. In other situations,
increased efficiency will simply reduce the cost and time of a certain testing approach
and make new resources available to other parts in a software development project. In
principle such resources could very well be used for human-based testing such as code
inspection to complement the automated approach.

Some frameworks that combine different testing approaches do exist, as will be
shown later in this chapter. These types of frameworks usually combine a low level
approach, such as unit testing, with a high(er) level approach, e.g. acceptance testing.
We like to call this the vertical perspective.

On the other hand, frameworks that combine different testing techniques within
the same principal level of testing, i.e. having a horizontal perspective, are harder to
find, especially when considering how semi-automatic and automatic is defined by
us in the previous chapter (page 116). Since, as will be shown later in this chapter,
there is a lack of frameworks having a horizontal perspective the focus will primarily
be on frameworks that try to combine one or, preferable, several aspects of a typical
software testing process (always having automation aspects in mind). Additionally, this
chapter elaborates on how software testing frameworks need to evolve in order to help
developers that need to combine several different test activities under one and the same
framework. The reasons, for having one framework combining different activities and
techniques, are mainly:

• There is today not sufficient knowledge concerning the effectiveness and effi-
ciency in combining testing techniques (see [148] and Chapters 2 and 5–7),
i.e. introducing several techniques will most likely decrease efficiency (more
time will be used per found fault), but on the other hand increase effectiveness
(number of found faults might increase).

• The software testing community need to evolve and, to a higher extent, collect
‘real life’ data to better understand the current situation concerning different test
techniques’ efficiency [148, 306].
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Figure 9.1: A general overview of the methodology used in this chapter.

• By allowing all test activities, as performed in a typical software testing process,
to be performed within one framework certain synergy effects can be reached.

Simply put, by collecting data from different software projects a higher knowledge,
regarding which software testing techniques are used the most and their respective effi-
ciency, will lead to software testers being able to more easily select the most appropriate
strategy for each unique software testing problem. This information can be obtained
using a qualitative research approach. Nevertheless, a quantitative approach, as we
propose, will give additional information of a statistical nature and data collection can
be spread geographically and over time more easily.

By selecting a population of existing software testing frameworks (Subsection 9.2.2),
and map the population against a software testing model (as introduced in Chapter 8),
it enables us to compare, clarify and classify these frameworks. This then, gives an
indication of what is missing and hence desiderata can be established stipulating what
requirements a future software testing framework should fulfill (Section 9.3). Finally,
this chapter ends with a short conclusion (Section 9.4).

Figure 9.1 gives an overview of the methodology used in this chapter.

9.2 DEFINITIONS AND POPULATION
In Subsection 9.2.2, several interesting software testing frameworks and environments
are examined (the observant reader will notice that several of the samples have been
introduced already in Chapter 8). Focus is put on automatic and semi-automatic aspects
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and contributions that contain several parts of a typical software testing process, i.e. not
contributions that one day might contain more parts. By mapping these contributions
against a software testing model, as presented in Chapter 8 and further explained in
Subsection 9.2.1, a clearer view is given, thus making it significantly easier to compare
different frameworks. Special care is taken to make sure that all aspects of a typical
software testing process (Figure 8.2, page 121) are covered.

9.2.1 CLASSIFICATION AND TERMS
To be able to classify and clarify different frameworks, one first needs to establish a
few ways to measure them. First of all, the definitions of automatic, manual and semi-
automatic should be clear, since the classification in this chapter focuses very much on
this aspect.

To begin with, we claim that, one part of a software has the responsibility to fulfill
a major task and a software is defined by the integration of N parts. This leads to the
following definitions (see Chapter 8 for a discussion regarding these definitions):

Automatic—A software or a part of software is automatic if, and only
if, the task executed by the software/part is performed autonomously with
respect to human intervention.

Manual—A software or a part of software is manual if, and only if, the
task executed by that software/part is performed by a human which takes
all decisions.

Thus, leading to semi-automatic being defined as:

Semi-Automatic—A software or a part of software that is neither auto-
matic nor manual.

Next, by using a software testing model (as presented in Chapter 8) and applying
the aforementioned definitions on the model, a more distinct way of depicting a soft-
ware testing framework, technique or environment is possible (Figure 8.2, page 121).
The model, as shown in Figure 8.2 derives very much from a typical software testing
process. The model was created by looking at the current state of practice with respect
to software testing, and as such should be easy to apply on different tools, framework
and environments (several tools, frameworks and environments are classified and cov-
ered in Chapters 7–8).

As an example, the core of the model in Figure 8.2 (page 121) covers the test case
entity. A test case is divided into test data, test fixture and test evaluator (the rational
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for this can be found in Chapter 8). Every category or sub-category can then be labeled
as having different types of automation aspects and, furthermore, each sub-category
affects the automation label that the parent (i.e. test case) ultimately is labeled as.

Additionally, two other aspects of the model might be appropriate to clarify. First of
all, the concept of comparators and oracles. A comparator only compares the execution
with a known ‘correct’ solution. An oracle, on the other hand, can compare results (as
a comparator), but also give the ‘correct’ solution for each and every varying execution.
Oracles are simply put more general in that they can do more, while comparators can
be seen as simple assertions in the traditional sense; in the model both are part of
the test evaluator entity. For more background information regarding the differences
between these two concepts, and the different variation that they might show, we refer
you to [27].

Second, the concept of sensitive and insensitive test quality analysis as covered in
Chapter 7 and more thoroughly described in [314]. The question of whether the tests
are good enough is hard to answer. Usually, today, this question can be answered indi-
rectly by quantifiable data, e.g. the number of paths that are exercised in the software
during the test or the total amount of test data that have been used as input, as is the
case with e.g. random testing. These two examples can be seen as acting in a context,
with respect to test quality analysis, that is sensitive or insensitive [314]. In the model
both sensitive and insensitive test quality analysis is part of the test analyzer entity.

A more thorough description of the model, together with the rationale regarding
choices made when developing the model, can be studied separately in Chapter 8.

9.2.2 RELATED WORK
The related work that is covered in this subsection was collected by taking four factors
into consideration. Primarily we looked at related work that either:

1. Included, if possible, several steps in the software testing process as described in
Figure 8.2 (page 121).

2. Had an interesting aspect not usually seen in software testing frameworks.

3. Covered both the commercial and non-commercial actors.

4. Was considered to be established.

Of course, there is always a risk associated with trying to select the related work
most suitable for a specific purpose. But the listing above fulfilled our purposes, since
all steps in the software testing process were covered. Worth mentioning in this context
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Table 9.1: Collection of software testing frameworks (in alphabetical
order) supporting several parts of the software testing model. (full
circle = automatic; half full circle = semi-automatic; empty circle =
manual). An empty space indicates not applicable or information not
found regarding this particular feature.

Reference Test data Test fixture Test evaluator
.TEST [70]
Baudry et al. [17]
CASTING [4]
Claessen et al. [53]
Daley et al. [58]
Davidsson et al. [60]
Eclipse1[74]
Edwards [79]
Feldt [90]
Fenkam et al. [91]
Tempto [258]
XUnit [305]
1 Eclipse with GERT [60], djUnit [69], EclipsePro Test [83] and

continuous testing [57] plugins included.

is that related work concerning comparisons of different tools, techniques, etc. is not
included here since the only references found were by commercial interests and thus
considered as being somewhat biased.

For an overview on automatic testing we recommend [15, 78, 206, 231]. In addi-
tion, some other publications are of interest as well, since they all cover certain aspects
of software testing and software quality, e.g. [72, 100, 248, 265, 310].

Most of the related work, with respect to existing software testing frameworks, can
be divided into a few areas according to our software testing model. Tables 9.1 (above)
and 9.2 (page 140) provide an overview of relevant related work mapped against the
software testing model. The first row in each of the two tables is an enumeration of the
main categories as can be found in Figure 8.2 (page 121). The references in Tables 9.1
and 9.2 will be covered in this subsection and a short rational as to why each reference
has been chosen will also be given, e.g. having a possible place in future software
testing environments.

But, to begin with, it might be appropriate to give an example of how a tool is
classified using this model. For this we choose XUnit [305], a unit testing framework
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known by many developers and researchers.
By looking at any description of unit testing frameworks, one can see that test data

generation and selection, in the case of unit testing frameworks, usually is performed
manually. Test fixture creation can, under some circumstances be considered semi-
automatic (e.g. the framework generates stubs which the developer needs to fill in) but
is traditionally seen as a manual effort.

Comparison (test evaluation), in the case of unit testing frameworks, can be per-
formed automatically as long as oracles or comparators are available. In the case of
XUnit they are usually created manually, and are commonly (in the case of unit testing
frameworks) seen as part of the test case creation step, i.e. the developer is the oracle
by providing the correct answer.

The collection of test results is usually an automatic step in the sense that after a
test engineer has started the execution of tests, XUnit collects the results during the
execution. This is considered to be one of the strengths with unit testing frameworks,
and as such indeed further refined by other researchers in [255, 256].

Finally, unit testing frameworks per see, do not traditionally include any test quality
analysis, but nevertheless performs an ‘analysis’ by comparing the execution results
with the expected (pre-defined) results.

The last row in Tables 9.1 and 9.2 provides a graphical notation of how XUnit is
mapped against the software testing model used in this chapter. The rest of the related
work will now be covered in the same manner.

Baudry et al. give an interesting insight on how to test .NET components with
artificial intelligence [17]. One interesting thought is to take this further by making use
of a back-end (i.e. a database) as a help to generate test cases. Hence, a future software
testing framework might be able to ‘learn’ from previous experience.

van Aertryck, Benveniste and Le Métayer claim that their tool, CASTING [4], can
generate tests in a formal (specification-based) and semi-automatic way. Generating
tests from a formal language is probably something that future frameworks will need
to support too, and since this is a good example on how one can automate this to a
higher extent we include it in the population (Tables 9.1 and 9.2).

Daley et al. cover automatic testing of classes using the ROAST tool [58]. They use
test case templates to define test cases which can then be used for generating boundary
values. It is an interesting concept which we believe can be incorporated into other
frameworks in the future as a complementary tool to reach higher effectiveness in test
creation by adding manually written test templates. In addition, by using a storage
some test templates could be generated a priori and provide a rudimentary foundation
that a test engineer later could extend.

With a similar concept, but instead on the unit level, Claessen and Hughes give an
introduction to the tool QuickCheck [53] which aids the developer in formulating and
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Table 9.2: Collection of software testing frameworks (in alphabet-
ical order) supporting several parts of the software testing model
(full circle = automatic; half full circle = semi-automatic; empty
circle = manual). An empty space indicates not applicable or in-
formation not found regarding this particular feature.

