
Blekinge Institute of Technology
Doctorial Dissertation Series No. 02/01

ISSN 1650-2159
ISBN 91-7295-004-8

Software Design Conflicts
Maintainability versus

Performance and Availability

Daniel Häggander

Department of Software Engineering and Computer Science
Blekinge Institute of Technology

Sweden

ISSN 1650-2159
ISBN 91-7295-004-8

 Daniel Häggander, 2001

Printed in Sweden
Kaserntryckeriet AB
Karlskrona, 2001

“Things are not always what they seem.“

-- Aesop (620-560 B.C.)

This thesis has been submitted to the Faculty of Technology, Blekinge Institute of
Technology, in partial fulfilment of the requirements for the Degree of Doctor of
Philosophy in Engineering.

Contact Information:

Daniel Häggander
Department of Software Engineering and Computer Science
Blekinge Institute of Technology
Soft Center
S-372 25 RONNEBY
SWEDEN

Tel.: + 46 457 385819
Fax.:+ 46 457 271 25
email: Daniel.Haggander@bth.se
URL: http://www.ipd.hk-r.se/dha

Software Design Conflicts

Abstract

A major goal in software engineering is to reduce the cost of maintaining software
systems. Finding design methods which make software more easily maintainable has
thus been one of the most prioritized challenges during the past decade. While
mainstream software design has concentrated on maintainability, other software
disciplines e.g. high-performance computing and high-availability systems, have
developed other design methods which primarily support the quality attributes that
are more important in their areas. More recently, demands have been made for high
performance and high availability in typical mainstream software. At the same time,
traditional high-performance and high-availability systems tend to incorporate more
advanced business functionality, i.e. different software disciplines have started to
converge. The situation is not unproblematic since the software design methods
developed for achieving performance and availability may have been developed with a
limited influence from maintainability, and vice versa. It is thus important to identify
and analyze emerging design conflicts.

In this thesis I have studied conflicts between maintainability design methods on
the one hand, and performance and availability methods and techniques on the other.
I present the results of four case-studies involving four different applications. It is a
characteristic of these applications that half of the system can be regarded as a
telecommunications system and the other as a typical main-stream system, i.e. all
systems make high demands on performance and availability but also very high
demands on high maintainability. In studying these applications, I have identified two
major conflicts: granularity in dynamic memory usage and source code size. My results
show that these two conflicts can cause problems of such amplitude that some
applications become unusable. I found that conflicts in certain situations are inherent;
in other cases they can be avoided - or at least reduced - by adjusting the design
methods used. I have also shown that conflicts may quite simply be a matter of
misconceptions. Ten guidelines have been combined into a simple process with the
aim of helping software designers to avoid and reduce conflicts. A method which
automatically reduces the dynamic memory conflict in object-oriented applications
written in C++ has been developed, implemented and evaluated. Finally, I have
defined optimal recovery schemes for high availability clusters.

Software Design Conflicts

Software Design Conflicts

List of Papers

The present thesis is based on the following papers. References to the
latter will be made using the roman numbers applied to the particular
paper.

[I] Daniel Häggander and Lars Lundberg, “Optimizing Dynamic
Memory Management in a Multithreaded Application Executing
on a Multiprocessor”, in Proceedings of the 27th International
Conference on Parallel Processing, Minneapolis, USA, pp. 262-269,
August 1998.

[II] Daniel Häggander and Lars Lundberg, “Memory Allocation
Prevented Telecommunication Application to be Parallelized for
Better Database Utilization”, in Proceedings of the 6th
International Australasian Conference on Parallel and Real-Time
Systems, Melbourne, Australia, pp. 258-271, November 1999
(Springer Verlag).

[III] Daniel Häggander, PerOlof Bengtsson, Jan Bosch and Lars
Lundberg, “Maintainability Myth Causes Performance Problems
in Parallel Applications”, in Proceedings of the 3rd International
IASTED Conference on Software Engineering and Applications,
Scottsdale, USA, pp. 288-294, October 1999.

Software Design Conflicts

[IV] Daniel Häggander and Lars Lundberg, “A Simple Process for
Migrating Server Applications to SMPs”, Journal of System and
Software 57, pp. 31-43, 2001.

[V] Daniel Häggander, Lars Lundberg and Jonas Matton, “Quality
Attribute Conflicts - Experiences from a Large
Telecommunication Application”, in Proceedings of the 7th IEEE
International Conference on Engineering of Complex Computer
Systems, Skövde, Sweden, pp. 96-105, June 2001.

[VI] Daniel Häggander and Lars Lundberg, “Attacking the Dynamic
Memory Problem for SMPs”, in Proceedings of the 13th
International ISCA Conference on Parallel and Distributed
Computing Systems, Las Vegas, USA, pp. 340-347, August 2000.

[VII] Daniel Häggander, Per Lidén and Lars Lundberg, “A Method for
Automatic Optimization of Dynamic Memory Management in
C++”, in Proceedings of the 30th International Conference on
Parallel Processing, Valencia, Spain, September 2001.

[VIII]Lars Lundberg and Daniel Häggander, “Recovery Schemes for
High Availability and High Performance Cluster Computing”,
Research Report 2001:06, ISBN:1103-1581, submitted for journal
publication.

Related papers and work not included in this thesis are listed below, in
chronological order.

[IX] Lars Lundberg and Daniel Häggander, “Multiprocessor
Performance Evaluation of Billing Gateway Systems for
Telecommunication Applications”, in Proceedings of the 9th
International ISCA Conference on Computer Applications in
Industry and Engineering, Orlando, USA, pp. 13-18, December
1996.

Sofware Design Conflicts

[X] Lars Lundberg and Daniel Häggander, “Bounding on the Gain of
Optimizing Data Layout in Vector Processors”, in Proceedings of
ICS 98, the ACM International Conference on Supercomputing,
Melbourne, Australia, pp. 235-242, July 1998.

