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SUMMARY

A new adaptive technique is presented for the increase of the dynamic stiffness of the cutting tool in

a lathe by active control of the tool vibration in the cutting speed direction. Due to the statistic properties of tool
vibration that are induced by the stochastic behavior of chip formation process, the controller is based on the filtered-x
LMS algorithm which controls an adaptive filter that is based on Wiener filter theory. Hence, the adaptation of the
filtered-x LMS algorithm is gradient-based and it is based on a classical optimization technique, the method of steepest
descent. In the cutting experiments a tool holder construction with integrated actuators, i.e. secondary sources was used.
The cutting experiments shows that the adaptive technique presented in this paper enables an increase in the dynamic
stiffness of the cutting tool, i.e. tool vibrations are suppressed.

1 INTRODUCTION

In a turning operation it is well known that the rela-
tive dynamic motion between the cutting tool and the
workpiece leads to poor surface finish, reduced accuracy,
increased tool wear, and even tool fracture and damage
to the machinery. The dynamic phenomena, which is
induced by the stochastic behavior of the chip formation
process is closely related to the dynamic stiffness of the
structure of the machinery and workpiece material. It is
widely accepted that increasing dynamic stiffness results
in substantial reduction of the relative vibration between
the cutting tool and the workpiece. The vibration
problem may be solved in part by proper machine design
which stiffens the structure resulting in increased dynamic
stiffness. In order to achieve further improvements, the
stiffness of the tool must be increased. Techniques have
been developed which improve machine tool stiffness such
as the use of dynamic dampers [1, 2, 3].

Other techniques that does not include the improvement
of machine tool stiffness have been developed, such as
active control of the position of the cutting tool relative to
the workpiece in the cutting depth direction [4, 5, 6], and
the control of cutting data with respect to the stability of
machining [7, 8, 9, 10, 11, 12|, i.e. the dynamic stiffness
of the cutting tool and workpiece in the turning operation.

It is well known that mechanical properties of ma-
terials, such as chemical composition, inhomogeneities,
microstructure and hardening have statistical variations
in both the radial and the feed direction [13]. As a
consequence of the statistical variation of the mechanical
properties the deformation properties of the material will
also show statistical variations. Since the chip formation
process is in principal governed by the deformation
properties of the workpiece material it will consequently
have a stochastic nature. From the stochastic behavior
of the chip formation process it follows that the tool
vibration also have statistical properties, i.e. the tool
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vibration define a stochastic process [14]. Practical
experiments also show that the statistic properties of tool
vibration are non-stationary [15] and this is probably a
consequence of the statistical variations in mechanical
properties of workpiece materials.

The tool vibration in a turning operation is in prin-
cipal the composition of vibrations in two directions,
i.e. the vibration in the cutting speed direction and the
vibration in the feed direction. Consequently the control
problem is related to multi-modal control and involves
the introduction of two secondary sources, driven so that
the vibration generated by these sources interferes de-
structively with the tool vibration, i.e. canceling the tool
vibration [16, 17, 18]. The statistical properties of the tool
vibration implies a controller which is based on a control
law which uses the statistical dependence structure of the
vibration [18, 19]. A classical but yet useful statistical
criterion is the mean square error criterion {20, 21, 19, 14].
However, a controller based on this criterion can not
solve the control problem, since a such controller is only
"optimum" in a stationary environment [22, 19, 18].
solution for this problem is an adaptive controller which
is able to track the non-stationary environment [19, 18].