Reference TRC1 TA2 Supported language(s)
.TEST [70] Misc. .NET languages
Baudry et al. [17] C#
CASTING [4] C
Claessen et al. [53] Haskell3

Daley et al. [58] Java
Davidsson et al. [60] Java
Eclipse4[74] Java
Edwards [79] C++
Feldt [90] Ruby5

Fenkam et al. [91] Java
Tempto [258] Java
XUnit [305] Misc. languages
1 Test Result Collector.
2 Test Analyzer.
3 http://www.haskell.org (even though other lan-

guages have implemented QuickCheck too).
4 Eclipse with GERT [60], djUnit [69], EclipsePro Test [83] and

continuous testing [57] plugins included.
5 http://www.ruby-lang.org
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testing properties of programs. As a basis they use random testing for generating input,
since they claim that research has shown that other techniques are at least not better in
these particular circumstances. We believe that random testing is a good complement
to other testing techniques no matter what type of software is tested and as such should
always be considered as a complementary technique in future frameworks.

A similar framework, called Tempto [258], has been created with Java in mind.
Tempto has one noticeable difference though; the whole test management infrastructure
is based on XML declarations. Having all declarations and output written in XML
could provide future frameworks some interoperability gains.

On a lower level, concerning testing techniques, we see Edwards’ paper [79] on au-
tomating black box testing on component-based software with pre- and post-conditions
as worthwhile pursuing. One interesting possibility is to instead use the Common Lan-
guage Infrastructure (CLI) [141] as a testee, thus providing the possibility to be, as is
the case with CORBA [91], more language independent.

Regarding frameworks for automated and/or semi-automatic testing some commer-
cial tools are obviously also of interest. Especially .TEST from Parasoft [70] and IBM’s
Rational Robot [135] are worth mentioning here. Parasoft’s framework (or maybe tool
is a better word) can help the test engineer with automatic unit testing and automatic
static and dynamic analysis on several .NET languages.

IBM’s framework, on the other hand, helps the developer with functional and re-
gression testing. However, in the case of these particular frameworks they usually
create stubs for the developer to fill in. This is, in our opinion, something that should
be automated to a higher extent in the future. In this chapter we will only cover .TEST
and not Rational Robot since they are similar in all too many ways. Worth mentioning
in these circumstances is the difficulty to obtain relevant technical information regard-
ing commercial offerings such as [6, 70, 135]. This is of course something that needs
to be taken into account when one compares different commercial and non-commercial
frameworks.

In addition to the above commercial tools, we have GERT [60], a non-commercial
tool for Eclipse [74]. GERT combines static source code metrics with dynamic test
coverage and tries to predict the reliability of the software based on a linear combina-
tion of these values. In our opinion, this could be included in future frameworks as
well and further refined using other reliability measurements (as discussed in Chap-
ter 4), and as such is appropriate to include in the population. If Eclipse is combined
with a few other tools (including GERT), such as djUnit [69], EclipsePro Test [83] and
the continuous testing plugin [57], the making of a very competent software testing
framework is starting to show. Unfortunately each plugin used by Eclipse in this case
does not interact with other tools, hence missing an opportunity to reach interesting
synergy effects. In addition, barring a few exceptions, the Eclipse project is focused
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solemnly on the Java programming language.
Next, Feldt’s contribution on the semi-automatic aspects of software testing [90]

(i.e. the interaction between the test engineer and the software testing framework) gives
an insight on what the future might look like, and as such is place in the tables as
relevant related work.

Finally, we have two other contributions that are not included in the population,
but are nevertheless interesting concepts regarding automatic software testing. Kung et
al. present an object-oriented software testing environment in [164], and even though
it is mainly for testing C++ programs, we believe that the fundamental principles of
data flow testing and object state behavior can be incorporated into future frameworks
focusing on testing software implemented using object-oriented technology. According
to the authors the usefulness of the object-oriented test model is primarily to help:

[. . . ] testers and maintainer understand the structures of, and relations
between the components of an OO program.

Collofello’s et al. paper covering a testing methodology framework [56], which
guides the developer in choosing the appropriate testing methodology is, even though a
slight deviation from traditional software testing frameworks, still of interest since test
technique selection etc. could be performed in a similar manner. Since this contribution
does not focus on the typical software testing process, but instead on some ‘meta-
aspect’ thereof, we will not include it in the population.

As mentioned previously there exist several examples of frameworks with different
vertical approaches [134, 270, 285]. But as can be seen from the collection of links
in [276], there is a lack of tools that combine different horizontal techniques. Hence,
this chapter’s focus on frameworks that fulfill certain aspects of a typical software
testing process.

As an example, Figure 9.2 (next page) provides a graphical view of how the first
reference in Tables 9.1 and 9.2, i.e. .TEST [70], map against our model; in addition
one can see how the automation labels on each sub-category affects the parent, i.e. test
case.

9.3 FRAMEWORK DESIDERATA
What, by looking at the references just covered, does the future hold then? For one,
we can see a shift towards frameworks that try to combine several different techniques
and tools (using a vertical approach). This is also indicated from the collection of
references that can be found in Chapter 7 and [276].
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Figure 9.2: A complete graphical view of how .TEST [70] is classified using the soft-
ware testing model.

Secondly, by examining each column in the tables (Tables 9.1 and 9.2), one can see
that the only categories where there is a lack of ‘pure’ automation is (see Table 9.1) in
the test fixture and test evaluator entities.

The reasons for this is simple. Regarding the test evaluator entity the problem is
closely connected to the oracle problem. The oracle problem [293], is according to
Chen et al. [47] one of two fundamental limitations in software testing. With respect
to test quality analysis performed in an insensitive context we believe this is due to
the immaturity of software testing techniques using mutation analysis and genetic al-
gorithms (presently no commercial frameworks exist as far as we know). But to have
a truly context insensitive approach in test quality analysis, with full automation, those
two techniques are most likely to succeed in our opinion.

With respect to automatic test fixture it is not clear to us why there is no (as far as
we know) framework supporting this concept. The technical problems should not be
too difficult to solve (and indeed is partly solved in Chapter 10).

Other than that, the tables illustrate that all other parts can be fully automated, even
though each contribution uses different techniques to reach that goal. Nevertheless,
no tool, framework or environment covers all the steps in a typical software testing
process.

As can be seen, partly from the collection of references (Tables 9.1 and 9.2 in ad-
dition to Chapter 7), software testing frameworks try to support more and more testing
activities as seen in a typical software testing process, e.g. test creation, results collec-
tion and test analysis. In addition, a move towards combining different vertical test-
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ing techniques can be visible (see Chapter 7). Of course, the different combinations,
whether dealing with techniques or activities, should lead to more faults being found
in software. For example, we have previously shown in Chapters 5 and 6 that com-
bining different testing techniques within the same approach (e.g. combining partition,
random and boundary testing) gives a higher effectiveness.

Thus, a framework where a test engineer might combine several unit testing tech-
niques, e.g. partition testing [296], boundary value analysis [204] and random [122],
as well as anti-random [306], testing, in addition to one or more high level testing ap-
proaches should, theoretically, lead to higher effectiveness in finding faults. What one
test technique misses—another might catch.

By combining software testing approaches a higher effectiveness can be reached
with respect to finding faults. Depending on whether these approaches are carried out
in parallel to each other or not and the exact degree of automation of each technique,
any combination also holds the potential of increased efficiency due to more found
faults within a constant time frame. Saff and Ernst have in addition shown that higher
efficiency can be reached by constant test execution [256].

Hence the end goal is significant since having one framework, which can combine
both vertical and horizontal approaches in addition to having the continuous testing ap-
proach and the self-learning environment integrated, should lead to faults being found
during less time. Simply put, even if we introduce a multiple of techniques that might
take more time to execute in our framework, the total cost savings, i.e. since more
faults will be found earlier in the development process, will make up for the effort (see
Boehm’s conclusions [30] and e.g. Damm’s contribution on trying to solve the matter
of fault-slip-through in software engineering processes [59]).

In addition, as we mentioned briefly, future frameworks could be used as a test bed
for testing different test techniques’ ability to find faults. As far as we know, there exist
no such framework today.

With respect to our definitions of automatic, semi-automatic and manual it seems
clear what the future might look like. First of all, allowing a test engineer to manually
work on a framework’s different parts should always be allowed since it is impossible
to account for all different use cases. Thus, the guiding principle future software testing
frameworks should adhere to is:

Automatic where possible, semi-automatic otherwise

By having for example automatic, or when this is not possible, semi-automatic test
case generation a test engineer will be able to save time. In addition it will require
less in terms of knowledge and education. From the researcher’s perspective, auto-
matic creation of e.g. test data and test fixtures will be much more reliable compared
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Table 9.3: Additional requirements not part of the software testing model.
Language agnostic
Combinations
Integration and extension
Continuous parallel execution
Human readable output
Back-end

to manual creation (with respect to repeatability). Thus, it will allow for a much easier
comparison of different test case generation techniques in the future. Obviously, many
testing techniques that are being used today are more or less inappropriate to automate
to a high(er) extent.

To put it simple, look at Figure 8.2 (page 121) and imagine that each circle can be
empty, partly filled and filled, at the same time. That kind of flexibility is something
test engineers will probably look for in future frameworks, thus the baseline require-
ments future frameworks should strive towards is Figure 8.2 with varying levels of
automation.

Future frameworks will most likely always provide the possibility to, first of all,
continuously test in the background while the software engineer is developing the soft-
ware and, secondly, perform parallel test execution. Parallel execution of test cases has
the possibility to lead to higher efficiency. There are problems that need to be solved
in this particular area, especially considering dependencies in test case hierarchies and
prioritization of test case execution. But if these problems can be solved for the ma-
jority of test suites, it could lead to the breadth of testing techniques being used to be
widened, i.e. techniques that generate massive amounts of tests.

But, as we already can discern, several other requirements need to be fulfilled. By
itemizing these requirements into different properties we obtain Table 9.3. As can be
seen from this figure there exists several requirements that, outside the software testing
model being used in this chapter, accounts for a few features that future frameworks
will probably contain.

Finally, a few more clarifications need to be made. Future frameworks should be
extendable thus providing a test engineer the possibility to add functionality in the
future. In addition, several ‘common features’ should always be provided in the future,
as they are today. For example, features such as static source code analysis and dynamic
execution tracing are used by many software testing techniques.

A quick look at Figure 8.2 and Table 9.3, which could be said to represent a com-
bined view on the requirements, shows that the goal for future frameworks is ambitious.
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The aim is to have all top-level definitions, i.e. test creation, test execution, result col-
lection, result evaluation and test quality analysis to be automated, according to our
definitions that were covered in Subsection 9.2.1.

In the following subsections several proposals will be made covering likely paths to
take in the future with respect to software testing frameworks. Each subsection covers
one topic that is of, in our opinion, particular interest (Table 9.3). Each proposal fo-
cuses, where appropriate, on solutions for the Common Intermediate Language [141].
Nevertheless, the discussions should also be applicable to other intermediate represen-
tations of code.

9.3.1 LANGUAGE AGNOSTIC
One initial focus that future frameworks could have is generating and executing test
cases on Common Intermediate Language [141] code. First of all, since CIL can be
extracted from any executable, that adheres to the standard [141], both white- and black
box approaches can be used.