[XI] Daniel Häggander and Lars Lundberg, “Multiprocessor
Performance Evaluation of a Telecommunication Fraud
Detection Application”, in Proceedings of the ARTES Graduate
Student Conference, Västerås, Sweden, pp. 33-39, May 1999.

[XII] Daniel Häggander and Lars Lundberg, “Ten Performance
Guidelines for Balancing Software Quality Attributes when
Developing Large Real-time Applications for Multiprocessors”,
Technical Report 99:16, ISSN:1103-1581, September 1999.

[XIII]Lars Lundberg, Jan Bosch, Daniel Häggander and PerOlof
Bengtsson, “Quality Attributes in Software Architecture Design”,
in Proceedings of the 3rd International IASTED Conference on
Software Engineering and Application, Scottsdale, USA, pp. 353-
362, October 1999.

[XIV]Daniel Häggander, PerOlof Bengtsson, Jan Bosch and Lars
Lundberg, “Maintainability Myth Causes Performance Problems
in SMP Applications”, in Proceedings of the 6th IEEE Asian-Pacific
Conference on Software Engineering, Takamatsu, Japan, pp. 516-
519, December 1999.

[XV] Daniel Häggander, “Software Design when Migrating to
Multiprocessors”, Department of Information Technology, Uppsala
University, in partial fulfilment of the requirements for the Degree of
Licentiate of Engineering, ISSN:0283-0574, DoCS 112, Uppsala,
November 1999.

[XVI]Lars Lundberg, Daniel Häggander and Wolfgang Diestelkamp,
“Conflicts and Trade-offs between Software Performance and
Maintainability”, a chapter in the book “Performance Engineering.
State of the Art and Current Trends”, pp. 56-67, 2001 (Springer
Verlag).

Software Design Conflicts

[XVII] Magnus Broberg, Daniel Häggander, Per Lidén and Lars
Lundberg, “Improving the Performance of Multiprocessor
Memory Management in Java”, to appear in Java Report.

[XVIII]Daniel Häggander, Per Lidén and Lars Lundberg, “A Method
and System for Dynamic Memory Management in an Object
Oriented-Program”, Patent Application No. 0002679-9, Sweden,
July 2000.

Software Design Conflicts

Acknowledgments

This work has been carried out as part of the ARTES project “Design Guidelines and
Visualization Support for Developing Parallel” at Blekinge Institute of Technology,
Sweden. ARTES is a national research programme supported by the Swedish
Foundation for Strategic Research (SSF).

First of all I would like to thank my supervisor Professor Lars Lundberg,
whose skills in computer systems and unlimited patience have been a
great benefit. Secondly, I wish to thank my previous supervisor, Professor
Hans Hansson, whose tremendous ability to solve practical problems has
been invaluable.

I wish to express my thanks to Ericsson Software Technology and the
members of the FCC, BGw, DMO, SDP and READ projects,
particularly Jonas Matton, for giving me the opportunity to study their
work. Further, I thank SUN Microsystems and Pär Känsälä for all their
help with multiprocessor hardware.

I would like to thank the my colleagues at the Department of
Software Engineering and Computer Science at Blekinge Institute of
Technology, and in particular PerOlof Bengtsson, Magnus Broberg and Per
Lidén. A big thanks also goes to Jane Mattison for helping me with proof
reading.

Software Design Conflicts

Software Design Conflicts

Contents

Software Design Conflicts
1. Introduction . 1

2. Quality Attribute Definitions . 4

3. Research Methods. 8

4. Research Results . 10

5. Related Work . 21

6. References . 25

Paper Section
Paper I . 31

Paper II. 41

Paper III . 57

Paper IV . 67

Paper V. 83

Paper VI . 95

Paper VII . 105

Paper VIII. 117

Software Design Conflicts

Introduction

Software Design Conflicts 1

Software Design Conflicts

Maintainability
versus

Performance and Availability

1. Introduction

A prioritized goal in software engineering is to reduce the cost of
maintaining software systems. A strong focus on software maintenance
is considered important since maintenance is responsible for the major
part of the costs in a product's life-cycle [Pigoski 97].

Finding design methods which make software more easily
maintainable has thus been one of the greatest challenges during the
past decade, at least for mainstream software design. A strong focus on
maintenance-related quality attributes such as maintainability,
variability and modifiability, to mention just a few, has resulted in a
number of new design methodologies, the best known of which include
object-orientation, frameworks, multi-layer design and design patterns.
A software designer today is expected to have knowledge of these
methodologies and to know how to use them.

While mainstream software design has concentrated on
maintainability, other software disciplines have continued to develop
new design methods that are effective in their own particular area.
High-performance computing, often concentrating on scientific
application, has, with the aid of parallel processing technology,
constantly improved performance limits. In hardware, the results are
Symmetric MultiProcessors (SMP) and the dawn of onChip
Multiprocessors (CMP). Multiprocessor technology is dependent on
parallel execution, i.e. methods for developing parallel software have

Software Design Conflicts

2 Software Design Conflicts

been developed in order to benefit from the high capacity of
multiprocessors; a widely used example is multithreading.

Another system design area is high-availability systems. The market
for this kind of software has been limited primarily to critical systems,
e.g. airplanes and telecommunication equipment. Historically, these
systems have normally provided a limited degree of business
functionality and have often been built on propriety hardware and
software. It is in this context that software design methods supporting
high-availability have been developed.

More recently, demands have been made for high performance and
high availability also for mainstream software applications. At the same
time, traditional high-performance and high-availability software
applications tend to incorporate more advanced business functionality,
i.e. different software disciplines have started to converge. As a result, it
has become necessary to consider maintainability with respect to other
quality attributes, e.g. performance and availability, when designing
application software.

The situation is not unproblematic since the methods developed for
achieving performance and availability may have been developed with a
limited influence from maintainability, and vice versa. Methods
developed in different disciplines may at worst be incompatible, i.e. the
convergence uncovers software design conflicts. These may come as a
surprise to developers.

It is thus important to identify and quantify emerging design
conflicts. Further, conflicts must be investigated in detail in order to
find possible strategies for avoiding or reducing them. In some cases, it
may just be a matter of small method adaptations. In other cases,
however, alternative design methods may prove necessary.