This paper is concerned with the active control of
the tool vibration in the cutting speed direction, based
on adaptive digital filtering. The single channel con-
trol system is illustrated in figure 1. A single-channel
feedback controller which is based on the well known
filtered-x LMS-algorithm [19, 23] is used. The tool holder
in this application is a construction with integrated
actuators (secondary sources) which has been developed
at DPME! [24]. The construction of the tool holder is
illustrated in figure 2.
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Figure 2: Tool holder with integrated actuators for the
control of tool vibration in the metal cutting process [24]

"2 MATERIALS AND METHODS

2.1 The Adaptive FIR-filter for Single Channel
Control

A common and widely used adaptive filter algorithm is
the LMS algorithm, which is an adaptive solution of the
well known Wiener filtering problem |21, 23]. Given some
signal z(n), n € {0,... N —1} and a desired signal d(n) at
time n, the problem is to determine the optimal weights of
the linear filter according to this minimization criterion,
generally referred to as the Wiener filter problem {21, 14].
In the case of a FIR filter the filter output y(n) is given
by;

y(n) = wx(n) (1)
where

x(n) = [z(n),z(n — 1),...,a(n — M + 1)}T

is the input signal vector and

(2)

(3)

W = [w07w17-'~7wM—1]
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is the coefficient vector of the FIR filter. Thus the statis-
tical FIR filtering problem is shown in figure 3 If it is as-

R D _

u(n)
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Figure 3: Block diagram of the statistical FIR filtering
problem.

sumed that both the input signal z(n) and the desired sig-
nal d(n) are at least weakly stationary processes. Then the
stationary Wiener FIR filter is obtained by the coefficient
vector which minimizes the mean-squared error Ele?(n)]
(the estimation error is defined by e(n) = d(n) —y(n)), i.e.
the optimal coefficient vector w, [21, 14]. This is equiva-
lent to minimizing the quadratic function Jy [21, 14]:

J; = Ele(n)?] = @
E[(d(n) — wTu(n))(d(n) — u” (n)w)]
and the minimum can be obtained from:
Rw,=p (5)

which is the matrix formulation of the Wiener-Hopf equa-
tions, R is the M x M correlations matrix of the input
signal vector and p is the cross-correlation vector between
the input signal vector x(n) and the desired signal d(n).
To solve the Wiener-Hopf equations it is assumed that
the R correlation matrix is nonsingular, and the optimal
coefficient vector w, is given by {21, 14]:

Wo = R—lp

(6)

The LMS algorithm is basically a combination of two pro-
cesses, an adaptive process and a filtering process. The
filtering process involves the linear FIR filtering of the in-
put signal and the generation of the estimation error. The
adaptive process involves the automatic adjustment of the
coefficient vector towards its equillibrium and it is based
on the information obtained from the estimation error and
the input signal [20, 21, 23]. Figure 4 illustrates the struc-
ture of the LMS algorithm. The Wiener solution of the
coefficient vector is obtained by minimizing the quadratic
function [20, 21, 23]:
Jt(n) = Ele(n)*] =

E[(d(n) — wT (n)u(n))(d(n) — u” (n)w(n))]
The LMS algorithm is a gradient-based adaptation which
is based on a a classical optimization technique, the
method of steepest descent [20, 21, 23]. The algorithm
for the adaption of the coeflicient vector uses an instanta-

neous estimate of the gradient vector Vy,(n)Js(n) which
is given by [20, 21, 23]:

VwmJf(n) = Vw(n)e(n)z = —2u(n)e(n)

(7

8)




This leads directly to the definition of the LMS algorithm
and which is given by the following three equations |20,
21, 23]

y(n) = w' (n)u(n) (9)
e(n) = d(n) — y(n) (10)
win +1) = w(n) + pu(n)e(n) (11)

Usually adaptive filters are designed for problems such as
conventional electrical noise canceling where the output
signal from the filter is an estimate of the signal to be
canceled. In case of active control the adaptive filter work
as a controller and controls a dynamic system contain-
ing actuators and amplifiers etc., so the estimate in this
case can be seen as the output signal from the dynamic
system, i.e. the "secondary" source. Because of the dy-
namic system between the filter output and the estimate,
the selection of adaptive filter algorithms are rather lim-
ited. A well known algorithm such as the LMS algorithm
is likely to be unstable in this application due to the phase
shift introduced by the dynamic system [18]. The filtered-
x LMS-algorithm is specially developed for such applica-
tions in active control [18, 19, 23].