Secondly, CIL is suitable for low level testing techniques such as boundary value
analysis, partition, random and anti-random testing, more or less in the same sense
as source code. Obviously, on the other hand, other vertical testing approaches, such
as acceptance testing or system testing, must be implemented on a more abstract and
higher level.

Finally, the concept of an intermediate language (such as CIL) gives the software
tester the possibility to test software written in different programming languages using
the same tool, techniques, concepts and methods.

9.3.2 COMBINATIONS
The software testing model covers test generation but, as mentioned previously, com-
binations of testing techniques (vertical and horizontal) would be highly interesting to
have in future frameworks. We believe that a test engineer will gain in ease of learn-
ing, ease of use and maintainability by having one framework. In addition to this (s)he
will be able to reach a higher effectiveness by combining different (sometimes overlap-
ping) techniques. A researcher, on the other hand, will be able to compare and evaluate
different techniques more easily.

Random testing is a technique that is of interest to implement in a framework,
when combining several different testing techniques, because of its rather straight-
forward manner. Random testing has been covered to a high extent the last decades
especially by Hamlet (for a nice introduction please read [122]). Lately, progress have
been made considering the semi-automatic creation of comparators using AI-related
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  Classes in assembly
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      Read and write protecion of property
    Methods in classes
      Name of method
      Method is abstract, final or virtual
      Method is public, private or protected
      List of argument name and type
      List of return type

Figure 9.3: Example of metadata that can be collected using the Reflection namespace.

algorithms [90] or by using a test data generation language [53] in addition to the qual-
ity estimations considering random testing as a whole [187] (in addition please see
Chapter 4).

One way to implement random testing in a framework would be to extensively
make use of the System.Reflection namespace [242]. The Reflection namespace within
the .NET Framework (as well as in Java) gives a developer access to metadata from
assemblies (see Figure 9.3). In this way a semi black box approach can be used.

Another way to get this type of information from an assembly would be to directly
analyze the CIL code. That way a test engineer, or a framework, will be able to get more
information regarding the innards of the assembly e.g. the algorithms being used. Even
though it would mean paying a much higher price in terms of complexity, than simply
using the Reflection namespace, it would also make traditional white box approaches
possible.

In addition to this, runtime instrumentation of assemblies [239] is also a possibility
that might be worth pursuing in the future. This is however, as the name tells us, a pure
runtime library and not for static testing.

Finally, reverse engineering assemblies using e.g. Reflector for .NET [243] or other
tools for Java et al., would make it possible to use a wide range of white box approaches
more easily, but on the other hand it could introduce some legal aspects with respect to
intellectual property rights.

Implementing random testing in a framework is fairly straightforward and has been
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done on several occasions. For example, using the technologies just described, a frame-
work could get the signature of the method that will be tested (Listing 9.1).

Listing 9.1: Example of a signature obtained from e.g. an intermediate representation.
1 int SquareRoot (int number)

The framework could then generate an array of random integer values (e.g. {9,50})
which could be used when calling the method (as depicted in Listing 9.2). Worth
mentioning here is that in this example scalar values are used but for a framework to
be truly useful complex values need to be handled.

Listing 9.2: Example showing random testing of a unit.
1 //Generate new object o
2 o.SquareRoot(9);
3 //Returns 3
4
5 //Generate new object o
6 o.SquareRoot(50);
7 //Exception is cast

A simple analysis would then make the test engineer aware of the fact that an ex-
ception was thrown. In this case, the reason might be that the method is not able to find
the square root for a particular integer.

Rudimentary support for generating stubs for unit test cases, by analyzing the CIL
code extracted from an assembly, is already possible today. A similar approach, but
where the actual source code is analyzed, has been taken before as far as we under-
stand [70, 135]. In the future, combining stub generation with random testing in addi-
tion to boundary value analysis, is a likely path to gain higher effectiveness.

9.3.3 INTEGRATION AND EXTENSION
Since Integrated Development Environments (IDEs) are common today, we believe
that there will be a shift towards integrating more and more features into established
IDEs [74, 289], instead of creating ‘traditional’ test environments [70, 135, 6]. Obvi-
ously, why should a test engineer need to learn yet another testing environment when
(s)he already knows an IDE?

Unfortunately, after examining the plugin interfaces for various IDEs, one quickly
comes to the conclusion that each and every IDE is unique when it comes to adding
functionality to it. As such, a future framework needs to be adapted for every IDE
that will use the functionality provided by the framework. Alas there is no way today,
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Figure 9.4: Schematic overview of a value generator.

standard or de facto standard, to extend different IDEs through one common plugin
interface.

On the other hand, one way to extend a framework, would be by using the concept
of, again, plugins. For example, one thing that could be used and reused many times
over in a framework are values. A value generator could be extended, thus different
values could be generated and tailored for a particular test. Primitive values, e.g. in-
tegers, floats and characters, are always of interest. In addition, by extending a value
generator and having different types of values stored in the database, for generating
anti-random [306] series of numbers or different types of mock-objects [197], might
be of interest (Figure 9.4).

9.3.4 CONTINUOUS PARALLEL EXECUTION
A back-end for constant execution of test cases, as is described in [255] and [256], is
naturally of interest for several reasons. First of all, having test suites executed con-
stantly will let test engineers be notified immediately if any regression is found. Sec-
ondly, combining test execution and regression checking using clustered workstations
during night time [31] would make the test engineers able to scale up the number of test
cases to a very high degree. Although this technique may not increase efficiency per
time unit (of execution) as such, it still increase efficiency in any software development
project as a whole. One might add that this approach will put an additional emphasize
on the statistical tools being used as well as the visualization and data mining parts of a
framework. This approach is basically the opposite to [254] where Rothermel et al. are
trying to keep the number of test cases to a minimum.

Of course, using clusters for software testing is not simple since the issue of test
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case dependency creates a ‘lose-lose’ situation for the test engineers in that software
slicing need to be performed to the extent that the tests in the end are testing more or
less nothing. Random testing of software units (units in the sense of unit testing) might
on the other hand benefit from this approach since dependency issues can be kept at a
minimum.

9.3.5 HUMAN READABLE OUTPUT
Schimkat et al. [258] has showed us how to use XML to configure and execute tests
in an object-oriented test framework. This is probably something that will be more
common in the future.

If one in addition stores all output in XML then platform independence with respect
to data storage will be readily available. Which operating system or test framework that
is used will be more or less irrelevant as long as data is stored in a uniform human read-
able manner. The usage of XML schemes in the future would enforce a standardized
look, but to create templates for something as complex and varying as software testing
might prove to be all to difficult.

9.3.6 BACK-END
By using a database back-end that records test statistics and draw conclusion of said
statistics, a higher knowledge can be gained with respect to effectiveness and effi-
ciency of different testing techniques’ ability to discover faults under different sce-
narios. In other words, some testing techniques might be better under certain circum-
stances e.g. type of software tested, programming languages or type of architectures be-
ing used. Having data gathering and analysis performed within one framework, while
using different testing techniques and approaches, should ultimately give a higher qual-
ity with respect to data analysis. A self-learning environment, which analyzes old test
results and draws conclusions, could naturally evolve in the end [17].

A future framework, would probably consist of a database used for collecting data
of quantitative nature, i.e. test results stored for later evaluation, collection of statistics
and regression monitoring. Information that might be appropriate to store in this case
would be:

• Number of test cases.

• Type of test case (even storing the actual test case might be appropriate).

• Type of test technique being used.
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• Found faults per test case.

• Test suite execution time.

• The number of lines of code (when applicable).

• Type of software, e.g. programming language, server or desktop application.

In addition to the above, being able to send the above information to either: a) a test
manager at a company or, b) a researcher for further analysis, is obviously something
of interest. Having quantitative data, regarding software testing (especially when com-
bining data from several projects) readily available to a higher extent will increase the
knowledge concerning various part of the software testing process, whether that may
be test case creation or test quality analysis.

9.3.7 AUTOMATED TEST FIXTURE AND TEST EVALUATOR
CREATION

Finally, as was concluded already in the beginning of this section automated creation
of test fixtures and test evaluators is something not easily found in test frameworks
today. In some cases, semi-automated approaches exist (see Tables 9.1 and 9.2), but
usually they, in the case of test fixtures, allows for some stubs to be created (while the
test engineer needs to fill out the rest), or in the case of test evaluators, are based on
generating them via specifications.

In a future framework the above issues could be solved by retrieving method signa-
tures etc. dynamically during run-time and thus, in addition, provide the test engineer
with common input values and the results from executing said values. That way, it
would at least provide the test engineer with an automated framework for regression
testing, which later could be extended with other automated approaches.

9.4 CONCLUSION
This chapter consisted mainly of three parts. First of all, a software testing model was
applied on a collection of frameworks for easier comparison. Next, an elaboration on
the requirements that future frameworks probably need to adhere to was performed.
Finally, a number of proposals regarding how the requirements might be implemented
in future software testing frameworks were given.

In our opinion, we find it reasonable that frameworks should, in one form or an-
other:
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• Automate more parts in a typical software process, while still allowing test en-
gineers to extend the functionality in different ways (e.g. automated creation of
test fixture, test data and test evaluator by means of run-time extraction).

• Collect quantitative data that is stored for later analysis.

• Combine more testing techniques (vertical and horizontal).

• Apply techniques on intermediate code representations.

• Provide support for selecting the most appropriate technique when testing a par-
ticular software.

• Save results in a standardized format, e.g. XML.

• Integrate test activities in IDEs currently used in industry (as opposed to offer a
completely new testing environment explicitly tailored for software testing).

If the above desiderata is to be implemented in one framework then another step,
towards automated software testing, would be taken.
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R. Torkar

10.1 INTRODUCTION
In 2002 the National Institute of Standards and Technology released a report [205]
which revealed that the total cost of inadequate software testing infrastructures, in
the USA alone, was estimated to be as high as $59.5 billions per year (80 percent
of software development dollars were spent on correcting defects). The total market
for automated software quality products (products that to some extent automatically or
semi-automatically supports software testing) is today estimated to be as high as $1
billion with an annual growth of 9 to 10 percent [130]. These facts and predictions,
together with the observation that application testing takes between 30 and 90 percent
of total product labor costs [22], leads to an obvious conclusion—automated software
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quality (ASQ) products will likely be an important part of the software engineering
landscape for the foreseeable future and the focus on automation will increase so as to
reduce expensive manual labor.

Several ASQ products are today automated to a higher or lesser extent, but few are
completely automatic (see Chapters 7–9 for examples). The reasons for not reaching
a level of full automation are several (one reason is the complexity of software), but
nevertheless it is not an understatement to claim that much progress have been made
the last decades with respect to automation in software testing. To be able to automate
software quality assurance to a high(er) extent, one needs to look at other techniques as
being more suitable for this purpose than others. In this respect random testing [122]
is a likely candidate for automation due to its nature where a minimum of human inter-
vention is needed. A future framework (as presented in Chapter 9) could encapsulate
random testing as a viable option for testing object-oriented software.