Identifying and defining conflicts on a quality-attribute level creates
a number of difficulties. One major problem is that the definition,
scope and meaning of quality attributes, especially maintainability, are
not unanimously and objectively understood. Another problem is that
conflicts between quality attributes are often indirect, i.e. created by the
design methods used to improve the quality attributes rather than the
quality attributes themselves.

In this thesis, I have studied conflicts between maintainability design
methods on the one hand, and performance and availability methods
and techniques on the other. I present the results of four case-studies
involving four different applications: Billing Gateway (BGw), Fraud

Introduction

Sofware Design Conflicts 3

Control Center (FCC), Data MOnitor Server (DMO) and Service Data
Point (SDP), respectively. Three of the applications (BGw, FCC and
SDP) have been developed by Ericsson Software Technology AB. They
have, however, all been developed by different departments and
different designers. The fourth application (DMO) was developed by
students at Blekinge Institute of Technology, and was based on
requirements defined by Ericsson Software Technology AB. All
applications are what we refer to as “telecommunication support
systems”. It is a characteristic of this kind of systems that one part of the
system can be regarded as a telecommunications system and the other as
a typical main-stream system, i.e. a system which has
telecommunication characteristics but also advanced business functions.
The “in-between” position makes these systems interesting objects of
study in software design conflicts.

In studying these applications, I have identified two major conflicts:
granularity of dynamic memory usage, and source code size. My results
show that these two conflicts can cause problems of such amplitude that
some applications become unusable. I found that conflicts in certain
situations are inherent; in other cases they can be avoided - or at least
reduced - by adjusting the design methods used. I have also shown that
conflicts may quite simply be a matter of misconceptions.

Ten guidelines have been combined into a simple process with the
aim of helping software designers to avoid and reduce conflicts. A
method which automatically reduces dynamic memory conflict in C++
has also been developed and tested on synthetic programs as well as in
one of the case-study applications. Finally, I have suggested a method
which simplifies the definition of favorable recovery schemes for high-
availability and high-performance cluster systems.

The remaining pages are organized as follows. Section 2 presents
definitions of the three quality attributes considered in this thesis. An
overview of the research methods is given in Section 3. The results, in
the form of an overview as well as individual summaries of eight papers,
are presented in Section 4. In Section 5, prior and related work is
provided and references are listed in Section 6. A paper section,
including the eight papers on which this thesis is based, ends the thesis.

Software Design Conflicts

4 Software Design Conflicts

2. Quality Attribute Definitions

This section elaborates on definitions of three quality attributes:
performance, availability and maintainability. Official definitions from
[IEEE 90], [ISO 00] and [McCall 94] (The Encyclopedia of Software
Engineering, 1994) are presented. The definitions, scope and meaning
of quality attributes are, however, not unanimously or objectively
understood, especially not maintainability [Kajko-Mattson 01]. This is,
unfortunately, also a problem in the present thesis. In cases where I have
used a definition of a quality attribute which differs from the official
one, I have presented a definition of my own. In providing such
definitions I do not mean to suggest that they are necessarily better or
more correct than ready-existing ones; my hope is quite simply that they
will make my thesis more readily understandable.

2.1 Quality Attribute

“A quality attribute is a feature or characteristic that affect an
item's quality. Syn: Quality factor”, [IEEE 90]

This thesis focuses on the quality of an application, i.e. a combination
of software and hardware. The definition used in the present thesis is
thus:

“A quality attribute is a non-functional feature or characteristic
that affect an application's quality” - definition used in this thesis

2.2 Performance

Performance - “The degree to which a system or component
accomplishes its designated functions within given constraints,
such as speed, accuracy, or memory usage”, [IEEE 90]

In many reports which discuss software quality attributes, attribute
performance is excluded. However, a related attribute which is often
used is efficiency.

Quality Attribute Definitions

Sofware Design Conflicts 5

Efficiency (time-behavior) - “The capability of the software
product to provide appropriate response and processing times and
throughput rates when performing its function, under stated
conditions”, [ISO 00]

The Encyclopedia of Software Engineering (1994) has a slightly
different definition of efficiency, in which the latter is seen as a function
of hardware.

Software efficiency - “The amount of computing resources
required by a program to perform a function”, [McCall 94]

The performance definition used in this thesis is a combination of the
first two definitions, [IEEE 90] and [ISO 00], respectively.

Performance - “The degree to which an application accomplishes
its designated functions within given constraints of appropriate
response and processing times and throughput rates, under stated
conditions” - definition used in this thesis

2.3 Availability

Availability - “The degree to which a system or components is
operational and accessible when required for use. Often expressed
as a probability”, [IEEE 90]

In ISO/IEC FDIS 9126-1:2000(E) availability is not included as a
separate characteristic (attribute). Instead, ISO defines availability as a
combination of maturity, fault tolerance and recoverability.

Maturity - “The capacity of the software product to avoid failure
as a result of faults in the software”, [ISO 00]

Fault tolerance - “The capability of the software product to
maintain a specific level of performance in case of a software fault
or of infringement of its specified interface”, [ISO 00]

Software Design Conflicts

6 Software Design Conflicts

Recoverability - “The capability of the software product to re-
establish a specified level of performance and recover the data
directly affected in the case of a failure”, [ISO 00]

There are no conflicts between the various definitions. The official
definitions also comply with those used in this thesis. I have not made
any attempt to measure the availability of the applications studied.
When the level of availability is discussed, the discussion is based on
previous experience and theoretical calculations based on figures given
by equipment vendors.

2.4 Maintainability

Maintainability - “The ease with which a software system or
component can be modified to correct faults, improve
performance, or other attributes, or adapt to a changed
environment”, [IEEE 90]

Maintainability - “The capability of the software product to be
modified. Modifications may include corrections, improvements
or adaptations of the software to changes in environment, and in
requirements and functional specifications”, [ISO 00]

The Encyclopedia of Software Engineering (1994) has a narrower
definition of maintainability. Changes in environment or in
requirements are not included in its definition of maintainability.