The filtered-x LMS-algorithm is developed from the L.MS
algorithm, where a model of the the dynamic system
between the filter output and the estimate, ie. sec-
ondary path is introduced between the input signal and
the algorithm for the adaptation of the coefficient vec-
tor [18, 19, 23]. Figure 5 shows an active control system
with a controller based on the filtered-x LMS algorithm.
We assume that the transfer function for the secondary
path can be modeled with a Ith-order FIR filter, which
coefficients are ¢;, i € {0,...,T — 1}, so that:

I-1
=d(n) — Zcszmn-—z)un—z—m) (12)

=0 m=0

The Wiener filter solution of the coefficient vector is then
obtained by minimizing the quadratic function [25, 18, 19,
23):

Jt(n) = Ele(n)’]

The differential of this function with respect to each coef-

ficient is;
9J¢(n)
Swp, (1)

(13)

=28 |e(r a?uri?r)w}

FIR filter

w(n) .

(14)

y(n)

Adaptive con-
trol mechanism

d{n)

Figure 4: Block diagram of adaptive FIR filter.
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Figure 5: Active control system with a controller based
on the filtered-x LMS-algorithm.

and if it is assumed that w,, m € {0,...,M — 1} is
time invariant, the differential of the estimation error with
respect to a coefficient is given by:

Zc,u(n—z—- m)

=0

8e(n

me

(15)

The assumption of time invariance is in accordance with
a slow coefficient change in comparison with the timescale
of the response of the system to be controlled, and in
practice the filtered-x LMS-algorithm is stable even if
its coefficients change significantly within the timescale
associated with the dynamic response of the secondary
path [25, 18, 19, 23]. The filtered-x LMS-algorithm is
given by the following four equations [25, 18, 19, 23|;

y(n) =w' (n)u(n) (16)
e(n) = d(n) - yo(n) (17)
w(n + 1) = w(n) + pr(n)e(n) (18)
and
I-1
=> cluln—1) (19)

i=0

where ¢f, ¢ € {0,...,I — 1} is an estimate of the impulse
response of the secondary path.

2.2 The adaptive controller

Adaptive digital FIR filters based on the method
of steepest descent are popular in active control of
sound [18, 26, 27] and in other applications, such as
electrical noise canceling, system identification, adaptive
beamforming, etc. [23]. This is due to the simplicity of
the implementation and their unimodal error surface in
the feedforward application. Thus a feedforward active
controller which is based on a adaptive filter such as
the LMS algorithm will "always" converge towards the
optimum solution {20, 21, 19, 23]. Usually adaptive FIR
filters are used in feedforward conmtrol [18, 26, 27] but
they have also been used in feedback control [28], even
though there 1s no guarantee that the error surface will
be unimodal under these conditions[29]. Similar error
surfaces can also be observed in feedforward control sys-
tems, when the control problem is not well conditioned.
A method to control such systems is to add a leaky term




to the adapfion algorithm [20, 30, 21, 31]. This will also
prevent an accumulative build-up of bias in the coeflicient
update algorithm in the adaptive filter [32].

The controller used in the experiments reported here is
a feedback controller based on the well known filtered-x
LMS-algorithm [28]. The block diagram of the feedback
controller and the filtered-x LMS algorithm used for the
adaption of the coefficient vector w(n) of the FIR filter is
shown in figures 6 (a) and (b). In these figures C is the
plant under control, i.e. the electro-mechanic response of
the secondary path and C* is a model of the response of
the secondary path. The secondary path was estimated
in an initial phase with an another adaptive FIR filter,
and subsequently used to filter the input signal to the
algorithm for the adaptation of the coefficient vector in
the filtered-x LMS algorithm.