Unfortunately, random testing of object-oriented software has not been researched
widely (for an overview please see [27]). One of the reasons for this is surely the fact
that random testing traditionally compares well to other techniques when it comes to
dealing with scalar (pre-defined or primitive) types, while usually is seen to have weak-
nesses dealing with compound (programmer-defined or higher-level) types (semantic
rules for these types can be found in e.g. [11]). Another reason might be that random
testing, again traditionally, has been tested on small and delimited examples. However,
these reasons are not as valid today, see [53, 219] and [268] respectively, as they were a
decade or so ago. Since some progress has been made one can draw the conclusion that
researchers need to perform more experiments and case studies using random testing
on complex object-oriented software (using compound and programmer-defined types
extensively as in this chapter).

In order to apply random testing on software, one can use dynamic (runtime) anal-
ysis to be able to get a deeper understanding regarding the software item under test
(testee). Extracting patterns from a testee, by injecting code (aspects) which records
the usage (dynamically) and then later apply these patterns on the testee itself, is one
possible approach for random testing object-oriented software (this way one would
random test the software using a likely use case profile). In addition, it is not unlikely
that these patterns could be generally applicable on other software once extracted us-
ing e.g. statistical pattern recognition (due to the share volume of data needed to be
processed). The word pattern, in this context, constitutes several entities such as: ex-
ecution path(s) (sequences of method calls), method input type(s) and value(s), and
method return type(s) and value(s), with which the testee is executed.

As an example, regarding the general usage of patterns in object-oriented soft-
ware, one can see a scenario where one examines the methods that have been executed,
how many times they have been executed, and the specific order they are executed in.
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As an example, assume that ObjectOfClassA is always executed in the following or-
der: .ctor(), Foo() and Bar() or that ObjectOfClassA’s method Foo() is consistently
called from ObjectOfClassB or ObjectOfClassC, which in the end could imply that all
objects of type ClassA in any software item should at least be tested using these orders
of execution.

The research contribution of this chapter is to, a) show how object message pattern
analysis (from automatically instrumented applications) can be used for automatically
creating test cases. Test cases in this context equals test data, evaluators and fixtures
(for a discussion regarding the different entities in software testing please see Chap-
ter 8), b) point to how random testing can be performed on these test cases and, fi-
nally, c) examine the possible existence of object message patterns in object-oriented
software in addition to the question of general applicability of said patterns. In our
opinion, these questions need to be examined before another step can be taken towards
a framework for automated random testing of object-oriented software as previously
partly described in Chapter 9.

Throughout this chapter an empirically descriptive model is used, i.e. explaining a
phenomenon sufficiently on ‘real life’ software.

Next, related work is presented. Following that, the setup of the experiment is
presented (Section 10.2) while the results are covered in Section 10.3. Finally, this
chapter ends with a discussion and a conclusion (Sections 10.4–10.5).

10.1.1 RELATED WORK
Related work for this chapter can be divided mainly into four categories: random test-
ing, type invariants, dynamic analysis and patterns in object-oriented software.

Random testing. Random testing [122, 124], which acts a basis for our approach,
is a fairly old research area which has seen several new contributions lately which di-
rectly or indirectly affect this chapter. One point to make in this context is that random
testing has advantages which other testing techniques lack. To begin with, due to the
nature of random testing, automatic aspects are fairly straightforward to implement.
Furthermore, statistical test methods, such as random testing, are unique in that they do
provide a type of answers regarding possible remaining faults ([122] and Chapter 4),
the downside with this information is its probabilistic nature and interchangeability
between failure probability and test reliability. Finally, even though much debated,
random testing compared with e.g. partition testing, has in some circumstances been
shown to have very small differences in effectiveness [48, 71, 210].

Looking at Claessen and Hughes’ work on a lightweight property-based tool called
QuickCheck [53] one can see a novel technique in using random testing. In this exam-
ple they use random testing together with property-based oracles, thus introducing new
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ways of automating several parts which earlier used to be extensively manual (Chap-
ter 8). Hence, further proving the point that random testing is suitable for automation,
albeit only on Haskell1 programs in this particular case (other languages have imple-
mented QuickCheck too lately).

But is random testing the answer to all our problems? Certainly not, random test-
ing has at least one substantial disadvantage, i.e. low code coverage (see [215] for an
excellent overview). However, by using the approach in which this experiment is con-
ducted, low code coverage is mostly inconsequential since directed coverage is applied
(in most cases), i.e. the most likely paths are always executed since they are exercised
by the use case when applied on a testee, which in the end means that the test strategy
used in this experiment focuses on exercising values within these paths. We do not
claim, in any way, that this framework reaches complete coverage—it is better to focus
on what random testing does best.

Likely invariants. Likely invariants has gained considerable attention lately fol-
lowing the work of Ernst et al. [84, 219, 230] and Lam et al. [126]. The concept of
likely invariants is built upon the assumption that one can find different input values,
for testing a software item, by looking at the actual values the software uses during
a test run. In our opinion, using likely invariants is an appropriate way of gaining
semi-randomness in software testing when a traditional random testing approach is
not feasible (likely invariants in these contributions are based on likely deviations from
used, or recorded, values). By having likely invariants for the input domain, i.e. method
input values, the test engineer will always have the possibility to avoid testing an ex-
tremely large input volume when using random testing, which might be the fact in
many circumstances due to the combinatorial nature of software.

Our approach does not focus on likely invariants per see but rather class interac-
tions which in its turn provides the order of the methods being executed as well as
method signatures and actual input and return values and types. While likely invariants
are mostly focused on unit testing, this chapter, on the other hand, focuses on object
interactions and sequences of method calls. The contributions regarding likely invari-
ants can in the future be added to our framework if needed, but will ultimately lead to
a deviation from the path of true random testing, although provide an excellent way to-
wards automated software testing (please see [126] for a discussion on different usage
models for likely invariants).

Dynamic analysis. The concept of dynamic analysis, i.e. analysis of the soft-
ware based on its execution, can in our approach best be described as a see-all-hear-all
strategy (for more recent contributions on how to use dynamic analysis for program
comprehension please see [125, 309]). This way it resembles the omniscient debug-

1http://www.haskell.org
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ger [174], which takes snapshots of every change in the state of the running application
thus allowing the developer to move backwards and forwards when debugging the ap-
plication. The difference in our approach is that every important piece of information
during an execution, is stored for later off-line analysis (while in [174] it is used dur-
ing run-time). Thus, in our case, we are avoiding costly run-time computations while
focusing on data-mining concepts [169] and, in the long run, statistical pattern recog-
nition [142] as a way to extract valuable information from the rich information source.

Object-oriented patterns. An overview of object-oriented software testing, and
especially patterns in this area, can be found in the following contributions [27, 62,
97, 167, 227]. Important to note, in this circumstance, is that the word pattern (as
used by almost all of the references) has in many ways a different meaning compared
to how it is used in this chapter. In [27] and [167] the word pattern is used for the
purpose of testing systems (not adhering to the detailed lower level as proposed by
us), while in [62] the word pattern is used to describe how system testing should be
performed from an organizational perspective. In [97] the definition of pattern follows
the predominant definition of patterns as introduced by Gamma et al. in [105]. Finally,
in [227] the authors examine the subject of patterns in object-oriented software (further
researched in [228]), but on the other hand they do not to make a connection with
regards to testing object-oriented software but rather focus on analysis in a more broad
sense. Nevertheless, the abstraction mechanism as applied in this chapter is very much
the same as in [227] albeit the purpose is completely different.

In able to clarify the concept of patterns in this chapter, we use the name Object
Message Patterns for our purposes. Object stands for the fact that the focus is set
on object-oriented software. Message is short for the message-driven perspective as
employed by object-oriented software and finally, patterns stands for the execution
traces as found when analyzing software.

As far as we know, the only contributions that bear resemblance to this chap-
ter (looking at it from a test framework perspective) are Godefroid’s et al. paper on
DART [111] and Lei and Andrews’ contribution on minimization of randomized unit
test cases [172].

DART, or Dynamic Automated Random Testing, implements an automatic extrac-
tion of interfaces using static source code parsing (whereas we focus on intermediate
representations) which then is used to create a test fixture. The fixture is in its turn used
for random testing the method. Unfortunately, DART, as most other contributions in
the area of random testing, focuses on scalar types (no evidence is found stating oth-
erwise in the reference) and is not automated to the extent one might like, e.g. a test
engineer needs to define the self-contained unit to test.

Lei and Andrews’ contribution on the other hand has, as far as we understand,
a slightly different focus in that they concentrate solely on minimizing the length of
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the sequences of method calls using Zeller and Hildebrandt’s test case minimization
algorithm [311], which significantly reduces the length of sequences. In addition, to
our knowledge, existing (manually created) oracles are a prerequisite to their approach
(further clarified in [10]), and the case studies performed are applied on small units—
compared to our larger full-scale applications as introduced in the next section.

10.2 EXPERIMENTAL SETUP
In this experiment the focus is set around testing intermediate representations of source
code. Today, in industry, many would say that the center of attention is mostly around
the Java Virtual Machine [177] and the Common Language Infrastructure (CLI) [77]
with its Common Language Runtime (both inheriting from the original ideas brought
forward by the UCSD P-System’s developers in the late 70’s [137]).

To dwell on the pros and cons of intermediate representations of source code is
beyond the scope of this chapter but, suffice to say, having an intermediate representa-
tion allows the developer to perform dynamic manipulations easily (using e.g. reflec-
tion [63, 274] which can be found on the Java 2 Platform [42] and the .NET frame-
work [131]). When reflection is not enough to solve the problem, one can easily instru-
ment the intermediate representation either directly [85, 170] or indirectly [106, 115].
In this experiment we make use of the Common Language Runtime and instrument
the intermediate representation, but nevertheless, the concept proposed in this chapter
should be applicable to most if not all types of intermediate representations.

The experiment conducted in this chapter was performed on three different soft-
ware items: Banshee [28], Beagle [104] and the Mono C# compiler [208] (Mcs). The
selection of the software items was performed with the following in mind:

• The application should be written in a language which can be compiled to an
intermediate representation (in this case the Common Intermediate Language,
CIL [77]).

• The application should be sufficiently large and thus provide large amount of
data for analysis.

• The applications should be of GUI or console type and targeted towards end-
users or developers.

• The applications should be developed by separate development teams.

In the end, Banshee (media player), Beagle (search tool) and Mcs (C# compiler),
were considered to fit the profile for the case study. For each application one common
use case was selected to be executed after the application was instrumented:
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Table 10.1: An overview of the experiment showing the number of LOC (lines includ-
ing comments, white spaces, declarations and macro calls), the size of the assemblies
(in KB), the number of classes that were instrumented and the number of instrumenta-
tion points, for each application.

App. LOC IL (KB) # Classes # Instrumentation Points
Banshee 53, 038 609 414 2, 770
Beagle 146, 021 1, 268 1, 045 5, 084
Mcs 56, 196 816 585 2, 640

Table 10.2: The time to instrument (TTI) and execute (TTE) without and with instru-
mentation for each application. Time command execution according to IEEE Standard
1003.2-1992 (POSIX).