Maintainability - “Effort required to locate and fix an error in an
operational program”, [McCall 94]

The first two definitions eliminate the possibility of maintainability
conflicting with some other attribute, thereby rendering a discussion
about conflicts related to maintainability pointless.

A limitation of the scope to corrections, improvements or
adaptations of the software to changes in the functional specifications
makes the discussion of emerging conflicts more comprehensible.

With such a definition, maintainability can cause software design
conflicts when it is required along with another attribute e.g., a design
method used to improve maintainability can be in conflict with design

Quality Attribute Definitions

Sofware Design Conflicts 7

methods normally used to fulfil other quality attributes such as
performance and/or availability.

Maintainability - “The capability of the software product to be
modified. Modifications may include corrections, improvements
or adaptations of the software to changes in the functional
specifications” - definition used in this thesis

In the studies considered here I have occasionally used source code size
(lines of code) to measure maintainability. Measuring maintainability by
means of the source code size is not a generally accepted method (there
is indeed no generally accepted method). However, previous research
indicates that maintenance costs are strongly related to the amount of
source code [Granja & Barrancp-Garcia 97] [Li & Henry 93].

Software Design Conflicts

8 Software Design Conflicts

3. Research Method

The overall research goal of this thesis is to:

Identify, quantify, analyze, and propose solutions for handling
software design conflicts emerging when building maintainable
applications with explicit and high demands on performance and
availability.

In order to achieve my goal I have performed empirical studies on
industrial cases, conducted interviews with designers and carried out
experiments on synthetics programs as well as developed several
prototypes in collaboration with industrial partners.

My thesis is divided into two parts: in the first I identify, quantify
and analyze software design conflicts; and in the second I evaluate and
propose solutions which avoid or reduce software design conflicts. The
rest of this section gives an overview of the research methods used. More
detailed information about the research methods used is given in the
individual papers.

3.1 Identify, Quantify and Analyze Conflicts

In order to identify, quantify and analyze design conflicts I have studied
four different major telecommunication support applications written in
C++ for use with UNIX. Three of the applications have been developed
by Ericsson Software Technology AB. These are referred to as BGw,
FCC, DMO and SDP. The last but one, DMO, was developed by
students at Blekinge Institute of Technology. In three applications
(BGw, FCC and DMO) maintainability is strongly prioritized. These
applications are also very demanding with respect to performance due
to real-time requirements on throughput and response time.

Symmetric multiprocessors and multithreaded programming have
been used in order to give these applications a high, scalable
performance. In the first three applications I studied conflicts between
design methods for obtaining maintainability and methods for
achieving performance. In the fourth study, the SDP case-study, I also
had the opportunity to study availability aspects since this application

Research Method

Sofware Design Conflicts 9

makes high demands on availability. The papers which identify,
quantify and analyze software design conflicts are I, II, III, IV and V.

3.2 Avoiding and Reducing Conflicts

Alternatives for avoiding or reducing software design conflicts can be
divided into three groups: adjustment, exchange and compensation. In
many situations it is quite simple to adjust a design method in such a
way that the conflict is eliminated or reduced to an acceptable level.
However, in some situations, the conflict is inherent, necessitating an
exchange of at least one of the design methods. If the conflict is found at
an early stage, it is often possible to find an alternative design method
which is more tolerant. However, if the conflict is discovered in a late
development phase or after delivery, compensating methods may prove
very useful. By compensating methods I mean methods which reduce
the effect rather than the actual cause of the conflict. Such methods
have also shown to be cost effective when conflicts are identified at
earlier stages. The papers which suggest solutions as to how to avoid and
reduce conflicts are IV, V, VI, VII and VIII.

Software Design Conflicts

10 Software Design Conflicts

4. Research Results

The first case-study was made on the BGw application. This is a
mediation server written in multithreaded C++ and executed in UNIX
on a symmetric multiprocessor. We found that the application has poor
scale-up due to a bottleneck within the dynamic memory management.
Two approaches to remove the bottleneck were evaluated: replacing the
standard heap with a parallel heap (ptmalloc [Gloger]); and
optimization of the application design by removing a number of heap
allocations/deallocations respectively. Both methods were found to be
efficient. However, the latter approach also improves performance when
running the application on a single-processor computer.

The same bottleneck was identified also in the next case-study
(FCC), even though FCC is based on a third party relational database
management system (RDBMS). The study showed that the bottleneck
could be removed either by dividing FCC into a number of individual
processes or by using ptmalloc. Using interviews with the developers of
the FCC as a base, we established that the aim of developing a
maintainable application was the major reason for the increased number
of dynamic memory allocations, i.e. which caused the bottleneck. Our
evaluation shows that an alternative design, based on rigid but
exchangeable components, has much better performance characteristics.

Using the results from the BGw and FCC studies as well as a study of
a third application (DMO), I defined a simple design process based on
ten guidelines. The process was designed with the aim of helping
designers of applications to become more efficient in creating a balance
between SMP performance and maintainability.

In the next case-study I checked if the quality attribute “conflict”
which was identified in previous case-studies is bidirectional, i.e. if
applications developed with a strong focus on run-time qualities such as
performance and availability uncover unknown software design
conflicts, resulting in maintainability problems. This was made possible
by studying yet another telecommunication application (SDP). The
application is part of a system which rates pre-paid subscribers in real-
time. The result is on source code categorization, which showed that
85% of the source code was written in response to performance or
availability demands. Work carried out by other researchers indicates
that maintenance costs are strongly related to the amount of application
code, i.e. the large amount of source code is a strong indication that

Research Results

Sofware Design Conflicts 11

performance and availability have had a negative impact on
maintainability.

Earlier studies carried out by the author indicate that methods used
for obtaining maintainability often result in fine-grained dynamic
memory usage, whereas a fine-grained dynamic memory usage can
substantially damage performance, especially in multithreaded C++
applications running on SMPs.