Due to the lowpass character of the algorithm for the
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Figure 6: The equivalent block diagram of the feedback
controller (a) and the filtered-x LMS algorithm used for
the adaption of coeflicient vector w(n) of the FIR filter(b).

adaption of the coeflicient vector the sampling rate of the
digital filter was chosen rather high (20 kHz). To mini-
mize the delay in the loop (according to the well known
Nyqvist theorem) no anti-aliasing or reconstruction filters
were used. However, due to a rather nasty resonance in
the tool holder construction at approximately 1.6 kHz, a
lowpass filter was introduced in the loop to eliminate the
influence of this resonance to the adaptive filter.

Both simulation and practical cutting experiments were
conducted. The simulation was performed in the dynamic
system simulation software SIMULINK [33], where an
ARMA process was used to model the tool vibration and
a FIR filter modeled the secondary path.

2.3 Materials

In the cutting experiments quenched and tempered steel
AIST 4130 was used.

2.4 Equipment

The cutting experiments have been carried out on a
Koping lath with 6 kW spindle power. The equipment

that has been used in the experiments are:

1. A tool holder with integrated actuators constructed
and developed at DPME? [24].

2. Accelerometer Briiel & Kjer model 4374

3. Current amplifier Techron 7700 series, 5 kW 50 kHz,
power supply for the actuators.

4. Frequency Analyzer HP 35654 Dynamic Signal Ana-
lyzer, Band width: 102 kHz one channel, 51 kHz two
channels.

5. Signal processing unit Burr - Brown, PCI-20202C,
digital signal processor carrier with TMS320C25 sig-
nal processor (40MHz).

6. A/D-converter Burr - Brown, PCI-20023M-1,180
kHz, 8-inputs with 12 bits resolution.

- 7. D/A-converter Burr - Brown, PCI-20003M, 120kHz,
2-outputs with 12 bits resolution.

8. Computer Silicon Graphics, Iris Crimson.

The accelerometer was mounted on the cutting tool in
order to measure the vibration in the cutting speed direc-
tion.

3 RESULTS
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Figure 7: Simulated cutting tool vibration spectrum with
(dashed) and without (solid) feedback control.
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Figure 8: Cutting tool vibration spectrum with (dashed)
and without (solid) feedback control, the cutting speed v
was 60 m/s, the feed s was 0.3 mm/rev and the depth of
cut a was 0.8 mm.

4 DISCUSSION

This paper introduces a new adaptive technique to
increase the dynamic stiffness of the cutting tool in a
lath. The technique involves the active control of tool
vibration in the cutting speed direction with a adaptive
controller that is based on the filtered-x LMS algorithm.
The cutting experiments shows that it is possible to
increase the dynamic stiffness of the cutting tool, i.e.
cancel cutting tool vibration.

In comparison with other existing techniques which
increase the dynamic stiffness in the cutting tool, this
technique is adaptive, i.e. it automatically adjusts itself
to the properties of the tool vibration. Further, the
technique does not reduce cutting data and consequently
not the material removal rate.

The experiments have been rather "nasty" due to
the ill conditioned control problem and due to the
resonance in the tool holder construction. Since there
was not a leaky term in the adaptive algorithm there was
problem with accumulative build-up of biases in the coef-
ficient update of the adaptive filter, which often resulted
in adaptation hangup and even worse; in instabilities.
Further, the resonance in the tool holder construction
caused big problems, since the influence of the resonance
on the adaptive filter had to be eliminated to control
the tool vibration introduced by the chip formation
process. Thus the influence of the resonance had to
be filtered out and this was done with a lowpass filter
which was introduced in the loop. Unfortunately, the
lowpass filter that was used had a rather low rolloff rate,
which in combination with its phase delay resulted in a
nearly unacceptable loop delay. Even with this rather
serious problems it was possible to show that the dynamic
stiffness of the cutting tool could be increased , L.e. cancel-
ing cutting tool vibration with this technique is promising.
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We plan to improve the  control system by imple-
menting the filtered-x LMS algorithm with a leaky term
and update the filter equipment for the elimination of
the resonance in the tool holder construction in the near
future.
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