App. TTI TTE w/o Instr. TTE w Instr.
Banshee 28s 1m 3s 7m 4s
Beagle 1m 11s 6s 1m 14s
Mcs 2m 46s 0.8s 34s

• Banshee—Start application, select media file, play media file, stop playback,
shut down application.

• Beagle—Start search daemon in console (background process), perform query
in console, close the GUI which presents the search results, stop search daemon.

• Mcs—Compile a traditional ‘Hello World’ application.

Tables 10.1 and 10.2 provides an overview of the different software items that were
tested, as well as the number of classes, methods and instrumentation points. Cor-
respondingly, for reference, the time to instrument the assembly and execute the test
case with and without instrumentation is presented (the last numbers should be consid-
ered approximate since some of the use cases did require manual intervention by the
software tester).

After the selection of the candidate applications was accomplished the actual in-
strumentation took place. To begin with, each valid class in the testee (disregarding
abstract, extern and interface annotated signatures) in every assembly (exe and dlls),
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had instructions inserted in each method which would collect runtime input and return
value(s) and type(s), as well as the caller (i.e. what invoked the method). All this data,
together with a time stamp, was then stored during runtime in an object database while
the testee was executed following a valid use case. That is to say, each time a method
was executed, during the execution of a use case, an object containing all the values
necessary to recreate that state, was stored in the object database. Having to serialize
the data beforehand would be too resource intensive for obvious reasons not to mention
posing some difficulties from a technical perspective, as is discussed in Section 10.4.

Next, the object database was used for an analysis of data looking for patterns and
discovering likely critical regions. The selected paths could then be used for creating a
test case (using the actual runtime values as test data and test evaluators). The execu-
tion of the use cases, as well as the instrumentation of the assemblies, was performed
under Linux 2.6.15, Mac OS X 10.4.4 and Windows XP SP2 using Cecil 0.3 [85], As-
pectDNG 0.47 [106] and the open source (in-memory) object database engine db4o
5.2 [61].

To be able to better explain our approach (which can be applied directly on data
from the experiment), an example is introduced next. The example is very simple in its
nature (two classes: Foo and Bar), and as such also provides a good overview regarding
the type of data that can be extracted from the experiment (Listing 10.1).

Listing 10.1: Example which will be used in this chapter.
1 us ing System ;
2
3 p u b l i c c l a s s Bar {
4 p u b l i c s t a t i c vo id Main ( s t r i n g [ ] a r g s ) {
5 Foo myFoo = new Foo ( ) ;
6 s t r i n g exec = myFoo . Run ( " Our s t r i n g " ) ;
7 }
8 }
9

10 p u b l i c c l a s s Foo {
11 p u b l i c s t r i n g Run ( s t r i n g mySt r ing ) {
12 re turn mySt r ing ;
13 }
14 }

The disassembled intermediate representation [77]) of the method Run() (when
compiled with the Microsoft C# compiler) can be seen in Listing 10.2.

Listing 10.2: The disassembled method Run.
1 . method p u b l i c h i d e b y s i g i n s t a n c e s t r i n g
2 Run ( s t r i n g mySt r ing ) c i l managed
3 {
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4 / / Code s i z e 6 (0 x6 )
5 . maxstack 1
6 . l o c a l s i n i t ( s t r i n g V_0 )
7 IL_0000 : ldarg . 1
8 IL_0001 : s t l o c . 0
9 IL_0002 : br . s IL_0004

10 IL_0004 : l d l o c . 0
11 IL_0005 : r e t
12 } / / end o f method Foo : : Run

After performing the automatic process of instrumenting the assembly, the method
Run()’s name is thus changed to Run__Wrapped__0(), i.e. everything in Listing 10.2
stays the same except for the string ‘Run’ being exchanged to ‘Run__Wrapped__0’.

Run__Wrapped__0() is then referenced from the new ‘implementation’ of method
Run() which now looks completely different (Listing 10.3, please note that some CIL
instructions have been removed to decrease the number of lines and that a pseudo code
example is presented in Listing 10.4). The instrumentation is performed in the same
manner no matter what type of value (compound or scalar) the method takes as input
or returns.

Listing 10.3: The new implementation of method Run(). On line 19 and 20 one can
see the original implementation of Run() being referenced by its new name, and on
lines 34–36 the original implementation’s execution continues. As a side note, the
implementation of MethodJoinPoint (referenced on lines 21–26), stores the data in the
object database.

1 . method p u b l i c h i d e b y s i g i n s t a n c e s t r i n g
2 Run ( s t r i n g mySt r ing ) c i l managed
3 {
4 / / Code s i z e 68 (0 x44 )
5 . maxstack 8
6 . l o c a l s i n i t ( o b j e c t V_0 ,
7 o b j e c t [ ] V_1 )
8 IL_0000 : l d c . i 4 0x1
9 IL_0005 : newarr [ m s c o r l i b ] System . O b j e c t

10 IL_000a : s t l o c V_1
11 IL_000e : ldarg mySt r ing
12 IL_0012 : s t l o c V_0
13 IL_0016 : l d l o c V_1
14 IL_001a : l d c . i 4 0x0
15 IL_001f : l d l o c V_0
16 IL_0023 : s t e l e m . r e f
17 IL_0024 : ldarg . 0
18 IL_0025 : l d l o c V_1
19 IL_0029 : ld token method i n s t a n c e s t r i n g Foo : :
20 Run__Wrapped__0 ( s t r i n g )
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21 IL_002e : newobj i n s t a n c e void
22 [ a s p e c t l i b ] M e t h o d J o i n P o i n t : :
23 . c t o r (
24 objec t ,
25 o b j e c t [ ] ,
26 v a l u e t y p e [ m s c o r l i b ] System . RuntimeMethodHandle )
27 IL_0033 : dup
28 IL_0034 : ld token method o b j e c t T or ka r . Aspec t sSample : :
29 B o d y I n t e r c e p t o r ( c l a s s [ a s p e c t d n g ] M e t h o d J o i n P o i n t )
30 IL_0039 : c a l l i n s t a n c e void
31 [ a s p e c t l i b ] J o i n p o i n t s . J o i n P o i n t : :
32 A d d I n t e r c e p t o r (
33 v a l u e t y p e [ m s c o r l i b ] System . RuntimeMethodHandle )
34 IL_003e : c a l l i n s t a n c e o b j e c t
35 [ a s p e c t l i b ] J o i n p o i n t s . J o i n P o i n t : :
36 Proceed ( )
37 IL_0043 : r e t
38 } / / end o f method Foo : : Run

Listing 10.4: A pseudo code example displaying what a method looks like when in-
strumented.

1 Foo ( i n p u t d a t a and t y p e )
2 e x e c u t e Foo_Wrapped
3 s t o r e i n p u t d a t a and t y p e ( s )
4 s t o r e r e t u r n d a t a and t y p e ( s )
5 p r o c e e d

Figure 10.1 (next page) depicts an excerpt from the object database regarding the
execution of class Foo. The result of the query shows that everything is stored in proxy
objects (first line). In addition one can see that the time stamps (lines 3 and 13) and
the result from executing the method Run() are present (line 11). This together with
the type of the input value on line 21 provides us with much information regarding the
runtime behavior of the application as will be covered next in Section 10.3.

Finally, Figure 10.2 (c.f. 164) provides an overview of how the complete process
was performed (from application selection to object message pattern analysis).

10.3 RESULTS

Next, follows several subsections whereas the statements, posed at the end of Sec-
tion 10.1, are covered with respect to the results. First, the issue of generality regarding
the discovered paths is covered, e.g. if a pattern in one software can be found in other
software. Here we reference directly the object message pattern analysis (OMPA) per-
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Figure 10.1: An excerpt from the object database showing relevant information regard-
ing the class Foo.
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Figure 10.2: An overview of how the experiment was performed.

formed in the experiment, and distance us from the previously introduced example for
obvious reasons, i.e. a comparison can not be done using an example only.

Secondly, we cover the issue of using OMPA for the creation of test cases (by show-
ing an example from the experiment). We then point to how random testing and likely
invariants can be applied to this solution. These steps are performed on a small and
delimited example, from the experiment, to thus be able to better present and explain
the approach.

In Section 10.4 the results in these categories are discussed and elaborated on.

10.3.1 OBJECT MESSAGE PATTERNS

The intention of performing object message pattern analysis (OMPA) on data in this
experiment is to find and generalize patterns which then can be used when testing the
software item. In addition to this the hypothesis is that patterns, if found, could be
generally applicable to most, if not all, object-oriented software. Since the analysis
is currently performed manually a limitation on the number of analyzed objects was
needed. Thus, 300 objects (in a call sequence) from each application were analyzed
from an arbitrary point in the object database (selected by a pseudo-random generator
as found on pp. 283–284 in [236]).

Eight object message patterns were found during the analysis of the data stored in
the object database (Tables 10.3 and 10.4 on page 166 and 167, respectively).

The patterns found are of two different categories. Four patterns belong to, what has
by us been defined as object unit patterns. Object unit patterns constitutes of a sequence
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Figure 10.3: The different categories of patterns found during the OMPA. Object unit
patterns cover sequences of method invocations on one object, while object trace pat-
terns cover sequences of method invocations through more than one object.

of method invocations on one object, i.e. methods in an object has been executed in a
certain order. Object trace patterns, on the other hand, are slightly different. They
cover the path of execution through more than one object. In Figure 10.3 one can see
the differences between object unit and object trace patterns.

Object Unit Patterns. Four object unit patterns were found during the OMPA
(c.f. Table 10.3)—these patterns exercised only one object consistently over time and
was found in all three applications (needless to say, the names of the objects and classes
differed in all three applications, but the pattern can nevertheless generally be applied
on all three applications).

The first pattern, the Vault pattern (c.f. Table 10.3), is a straightforward pattern
which is executed by first invoking a constructor, then invoking a setter and finally,
multiple times, a getter (before a destructor is invoked). This can be seen as a very
rudimentary pattern for storing data in an object which then is fetched by one or many
objects, and as such is suitable to always execute in a testing scenario, i.e. data is
stored in a simple vault. During the analysis the intermediate representation was used
for examining if a method was defined as a getter or setter (property) by searching
for the keyword .property. There is of course a possibility that a method is acting
as getter or setter while not being defined as such, but in this analysis these types of
methods are disregarded and an emphasize is put on the proper definition of a getter or
setter according to the CIL [77].

Next, the Storage pattern is an evolved Vault pattern and the combinations of setter
and getter invocations can be many (c.f. Table 10.3). Hence, the Storage pattern can
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Table 10.3: Different object unit patterns found in all three applications. The first
column shows the name selected for the pattern and the second column the actual
pattern. Abbreviations used: ctor and ∼ctor is short for constructor and destructor
respectively, while setter and getter is a method which sets or gets data stored in the
object.