To sum up, two major conflicts have been identified: granularity in
dynamic memory usage, and source code size. My results show that
these two conflicts can cause problems of such amplitude that some
applications become unusable. I found that conflicts in certain
situations are inherent; in other cases they can be avoided - or at least
reduced - by adjusting the design methods. I have also shown that
conflicts may quite simply be a matter of misconceptions.

The simplest way, we have discovered, to attack the dynamic
memory problem is to optimize the C library memory allocation
routines. This is because such an optimization has low impact on the
implementation of the application. However, reducing the usage of
short-lived memory allocations gives the best result in terms of
performance.

I have thus developed a pre-processor-based method named Amplify
which can reduce the use of small and short-lived memory allocations in
(object-oriented) C++ applications. Amplify does this by speculating on
the temporal locality of dynamic memory allocations. Amplify makes it
possible to achieve two goals at the same time. First, using Amplify is
not more complicated than replacing the C library memory allocation
routines. Second, the optimization is almost as effective as a reduction
of the usage of short-lived memory allocation would be.

One software design conflict identified was source code size.
Handling high-availability issues within the source code is one of the
reasons for excessive code size. An example is fail-over cluster schemes
defined in the application code. I have defined a very simple method for
obtaining general recovery schemes which are optimal for a number of
important cases, making it possible to move this feature from the
application source code to cluster software.

The rest of the section presents individual summaries of the eight
papers on which this thesis is based. I also acknowledge where results
have been achieved with the aid of anyone other than my supervisor,
professor Lars Lundberg.

Software Design Conflicts

12 Software Design Conflicts

Paper I: Dynamic Memory Management in a Multithreaded
Application Executing on a Multiprocessor

This paper reports the results from performance evaluations made on a
large real-time application (Billing Gateway) executing on symmetric
multiprocessors. The Billing Gateway (BGw) collects billing
information about calls from mobile phones. The application has been
developed by Ericsson. BGw is written in C++ (approximately 100,000
lines of code) using object-oriented design, and the parallel execution
has been implemented using Solaris threads [Lewis 96].

The parallel software design led us to believe that the application
would scale-up well on a Symmetric MultiProcessor (SMP) [Hwang &
Xu 98]. Performance evaluations showed, however, that the benefit of
executing on multiprocessors was relatively small [IX]. One of the BGw
versions failed to scale up at all (see Figure 1).

The major reason for this lack of benefit was that the standard
sequential dynamic memory management combined with a large
number of dynamic memory allocations and deallocations. The large
number of allocations and deallocations is a result of the way in which
the object-oriented design was used. This paper compares two
approaches for improving the performance of the BGw: replacing the
standard heap with a parallel heap (ptmalloc [Gloger]); and
optimization of the application design by removing a number of heap
allocations/deallocations respectively. The number of heap allocations/
deallocations was reduced by introducing object-pools for commonly
used object types, and by replacing heap variables with stack variables.
The time spent on re-designing the BGw was rather limited (one week).
The parallel heap approach resulted in dramatic scale-up improvement.
The optimization of the application design also resulted in a dramatic
scale-up improvement. This approach also improves performance when
the application is executed on a single-processor computer.

Research Results

Sofware Design Conflicts 13

Figure 1. The processing capacity of BGw (version 3) on an 8-way SMP.

Paper II: Memory Allocation Prevented Telecommunication
Application to be Parallelized for Better Database Utilization

This paper replicates the results of paper I on yet another application,
the Fraud Control Center (FCC). The latter application has been
developed by Ericsson and is part of an anti-fraud system that combats
mobile telephone fraud with the aid of real-time analysis of network
traffic [Lundin et al. 96]. It is based on a commercial relational database
management system [Connolly at al. 96]. The parallelization of the
FCC application using multithreaded programming was not only
designed to scale-up the multithreaded part of the application but also
to improve the performance of the database system [XI].

A database server cannot usually be fully utilized using a single client,
particularly if the database server is executed on a symmetric
multiprocessor. Multithreading makes it possible for an application
implemented as a single process to have multiple database clients. This
study shows, however, that object-oriented development - more
specifically, its impact on dynamic memory management - prevented

1 2 4 8
Number

100

300

200

400

600

500

of CPUs

Throughputkilobyte/s

BGw 3

BGw 3 after
redesign

BGw 3 with
ptmalloc

Software Design Conflicts

14 Software Design Conflicts

the application from benefiting from multiple database clients.
Although the database module performed most of the work, the
limiting factor in the FCC was the poor performance of the
multithreaded client part. Our use of a parallel heap implementation
(ptmalloc [Gloger]) for optimizing the dynamic memory management
in the FCC proved successful. We also showed that the performance
characteristics of the multithreaded client version using ptmalloc were
very similar to a version in which the clients executed in separate
processes.

Paper III: Maintainability Myth Causes Performance Problems
in Parallel Applications

Papers I and II show that multithreaded applications developed with
object-oriented methodologies have a potential bottleneck within their
dynamic memory management. The main reason is that object-oriented
methodologies tend to increase the number of dynamic memory
allocations. Our evaluations also show that restricting the use of object-
oriented design significantly reduces the risk of congestion within the
dynamic memory management.

Using interviews with the developers of the FCC as a base, paper III
identifies maintainability together with flexibility as an indirect reason
for the large number of dynamic memory allocations occurring. The
assumption was that adaptable object designs (e.g. design patterns
[Gamma et al. 97]) would give a more maintainable application.

An alternative design, based on rigid but exchangeable components,
was, however, implemented and evaluated. Maintainability was
predicted using a state-of-the-art method [Bengtsson et al. 99]. The
evaluation results show that the alternative design has superior
performance characteristics as well as higher maintainability. These
findings show that the design decision chosen was based on an
assumption which subsequently proved invalid, i.e. the performance
problems in FCC were based on a myth.

This is a joint paper written in collaboration with PerOlof
Bengtsson. The latter performed the maintenance evaluations; the
interviews were carried out together.

The paper is also available in an earlier version [XIV].