Name Pattern
Vault ctor → setter → 1 . . . n getter →∼ctor
Storage ctor → setter → 1 . . . n getter → 1 . . . n setter → . . . →∼ctor
Worker ctor → setter → method invocation →∼ctor
Cohesion ctor → 1 . . . n method invocation →∼ctor

be constructed in different ways and a combinatorial approach might be suitable in a
testing scenario (compared to the Vault pattern which is very straightforward), i.e. data
is stored in a storage and the storage has (many) different ways of adding or offering
content. The reason for distinguishing between a Vault and a Storage is that a Vault
was common during OMPA and as such should always be used when testing object-
oriented software, while Storage, on the other hand, is a more complex pattern (more
steps performed) and as such needs additional analysis.

The Worker pattern at first glance looks like bad design. An object gets instantiated,
and immediately filled with data. A method is next invoked which manipulates the data,
returns the manipulated data and, finally, a destructor is invoked. The reason for this
design might be to make sure the method’s implementation can be used by different
objects (extended) since it is declared public. If one would have opted for a method
declared as private or even protected, which could be invoked when the getter is
invoked, then there would be no simple way to reuse the implementation.

Finally, the Cohesion pattern is a pattern which executes one or more methods in
one object. It does this without a priori setting any values and the order of executing
the methods is not always important, i.e. each and every method was found to be (by
analyzing objects in the object database) an atomic unit with no dependency on other
methods in the class and as such the word cohesion (united whole) was found to be
appropriate to use.

Object Trace Patterns. Looking at the object trace patterns, one can see four
patterns that can be generally applicable (Table 10.4); these patterns exercise several
objects and constitutes sequences of object:method invocations (as depicted in Fig-
ure 10.3 on page 165).
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Table 10.4: Different object trace patterns found in all three applications. The first
column shows the name selected for the pattern and the second column the actual
pattern. Abbreviations used: ctor and ∼ctor is short for constructor and destructor
respectively, while setter and getter is a method which sets or gets data stored in the
object. An alphabetical character in front of the abbreviation, i.e. A:ctor, indicates that
a type A object’s constructor is invoked.

Name Pattern
Cascading A:ctor → B:ctor → C:ctor → . . .
Storing A:ctor → B:ctor; A:method → B:setter
Fetching A:method → B:getter
Dispatch A:method → B:method → C:method → . . .

A fairly common pattern which seems to come up on a regular basis is the Cascad-
ing pattern. This pattern instantiates object after object (which can all be of different
or same types). The approach seems to be quite common when object-oriented appli-
cations are starting up, but in addition shows up in several phases of an application’s
life time (from start up to shutdown).

Next, the Storing pattern and the Fetching pattern showed up many times as well.
These patterns are directly connected to the object unit Storage and Vault patterns, and
as such can be combined in many ways.

The final pattern which has been named is the Dispatch pattern. The Dispatch
pattern simply invokes one method (not a constructor though) after another. In most
cases the Dispatch patterns ends up with executing the Storing or Fetching pattern as a
final step.

10.3.2 TEST CASE CREATION

Applying test case creation on the example (and on data in the experiment) is fairly
straightforward when all entities needed can be found in the object database. From the
previous example the following data is available:

• Method’s name.

• Method’s input type and values.

• Method’s return type(s) and value(s).
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In addition information regarding the caller can be extracted from the object database
(not part of the previous example) by simply examining the caller value in the current
method being executed (a value stored in the database) or, as can be seen from Fig-
ure 10.1 (page 163), by examining the timestamp for each stored entity in the database.

The above information provide us with an opportunity to automatically create test
cases and, in the end, provide us with a simple smoke test [189] or regression test [116]
mechanism, depending on the aim of our testing efforts. In short, the software item
is executed, test cases are created from the database, patterns are extracted from the
database and, in the end, the testee is validated using the aforementioned test cases and
patterns.

Looking at an example taken from Banshee [28], one method is invoked consis-
tently when playing a media file (PlayerEngineCore::OpenPlay(TrackInfo track)).
The OpenPlay method takes as argument an object (of type TrackInfo), which in its
turn follows the Vault object unit pattern, i.e. a number of values are set once and then
retrieved when needed.

If a test engineer would like to store data values and types for later regression
testing, then a simple test case can be automatically created using the information in
the object database (in Listing 10.5 some lines have been omitted to save space).

Listing 10.5: Example of test case creation (reusing stored values for regression test-
ing).

1 [ T e s t ]
2 p u b l i c vo id Tes tOpenPlay ( ) {
3 P l a y e r E n g i n e C o r e pec = new P l a y e r E n g i n e C o r e ( ) ;
4

5 / / Get ∗any∗ o b j e c t o f t y p e T r a c k I n f o
6 Query que ry = db . Query ( ) ;
7 query . C o n s t r a i n ( t y p e o f ( T r a c k I n f o ) ) ;
8 O b j e c t S e t r e s u l t = que ry . Execu te ( ) ;
9

10 foreach ( o b j e c t i t em in r e s u l t ) {
11 T r a c k I n f o t i = ( T r a c k I n f o ) i t em ;
12 t r y { pec . OpenPlay ( t i ) ; }
13 ca tch ( E x c e p t i o n e ) { A s s e r t . I s N o t N u l l ( e ) ; }
14 }
15 }

Which in the end would allow the developer to choose between two regression
testing scenarios (c.f. Figure 10.4).

Traditional random testing of the unit OpenPlay is fairly straightforward since, in
this case, the object TrackInfo is composed of five scalar and five compound types.
Data generation of scalar values is not something which will be discussed here (much
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T e s t R e s u l t T e s t R e s u l t

D B T
R e g r e s s i o n ? R e g r e s s i o n ?

Figure 10.4: Two possible regression testing scenarios. T could be v1 of a software
item, while T ′ might be v2. DB T and T ′ contain values from executing an instru-
mented T and T ′ respectively.

research contributions can be found in this research field), but the five compound types
are worthwhile examining closer.

10.3.3 RANDOM TESTING AND LIKELY INVARIANTS
If one is dealing with scalar types, a traditional random testing approach can be used
whereas one bombards the complete input volume with random (scalar) values. Other
random testing strategies can be used as well: directed random testing [111] (by us-
ing random values which are ‘close’ to the input values) or anti-random testing [184]
(always trying to find values which are as far a part from the input values as possible).

Turning our attention, yet again, to the example in the previous subsection, the
conclusion was that five compound types were used by the type TrackInfo. Of the
five compound types, three are found in the .NET framework (System.TimeSpan,
System.Uri and System.DateTime), one is found in the application library and one in
a third-party graphical library (RemoteLookupStatus and Gtk.TreeIter respectively).

There are now at least three test data generation strategies one can follow for gen-
erating values from these types:

• Basic—Retrieve values from the object database and use these as test input (List-
ing 10.5 and Figure 10.4).

• Random—Create a random data generator (manually) for each of these four
types and use it to generate random, semi-random or anti-random values.

169



Deducing Generally Applicable. . .

Table 10.5: Scalar or pre-defined higher-level types found in the compound types as
per the example. LCD is short for Lowest Common Denominator and stands for the
simplest way to use the constructor.

Compound Type(s) to use for generation LCD
TimeSpan Int64, Int32 Int64

Uri String, Uri, Boolean String
DateTime Int64, Int32, Calendar Int64

RemoteLookupStatus enum enum
TreeIter Int32 Int32

• Likely Invariants—Since the state of each and every method invocation is read-
ily available in the object database the concept of likely invariants should be
applicable [126].

The random test data generation approach have at least one disadvantage—someone
or something needs to provide the correct answer. Having ready-made oracles avail-
able is uncommon in most circumstances, thus leading us to other modus operandi (as
is discussed in the next section).

But nevertheless, the point to make here is that a breakdown of each compound
type should occur. That is, since every compound type consists of one or more com-
pound and/or scalar types, in most cases what should be left are scalar types (e.g. int,
float, enum) or at the very least pre-defined higher-level compound types (e.g. the type
System.String as found in the .NET framework).

Table 10.5 depicts a breakdown of each of the compound types left, as previously
mentioned, with their respective scalar types that can be used to create random values
of these types.

Important to notice in this case is that each type can now be generated automatically
since they all break down to scalar pre-defined and primitive types (albeit not discrete).
Furthermore, since some input values for these types are stored in the database a di-
rected random testing approach is feasible [111].

To conclude this matter it might be appropriate to mention likely invariants. If one
would try to add likely invariants, on top of the test cases created with the help of
OMPA, an automated approach could be possible, i.e. enough information for generat-
ing oracles is available (according to Lam et al. [126]).
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10.4 DISCUSSION
This section begins with a discussion covering different usage models for our frame-
work and different issues concerning inspection and instrumentation of intermediate
representations before discussing the concept of object message patterns.

If one would look at the general usage models, for the scenario as described in
Section 10.2, a developer is faced with three possible directions to take when using the
test cases created by the framework.

First, the test cases that are created can be stored and used to check for regressions
in the testee, e.g. either if the testee is manipulated directly by the developer or as a
way to check backwards compatibility in components and thus notify developers if a
syntactic fragile base class problem, also known as the fragile binary interface problem,
has occurred (for a good overview concerning the syntactic and semantic fragile base
class problems please see [273]).

Secondly, collected and stored test data can be used as input for creating likely in-
variants (as per the proposal in [126]) and, consequently, lead to a semi-random testing
approach. In addition, by using the object database, it is straightforward to analyze
which objects are among the most common or uncommon and, hence, making it pos-
sible to direct testing efforts to the appropriate entities.

Finally, the test cases can, when appropriate, be used for traditional random testing,
i.e. by allowing the complete input space to be flooded with data input taken randomly
from the complete volume of a (scalar) type. If the last approach is selected (traditional
random testing) then the developer will be facing some manual work if no oracles exist,
e.g. using an interactive approach that remarks on conspicuous output which might
guide the developer when examining large quantities of output data [90]. In short, since
all method invocations are stored in the object database, information such as input and
return values as well as internal states of a specific method, is readily available. This
in the end allows a test engineer to choose which data generation technique to apply.

Regarding the collection of runtime data much can be said about how it should be
performed. Usually, when dealing with dynamic features in the Java Virtual Machine
or the Common Language Runtime, a developer can reach far by simply using the
frameworks themselves, but sometimes they are unfortunately not enough. While, on
the one hand, it is possible for a developer to discover the currently executing method
quite easily during runtime, i.e. using StackFrame, StackTrace and MethodBase in the
.NET framework [277], it is on the other hand not simple to find out the runtime input
values for a method (except for e.g. editing the source code, recompiling and writ-
ing out the values explicitly). Additionally, some of these classes, which are part of
the .NET framework, do not work as intended when compiled as software to be re-
leased (some code is inlined thus rendering the stack analysis to be close to useless),
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and collecting the values from a stack analysis still leaves the developer with the is-
sue of storing these values for later off-line analysis, e.g. using a simple approach as
serialization is out of the question due to the fact that most types etc. are not set as
Serializable in the .NET framework per default.