Research Results

Sofware Design Conflicts 15

Paper IV: A Simple Process for Migrating Server Applications
to SMPs

The first three studies (papers I, II and III) all show a bottleneck within
the dynamic memory management. The studies also showed that the
bottleneck was not anticipated by the developers and resulted in a
substantial decrease in performance. In all cases, however, the
bottleneck could easily be removed by choosing an alternative design
strategy; it could also be substantially reduced by applying a dynamic
memory allocator optimized for SMPs. Further, all applications had
been developed under approximately the same pre-conditions. The
developers were thoroughly trained in modern software engineering,
including object-oriented design, frameworks and design patterns. The
applications include a substantial amount of third-party tools and
software. The performance requirements were mainly met by using the
latest in high-performance, off-the-shelf uni-processor hardware.
However, higher requirements with regard to performance, or
complementary requirements with respect to scalable performance
necessitated a migration from a uni-processor to a multiprocessor
architecture, i.e., SMP.

Designing efficient applications for SMPs is a vital task since
communication and synchronization can easily limit the scale-up to a
considerable degree. Efficient strategies for designing and implementing
multiprocessor applications are widely recognized [Foster 95]. In this
type of application, however, the parallel performance must be balanced
against other quality attributes such as maintainability and flexibility.

For developers used to developing maintainable and flexible software
but not familiar with parallel hardware architecture and parallel
software, making the right trade-offs for higher multiprocessor
performance can be very difficult, if not impossible. However, our
results show that large improvements can be made by just making the
developers aware of the problem with dynamic memory allocations on
SMPs.

Using the results from papers I, II and III and a study of a third
application (DMO), I have defined a simple process based on ten
guidelines [XII]. The process is designed with the aim of helping
designers of applications to become more efficient in creating a balance
between SMP performance and maintainability.

Software Design Conflicts

16 Software Design Conflicts

Paper V: Quality Attribute Conflicts - Experiences from a
Large Telecommunication Application

Previous research (papers I, II, III and IV) has shown that a strong focus
on quality attributes such as maintainability and flexibility can result in
less efficient applications, at least from a performance perspective. One
of the main reasons for this is that applications developed using these
new methodologies are more general and dynamic in their design. This
is an advantage in terms of maintainability but gives poorer application
performance. As a result, the ambition of building maintainable systems
often results in poor performance.

Performance is often gained by customizations, i.e., by using less
generic solutions. Common examples are application-specific buffering
of persistent data and bypassing layers in multi-layer architectures.
Customization of functions tends to increase the amount of application
code since code that is normally located in the operating system or in
third party software must be dealt with on an application level. Work
carried out by other researchers indicates that maintenance costs are
strongly related to the amount of application code [Granja & Barrancp-
Garcia 97] [Li & Henry 93].

One hypothesis is thus that the quality attribute "conflict" seen in
previous case-studies is bidirectional i.e., if applications developed with
a strong focus on run-time qualities such as performance and
availability uncover unknown software design conflict, with
maintainability problems as a result. Note that I now also introduce the
notion of availability into my reasoning. A second hypothesis is that the
best balance between performance and availability on the one hand and
maintainability on the other is obtained by focusing on maintainability
in the software design, and by using high-end hardware and software
execution platforms for solving the majority of the performance and
availability issues. It has at least been shown that it is relatively easy to
achieve high performance in applications developed with a strong focus
on maintainability with the aid of SMPs [IV].

The aim behind paper V was to check if the above two hypotheses
were correct. This was made possible by studying yet another
telecommunication application. The latter is part of a system which
rates pre-paid subscribers in real-time. The system has been developed
for the cellular market by the Ericsson telecommunication company.

Research Results

Sofware Design Conflicts 17

Rating of pre-paid subscribers is a mission-critical task which requires
extremely high performance and availability.

The first of three results related to source code categorization, which
showed that 85% of the source code was dictated by performance or
availability. A result which supports the first hypothesis. The second
result was a prototype developed according to a three-step process
prioritizing maintainability. The prototype contained less than 7,000
LOC (lines of code) and was capable of handling three times more calls
than the original application. The additional cost for the platform was
20-30% for the prototype as compared to the old application. A result
which supports the second hypothesis. The most useful design strategies
were extracted as three guidelines, which comprised the third result.

This study was carried out with the aid of Jonas Matton. The latter
performed the source-code measurements as part of his master's thesis.

Paper VI: Attacking the Dynamic Memory Problem for SMPs

Dynamic memory management has constituted the most serious
serialization bottleneck in many of the applications studied. The
dynamic memory problem has been addressed in a number of ways. In
this paper, we summarize and structure our experiences of some of
these. There are two basic ways of attacking the problem: either you
reduce the cost of using dynamic memory, or you reduce the use of
short-lived dynamic memory allocations (see Figure 2 on the following
page).

The problem can also be addressed at different levels, i.e. the
operating system, the implementation, and the software architecture
and design levels. Each of the investigated ways of attacking the
dynamic memory problem has its own particular advantages and
disadvantages.

I argue that one should focus on the operating system level when
dealing with an existing code, and on the software architecture level
when developing new applications.

Software Design Conflicts

18 Software Design Conflicts

Figure 2. Categorization of methods which can be used to attack the dynamic memory
problem on an SMP.

Paper VII: A Method for Automatic Optimization of Dynamic
Memory Management in C++

Paper VI points out that the simplest way to attack the dynamic
memory problem is to optimize the C library memory allocation
routines. However, the results discussed in paper I show that it can be
more efficient to address the problem on the source code level, i.e.,
modify the application's source code. Such an approach makes it
possible to achieve more efficient and customized memory
management. To implement and maintain such design and source code
optimizations is, however, both a laborious and costly since the
procedure must be done manually.

Reducing the use of short lived memory allocation gives the best
results in terms of performance. Attacking the problem at an operating
system level is the most effective method in terms of man hours.
Consequently, the most favorable method is, from our perspective,
found down to the right in the matris (Figure 2), the vacant spot. A
challenge is thus to fill this vacancy.

Paper III shows that the large amount of dynamic memory is to a
considerable extent the result of designers' attempts to increase
maintainability, i.e., make the application easier to adjust to new or
modified requirements. Such adjustments are not usually made in run-
time; temporal locality (defined in the paper) will thus characterize the
run-time behavior of the dynamic memory allocations in the
applications.

Attacking the dynamic memory problem for SMPs

Level \ Type Reduce cost Reduce usage

Architecture and
Design

Processes instead of threads Rigid but exchange-
able components

Implementation Object pools
(Customized allocator)

Use stack instead of
heap

Operating System Parallel allocator
(General propose allocator)

No method found

Research Results

Sofware Design Conflicts 19

This paper presents an implementation of a pre-processor based
method named Amplify which reduces the usage of small and short-
lived memory allocations in (object-oriented) C++ applications.
Amplify does this by speculating on the temporal locality of dynamic
memory allocations. Test results show that Amplify can obtain
significant speed-up in synthetic applications, and that it can also be
effective on real applications (BGw). The methods is patent pending
[XVIII].

This paper was complied with the help of Per Lidén. The latter aided
me with the design and implementation of the pre-processor.

The increasing popularity of Java makes it interesting to determine if
Java applications have similar performance problems with dynamic
memory as C++ has, and if the same method, effective for C++
applications, is also useful for applications written in Java. To do this is,
however, a not unproblemetic task since there are a number of
fundamental differences between C++ and Java, e.g. language
constraints, garbage collection and the virtual machine concept. These
differences make it not only necessary to re-implement Amplify in Java,
but also to reconsider some of the basics of the method (see [XVII]).

Paper VIII: Recovery Schemes for High Availability and High
Performance Cluster Computing

One way of obtaining high-availability is to distribute an application in
a cluster or a distributed system [Pfister 98]. If a computer breaks down,
the functionality performed by that computer will be handled by some
other computer in the cluster. Many cluster vendors support this kind
of fault recovery, e.g., Sun Cluster [Sun Cluster], MC/ServiceGuard
(HP) [MC/ServiceGuard], TrueCluster (DEC) [TrueCluster], HACMP
(IBM) [Ahrens et al. 95], and MSCS (Microsoft) [Vogels et al.]. One
way to define how functionality is redistributed in the clusters is to
define recovery schemes. Lundberg et al. have proposed a recovery
scheme that is optimal for a number of important cases and which
defines a bound on the performance of the recovery schemes for any
number of computers. In this paper we have attacked the same problem;
we have, however, reformulated the problem definition, and suggested a
simple algorithm which generates recovery schemes that are better than

Software Design Conflicts

20 Software Design Conflicts

those defined in [Lundberg & Svahnberg 99]. The bounds of the
recovery schemes have been decided using the same methods as in [X].

This is a joint paper written in collaboration with Lars Lundberg.
My contribution was the reformulation of the problem and the
definition of the algorithm.

Related Work

Sofware Design Conflicts 21

5. Related Work

This section presents prior and related work. It has been divided into
three parts: quality attributes, dynamic memory allocators and recovery
schemes for high-availability clusters. Additional prior and related work
is presented in the individual papers (see paper section)

5.1 Quality Attributes (Factors)

The concept of quality factor originated in the late 1970s in
conjunction with the research and development of software
measurement technology. The factors provide the definition of quality
required for a software product. The early work consisted of identifying
sets of factors or characteristics, related attributes and criteria, and
metrics. Further developments during the 80s have refined the factors
or added additional factors for consideration. A survey of identified
factors, attributes, criteria and metrics can be found in [McCall 94],
where they are assembled into a framework with the aim of capturing
relations between quality factors, related attributes and criteria, and
metrics. It is interesting to note that the effectivity quality factor is in
conflict, or, as McCall so logically argues, “can be more costly to achieve
together” with all other factors except correctness and reliability (see
Figure 5, p. 967 in [McCall 94]). The framework also defines relations
between quality factors and system characteristics, see Table 6, p. 968.
Of eleven listed system characteristics, only two, according to McCall,
are related to efficiency; these are real-time applications and on-line
usage. Introduction of software quality factors such as maintainability,
flexibility and portability into real-time applications can thus be
expected to be very costly. Further, the introduction of on-line usage
into applications which have previously been executed off-line, is, as the
framework shows, likely to lead to quality factor conflicts.

The conclusions outlined in Mcall's tables and classification comply
well with the emerging conflicts I have found in the applications studied
in this thesis.

Finding the right balance of quality attributes is thus of utmost
importance. One possible method is to reduce the conflicts already in
the requirement setting. Research has been conducted in this area, and
methods and knowledge-base tools have been developed with the aim of

Software Design Conflicts

22 Software Design Conflicts

helping users, developers, and customers to analyze and identify
conflicts among the requirements [Boehm & In 99]. However, the
conflicts found using these methods and tools are far from complete,
and even if the conflicts are identified, they may be unavoidable and
must thus be dealt with when the system is designed, dealing with
design conflicts is therefore still highly relevant.

A number of methods developed to identify conflicts on an
architecture level have been proposed. Kazman et al. have developed the
Architecture Trade-off Analysis Method (ATAM) which addresses the
need for trade-offs between different quality attributes [Kazman et al.
99]. The main goal of ATAM is to illuminate risks early on in the design
process. However, ATAM does not contain any concrete guidelines
regarding software architecture and design. Lundberg et al. have
developed a set of guidelines and a simple design process that can be
used for making design and architectural trade-offs between quality
attributes [XIII] [XVI]. Kruchten has suggested the “4+1 View Model”
which makes it possible to communicate and engineer different aspects
of a software system, e.g., development as well as run-time aspects
[Kruchten 95]. In this way, the probability of identifying conflicts can
be increased. The goal of my work has not been to investigate or make a
survey of quality attribute “conflicts”; instead, I have studied software
design conflicts; the quality attribute “conflicts” are what give my work
context and relevance.