Hence, storing objects as-is in the object database has several advantages. First,
there is no need to convert the objects to another format before storing them and, sec-
ond, there is no need, during the test phase, to bring objects back to life from that
representation—they are preserved as they once were stored in the database and can
thus be retrieved easily. Second, the as-is storage of objects in an object database
provides the test engineer with an excellent opportunity to extract operational profiles
for e.g. random testing (see Chapter 4 and [187] for a clarification regarding the term
operational profiles). Finally, finding how many objects of a particular type are cre-
ated is as simple as performing a traditional database search. Nevertheless, to be able
to perform more thorough analyses in the future, a stricter categorization of existing
object-oriented types needs to be carried out, e.g. a method might be a property manip-
ulator even though it is not formally defined as one.

Object Message Patterns. The concept of object message patterns, as introduced
in this chapter, has potentially many interesting applications. Some of the patterns are
very simplistic in its nature which is a good thing. Having a simple pattern implicitly
means that in most circumstances applying that pattern during testing will be straight-
forward. As an example one can take the Vault pattern (Table 10.3 on page 166). The
Vault pattern, could with very few steps be applied on every object that has getters
and setters. It is effortless to find out if a method belonging to a particular object
is formally defined as a getter or setter method in many intermediate representations
(note: no source code is presumed to be available).

If one would add some statistics to how a pattern is used in most cases, it might be
possible to generalize these patterns further. As an example, the OMPA might show
that the Storage pattern is used, in six out of ten times, in the following sequence: set,
get, get, set, get and set. Then, of course, applying that pattern on that type of object
is self-evident, but might there be a point to always use that sequence when facing
an object (from any application) that can be tested using that pattern? Other, more
or less self-evident sequences, within the Storage pattern might be to invoke, first the
constructor and then all getters in the object to see if they implement some sort of
exception handling when no data is stored.

Finally, it is worthwhile to mention that querying the object database and discover-
ing patterns is extremely time consuming (manual) work and as such should be auto-
mated to a higher extent in the future. We are convinced that tens, if not hundreds of
patterns, can be found when instrumenting even small applications. Since the amount
of data usually is very large there is an incitement to apply different techniques to au-
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tomatically, or at least semi-automatically, discover patterns. Statistical pattern recog-
nition [142] is one area that comes to mind which might help out in this task. By
automating the extraction of patterns tedious manual work can be avoided and in the
end provide the test engineer with a completely automated framework.

In the end, the analysis indicates that patterns can be found that are generally appli-
cable to more than one application, in the same manner as design patterns are generally
applicable to many problems in software development. This is in no way a surprise
but, nevertheless, this chapter presents results that these patterns are to be found in
very different types of software developed by completely different software develop-
ment teams. As such, the general nature of these object message patterns, is likely to
support testing different intermediate representations of object-oriented software. The
question remains, how many object message patterns can be found that are generally
applicable on most software and what do we imply with the word ‘most’?

10.5 CONCLUSION
This chapter presents eight software object message patterns, for testing object-oriented
software. As such it indicates, in our opinion, that the first steps have been taken
on the road to deduce generally applicable object message patterns for the purpose
of testing object-oriented software. In this case study, the patterns are accompanied
with automatically generated test cases whose entities (test data, test fixture and test
oracle) are retrieved from a database which stores runtime values that are collected
when executing a use case on the testee.

The patterns were found by instrumenting three very different applications devel-
oped by three separate development teams. All in all 10, 494 instrumentation points
were inserted which enabled data to be collected during runtime by the execution of
use cases.

The results from the experiment reveals how object message pattern analysis, per-
formed on data collected from executed applications, provides necessary information
for automatically creating test cases using the approach presented in this chapter. On
top of this, several data generation techniques can be applied, e.g. (directed) random,
anti-random or the concept of likely invariants.
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Chapter 11

Conclusions

11.1 SUMMARY OF RESEARCH RESULTS
The research results as presented in this section are spread over three areas: research
covering the situation in small- and medium-sized projects (in 2002) and research con-
cerning effectiveness and efficiency. To simplify for the reader, the results from this
research are presented in the current section together with, when appropriate, a para-
phrase of the research questions as presented in Chapter 1. In Section 11.2 the conclu-
sions drawn from the results are presented while Section 11.3 provides an overview of
issues remaining to be solved.

11.1.1 CONTEXTUAL SETTING
In Chapter 2 a survey was presented which was performed on a population constituted
by software developers from industrial, open source and free software projects. In
this chapter several questions were posed and the analysis of these questions brought
forward a number of issues that were considered to be of importance to the area of soft-
ware testing and thus found to be of interest regarding further research (as presented
in this thesis). Research Question 2 (see page 15) was answered in a satisfactory man-
ner by the survey in Chapter 2 (all research questions are to be found in Chapter 1,
Section 1.3).

As is evident from reading Chapter 2, software development projects at that time,
encountered many problems in different parts of the software development process (we
suspect they still do). Chapter 2 placed a focus on software testing and reuse, and a
picture showed itself where a number of issues needed to be examined further:
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• Developers reused code but did not test the code being reused.

• Simple to use tools were lacking when it came to test creation and test analysis.

• Knowledge, on the importance of testing in general and unit testing in particular,
appeared to be subpar.

• Certification of software and/or components was more or less non-existent.

Looking at the above list, it became clear that more research was needed concerning
the issues of low effectiveness and efficiency in software testing. It was furthermore
unambiguous that reuse in projects was taking place on a regular basis, but testing the
reused code seldom happened. The matter of ‘simple to use’ tools was also of interest
and something that was constantly in the mind of the research group at all times (the
partial realization of such a tool is also presented in Chapter 10).

To this end, research needed to be performed wherein software testing of reusable
components and libraries was examined. In addition, the issue of effectiveness, i.e. im-
proving current testing techniques and combining testing techniques, and the issue of
efficiency, i.e. trying to find more faults in a shorter time frame by automating more
activities, needed to be investigated.

Hence, the research results from the survey (together with conclusions from related
work for Chapter 2) led to the division of this thesis in two parts: effectiveness and
efficiency in software testing (the definitions of effectiveness and efficiency can be
found on page 88).

11.1.2 EFFECTIVENESS RESULTS

Chapter 3 presents research results from an exploratory study. The results from the
study indicated that the findings in Chapter 2 were correct and RQ3 (“Is the current
practice, within software development projects, sufficient for testing software items?”)
was answered. The current practice was not in any way encouraging and a meager
picture showed itself once again. The software testing activities in the investigated
project was simply not effective to the extent they were supposed to be.

In Chapter 4 the issue of effectiveness (and to some extent efficiency) was once
again scrutinized and the concept of random testing was improved by introducing new
quality estimations, hence answering RQ4 (see page 17). The results were encouraging
and further research, in this area, has been conducted by other parts of the research
group and should in the end lead to industry being able to use random testing much
more than is currently the case today.
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Research Question 5, or “How do different traditional software testing techniques
compare with respect to effectiveness?”, was answered in Chapter 5 by comparing dif-
ferent testing techniques. The findings were pleasing in that they demonstrated that
different testing techniques have completely different results in varying environments.
Hence a higher degree of effectiveness could be reached by combining different testing
techniques in a fairly simple manner. Research Question 6 (see page 17) was conse-
quently answered in Chapter 6 when several combinations of testing techniques were
studied.

After looking at research results dealing with issues on effectiveness, the attention
was placed on the matter of efficiency.

11.1.3 EFFICIENCY RESULTS
The case of low effectiveness is dual; a project manager would, in most cases, prefer
that software testing activities were efficient in that they do not take up too much time
in the project. The findings in Chapters 2–6 led us to believe that to be able to reach
a higher efficiency in software testing more activities needed to be automated, hence
a literature study was conducted trying to answer RQ7 (see page 17). In Chapter 7 a
research field is presented (automated software testing) and the current status of several
of the sub-disciplines in this field is clarified. The research results from Chapter 7,
indicated a need, in the software testing community by large, to have clear definitions
readily available to describe, compare and perform research in this field.

To this end, Chapters 8 and 9 (RQ8 and RQ9 on page 18) presented a model for
classifying and comparing software testing tools and techniques. The results will hope-
fully be of use to industry and the research community when comparing and classifying
techniques and tools for automated software testing. Additionally, the results pointed at
a need to further clarify certain automatization aspects with respect to software testing
(further discussed in Section 11.3).

The usage of the model in research, but more importantly in industry, should lead
to projects being able to compare tools more easily and, this is even more important,
look at automation benefits in the projects. In the end this would, implicitly, lead to a
higher degree of efficiency by having the right tool for the job at hand.

Finally, the research results from Chapter 10 (Research Question 10 on page 18)
constitutes of a framework for automated object pattern extraction and storage. This
framework will hopefully be improved further and thus provide the testing community
with a research and development platform for these research issues. It is nevertheless
clear that the framework performs well on ‘real life’ software and, hence, can probably
already be used in projects primarily as a way to understand complex software systems
better but, in addition, as a framework for regression testing.
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11.2 CONCLUSIONS
The main purpose of the research, as presented in this thesis, was to examine and im-
prove software testing activities in small- and medium-sized projects. To this end, sev-
eral case studies and experiments were conducted wherein efficiency and effectiveness
issues, directly connected to ‘real life’ software, were investigated.

The basic assumption during the work on this thesis was that there is room for
improving efficiency and effectiveness in software testing, and that the issue of low
efficiency can be solved, in parts or whole, by automating more software testing ac-
tivities to a higher extent. That there was a potential in being able to reach a high(er)
efficiency and effectiveness was early on uncovered, but furthermore a need for classi-
fying different entities in a software testing process was also considered mandatory for
uncovering some of the more subtle issues with respect to automatization in software
testing.

The overall situation, we dare say, has probably not improved in industry despite
technology issues, programming languages and paradigms constantly improving or be-
ing introduced. UML [34], Java/.NET, the usage of object-oriented and component-
based software, have probably all, while not providing a silver bullet [38], at least
provided some help. Unfortunately, software systems have grown in size and complex-
ity in the meantime and, by large, the software engineer is still playing catch-up with
software quality issues (see e.g. [127] where the complete issue is dedicated to this
subject).

Considering the main research question, as introduced in Chapter 1 (page 15):

Main Research Question: How can software testing be performed effi-
ciently and effectively especially in the context of small- and medium-
sized enterprises?

The answer would be, not very surprisingly:

• Classify software testing, and especially the automated aspects, in a way to make
tools, frameworks, etc. comparable.

• Use and develop frameworks which are adapted to the needs of small- and
medium-sized enterprises (object-oriented software, Java/.NET, component-based
development).

• Combine different software testing techniques.

• Automate more entities in the software testing process.
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In our opinion, this thesis partly provides the answers by presenting a classification
model, a framework for object message pattern analysis (which builds on current tech-
nology trends in industry and, in addition, is likely to be possible to automate to a high
extent) and an examination on the pros and cons of combining test techniques. To this
end, the road towards automated software testing is likely to be substantially improved.

11.3 FURTHER RESEARCH

The research in this thesis paves the way for several questions that need to be answered
and, in addition, more research areas in need for further investigation. In this section,
the two most interesting areas (with, in our opinion, the highest potential to increase
efficiency in projects) are covered. It is worth mentioning, in this context, that there
of course exist many other interesting research questions that need to be answered
(especially when one considers the question marks left in Chapter 2, which by large
probably is still current).

11.3.1 IMPROVING THE MODEL

There are several paths concerning future work one can take in the case of Chapters 8
and 9.

First of all, the model should be further evaluated on even more contributions (it is
likely that there might be a need to expand the model).

Second, the issue concerning different levels of automation should be researched
more as was discussed in Chapter 8 (Section 8.5 on page 130) and mentioned in this
chapter (Subsection 11.1.3 on page 177). Parasuraman’s et al. [222, 223] and Sheri-
dan’s [260] contributions on grades of automation, even though too general in the ap-
plicability of the definitions, will most likely play an important role forming the defi-
nitions for the specific purposes of automated software testing.

Finally, a tool for semi-automatically creating a classification of a particular tech-
nology should be implemented. For example, using a programming language to set
attributes on different classes (templates) which in the end is used to generate the clas-
sification model for a particular technology.

11.3.2 IMPROVING THE FRAMEWORK

The framework as presented in Chapter 10 has many potentially interesting usages,
some are presented in Chapter 10, but taking a more general view beyond the imme-
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diate focus on the framework, a few more exist. For example, the following matters
should be examined in the future:

• How common are the patterns, and how many patterns can we find in different
types of applications?

• What pattern recognition strategies can be applied on the data collected from
applications?

• Are there more ‘traditional’ testing techniques that can be applied on-top of the
framework to further increase effectiveness?

• Use runtime data as collected, and stored in the object database, for calculating
likely invariants off-line instead of doing it during runtime [126].

• How can the framework be adapted to other integrated development environ-
ments?

A case study encompassing even more applications should be performed to answer
the first point, while, in order to answer the second bullet, a survey of statistical pattern
recognition should be performed. The third bullet, should be clarified by further ex-
perimentation in, and development of, frameworks such as the one laid forward in this
thesis. Finally, experiments and case studies should provide an answer to the last two
bullets.
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Appendix A: Survey Questions

All numbers in this appendix are, if not otherwise stated, in percentages

Q1. What is your educational level?
High School College degree/B.Sc. M.Sc. or higher
15 40 55

Q2. Are you male or female?
Male Female
98 2

Q3. How old are you?
≤20 21-29 ≥30
4 51 45

Q4. Do you consider yourself being an industry developer or open source
developer?

Open Source Business
43 57

Q5. How many developers do you usually have in one team?
Less than 10 Between 10 and 20 More than 20
77 14 9



Appendix A

Q6. Is there usually interaction between your team/project and other
team(s)/project(s)?

Yes Rarely No
26 2 72

Q7. Do you find yourself having much freedom in your work as a developer?
A lot of freedom Some freedom Quite limited freedom
751 22 3

Q8. Are you involved in setting requirements or specifications for software?
Yes Rarely No
942 2 4

Q9. How do you know if you’ve fulfilled the requirements, specifications or goals
for a particular software?
Only a few answers presented

1. Customer satisfaction.

2. Time will tell.

3. I just know.

4. Through testing of software and user feed-back.

5. Through customers quality assurance testing.

Q10. Do you have flexible time frames when working in projects?
Yes Rarely No
673 22 11

1Of the developers experiencing ‘A lot of freedom’ 80% where from the open source world.
2Open source developers seem to be somewhat more involved in this case - although this falls within the

±5% error margin.
3Not surprisingly, the vast majority that answered yes in this question, were from the open source world

(85%).
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Q11. How often do you move deadlines in projects?
Often Rarely Never
374 59 4

Q12. During a project that is proceeding according to plan, how much of your
total time spent on the project do you approximately spend on:5

Lot of time Some time No time
Analysis 33 61 6
Design 45 53 2
Implementation 70 30 0
V & V / testing 35 63 2

Q13. Which part do you find most troublesome?
Analysis Design Implementation V & V / testing
25 16 35 24

Q14. Have the projects you’ve been taking part in stored and documented
components/libraries in a systematic way for later reuse in other projects?

Yes, often Yes, but seldom No
47 39 14

Q15. How often do you search for re-usable code (i.e. libraries, components,
classes) instead of doing it yourself?

Always Rarely Never
36 62 2

Q16. How many classes does your average project encompass?
Less than 100 between 500 - 10,000 More than 10,000 Uncertain
35 41 21 3

Q17. How many lines of code does your average project encompass?
Less than 500 Between 500 and 10,000 More than 10,000
4 43 53

434 developers answered yes in this question, almost all of them were from industry.
5This was unfortunately a question that became very hard to analyze.
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Q18. What sort of development environment do you usually use?
Console editor and compiler Fancy GUI editor + compiler Visual Studio etc.
35 31 34

Q19. How often do you test your software?
Often Rarely Never
52 34 14

Q20. What type of structured approach do you use when testing software?
Black box testing White box testing OO testing Other
72 10 12 6

Q21. The method long foo(int i) takes an int and converts it to a long, which is
then returned.
Which approach would you like use to test the above method’s ability to convert
every possible int to long?

The absolute majority (>75%), that first and foremost tested their software, only
tested boundary values. In some cases this was complemented by random values.

Q22. Do you test a single component or class in any way?
Yes Rarely No
67 22 11

Q23. Do you test an assembly of components in any way?
Yes Rarely No
67 16 17

Q24. Do you test a component in any way before you reuse it?
Yes Rarely No
43 41 16
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Q25. Do you use some sort of certification when you have developed a component
within your project/company?

Yes Rarely No
6 13 81

Q26. Do you use any specific test framework?
Yes Rarely No
35 18 47

Q27. If the answer was yes/rarely in the previous question, please stipulate which
framework you use.
Most developers used a variant of Unit testing (usually derived from JUnit),
i.e. NUnit, CppUnit, COMUnit, pyUnit, cUnit, JUnit

Q28. Does—in your opinion—the choice of framework (.NET, EJB, CORBA)
affect the possibility for the software to be easily upgradable in the long term?

Yes Rarely No
53 16 31
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Q29. Which framework do you use (e.g. Java, CORBA, .NET6 et al.)?7

23%

42%

21%

14%

.NET

Java

CORBA

Ot her

Figure 1: Usage of Frameworks

Q30. How often do you rather spend time writing glue code and reuse a
class/component, than rewriting it?

Often Rarely Never
46 48 6

Q31. How often do you reuse a piece of code/class/component from another
project?

Often Rarely Never
53 47 0

Q32. Does the size of (a) component(s) seriously affect decisions on whether you
develop it yourself or buy it?

Often Rarely Never
43 31 26

6The rather large amount of .NET developers in the open source world was not expected initially. After
contacting several of the respondents it became clear that they participated in several open source .NET
implementations.

7Open source developers were spread over all four categories—fairly equally. Business developers on
the other hand focused mostly on Java and .NET.
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Q33. Does the complexity of (a) component(s) seriously affect decisions on
whether you develop it yourself?

Often Rarely Never
59 24 17

Q34. Do open source or commercial projects usually enforce a certain
technology, e.g. .NET, EJB, CORBA?

Yes8 Rarely No
55 22 23

Q35. What do you think should be improved in today’s component technologies
(e.g. EJB, .NET, CORBA)? Do they miss a feature that a developer might need?
(Only a few answers presented)

1. The “[. . . ] ability to concentrate on the business domain. Still have to write too
much plumbing.”

2. (1) Easy finding of existing components for reuse. (2) Certification of
components. (3) Compatibility between different component technologies.

3. Those guys need to agree on ONE standard so you do not need to waste time
learning new stuff all the time.

4. Today’s component technologies lack maturity. half of them will be gone in 10
years.

5. They are way too bloated.

6. I stick with the smaller more specialized components written as libraries or
DLL’s. They do what they shall, are easier to modify and adapt to special needs.

7. Too big, too general, one-fits-it-all will more often fail than help.

8. Performance/Portability/Speed.

9. Make the technologies more portable between platforms and application server
vendors.

8Of the 55% answering ‘Yes’ almost 80% came from industry.
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Q36. In case of time shortage during a project, which part do you find is being
reduced firstly?

Analysis Design Implementation V & V / testing
16 20 4 60

Q37. When/if you have written test cases for your software, do you feel confident
that you have written enough or the right tests?

Yes Rarely No
17 10 73

Q38. What do you feel is the main disadvantage with test frameworks being in
use today? (Only a few answers presented)

1. Hard to get real numbers on how well my tests are written.

2. Most unit test case generators only do stubs. That is bad. . .

3. I shouldn’t need to write even one test case for my software. This should be
automated.

4. They are not mature enough yet. I don’t want to learn a test tool that doesn’t
give me much help!
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Detective Spooner (the human):
You are a clever imitation of life. . . Can a robot write a symphony? Can a robot

take a blank canvas and turn it into a masterpiece?

Sonny (the robot):
Can you?

From the movie “I, Robot”
(originally from the book with the same title by Isaac Asimov, 1950)
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Software is today used in more and different ways 
than ever before. From refrigerators and cars to 
space shuttles and smart cards. As such, most soft-
ware, usually need to adhere to a specifi cation, i.e. 
to make sure that it does what is expected. 
 Normally, a software engineer goes through 
a certain process to establish that the software 
follows a given specifi cation. This process, verifi ca-
tion and validation (V & V), ensures that the soft-
ware conforms to its specifi cation and that the 
customers ultimately receive what they ordered. 
Software testing is one of the techniques to use 
during V & V. To be able to use resources in a bet-
ter way, computers should be able to help out in 
the “art of software testing” to a higher extent, 
than is currently the case today. One of the is-
sues here is not to remove human beings from 
the software testing process altogether—in many 
ways software development is still an art form and 
as such pose some problems for computers to 
participate in—but instead let software engineers 
focus on problems computers are evidently bad at 
solving. 
 This dissertation presents research aimed at 
examining, classifying and improving the concept 

of automated software testing and is built upon 
the assumption that software testing could be 
automated to a higher extent. Throughout this 
thesis an emphasis has been put on “real life” app-
lications and the testing of these applications. 
 One of the contributions in this dissertation is 
the research aimed at uncovering different issues 
with respect to automated software testing. The 
research is performed through a series of case 
studies and experiments which ultimately also 
leads to another contribution—a model for ex-
pressing, clarifying and classifying software testing 
and the automated aspects thereof. An additional 
contribution in this thesis is the development 
of framework desiderata which in turns acts as 
a broad substratum for a framework for object 
message pattern analysis of intermediate code re-
presentations. 
 The results, as presented in this dissertation, 
shows how software testing can be improved, ex-
tended and better classifi ed with respect to auto-
mation aspects. The main contribution lays in the 
investigation of, and the improvement in, issues 
related to automated software testing. 
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