5.2 Dynamic Memory Allocators for C++ and SMPs

Dynamic storage allocation (DSA) and memory management (DMA) is
a large area. Ben Zorn maintains a repository with related information
[Zorn]. This repository includes information about explicit allocation
mechanisms such as malloc/free and automatic storage reclamation
algorithms such as garbage collection. Wilson et al. have made an
excellent survey of literature and allocators [Wilson et al. 95]. Berger et
al. have recently presented a flexible and efficient infrastructure for
building memory allocators based on C++ templates and inherence.
The main intention is to help programmers to build customized
allocators [Berger et al 01]. Reports are also available on hardware
support for dynamic memory management [Chang et al. 00].
Henceforth, this section will only focus on malloc/free allocators design
for SMPs.

Related Work

Sofware Design Conflicts 23

The allocator designed by Doug Lea is both fast and efficient [Lea].
However, the original version is neither thread-safe nor scalable on
SMPs. Using Doug Lea's implementation, Wolfram Gloger created a
thread-safe and scalable version called ptmalloc [Gloger]. The allocator
is based on a multiple number of sub-heaps. When a thread is about to
make an allocation it "spins" over a number of heaps until it finds an
unlocked heap. The thread will use this heap for the allocation and for
all future allocations. If an allocation fails, the thread “spins” for a new
heap. Since the operating system normally keeps the number of thread
migrations low this implementation works well for a number of
applications. However, when the number of threads is larger than the
number of processors, ptmalloc may prove unpredictable in terms of
efficiency. We have successfully used this heap implementation in our
own studies.

An SMP version of SmartHeap is commercially available
[Microquill]. We have not had the opportunity to test this
implementation on our synthetic programs since the software is not
readily accessible. During our test on BGw, however, we were able to
make some benchmark tests on this allocator.

Hoard [Berger et al. 00] is another allocator optimized for SMPs
which we successfully used in one of our studies. This allocator focuses
on avoiding false memory sharing and blowup in memory
consumption. The allocator is scalable. However, we have found that
Hoard has problems when threads frequently migrate between
processors, e.g. when the number of threads is larger than the number of
processors.

LKmalloc [Larson & Krishan 98], developed by Larsson and
Krishnan, is yet another parallel memory allocator (this has not been
investigated by us). It is intended to be fast and scalable in traditional
applications as well as long-running server applications executed on
multiprocessor hardware.

Prior to ptmalloc, Hoard, LKmalloc etc., - all of which are relatively
recent contributions - there is little work available on parallel memory
allocators.

The major difference between my work on dynamic memory
allocation and the work described above is that I do not address the area
of dynamic memory management in general. My concern is the specific
problems which occur when aiming simultaneously at maintainability
and performance, i.e., how design strategies for maintainability stress

Software Design Conflicts

24 Software Design Conflicts

the use of dynamic memory and how to avoid this becoming a
bottleneck in applications running on SMPs.

5.3 Recovery Schemes for High-Availability Clusters

The problem of finding optimal recovery schemes for clusters of
computers seems to be NP-hard [Garey & Johnson 79]. Lundberg et al.
have proposed a recovery scheme which is optimal for a number of
important cases and have defined a bound on the performance of the
recovery schemes for any number of computers [Lundberg & Svahnberg
99]. Similar types of bounds have proven useful for other NP-hard
resource allocation problems [Lundberg & Lennerstad 98].

References

Sofware Design Conflicts 25

6. References

[Ahrens et al. 95] G. Ahrens, A. Chandra, M. Kanthanathan and D.
Cox, “Evaluating HACMP/6000: A Clustering Solution for High
Availability Distributed Systems”, in Proceedings of the 1995 Faoult-
Tolerant Parallel and Distributed System Symposium, pp 2-9, 1995.

[Bengtsson et al. 99] P. Bengtsson, J. Bosch, “Architecture Level
Prediction of Software Maintenance”, in Proceedings of 3rd
European Conference on Maintenance and Reengineering, Amsterdam
1999.

[Berger et al. 00] E. D. Berger, K. McKinley, R. Blumofe and P.
Wilson, “Hoard: A Scalable Memory Allocator for Multithreaded
Applications”, in Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and Operating
Systems, Cambridge, MA, November 2000.

[Berger et al 01] E. D. Berger, B. G. Zorn, and K. S. McKinley,
“Composing High-Performance Memory Allocators“, in
Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, Snowbird, Utah, June 2001.

[Boehm & In 99] B. Boehm and H. In, “Identifying Quality-
Requirement Conflicts”, IEEE Computer, August 1999, pp. 27-33.

[Chang et al. 00] J. M. Chang, W. Srisa-an, C. D. Lo, and E. F.
Gehringer, “Hardware support for dynamic memory management”,
in Proceedings of the Workshop for Solving the Memory-Wall Problem,
at the 27th International Symposium on Computer Architecture,
Vancouver, BC, June 2000.

[Connolly at al. 96] T.Connolly, C. Begg and A. Strachan, “Database
Systems”, Addison-Wesely, 1996.

[Foster 95] I. Foster, “Designing and Building Parallel Programs”,
Addison Wesley, 1995.

[Gamma et al. 97] E. Gamma, R. Helm, R. Johnson, J. Vilssides,
“Design Patterns”, Addison-Wesley, 1997.

[Garey & Johnson 79] M. R. Garey and D. S. Johnson, “Computers
and Interactability”, W. H. Freeman and Company, 1979.

Software Design Conflicts

26 Software Design Conflicts

[Gloger] W. Gloger, “Dynamic memory allocator implementations in
Linux system libraries”, http://www.dent.med.uni-muenchen.de/
~wmglo/malloc-slides.html (site visited August 14th, 2001).

[Granja & Barrancp-Garcia 97] J. C. Granja-Alvarez and J. Barrancp-
Garcia, “A Method for Estimating Maintenance Cost in a Software
Project: A Case Study”, Journal of Software Maintenance: Research
and Practice, John Wiley & Sons, Volume 9, pp. 166-175, 1997.

[Hwang & Xu 98] K. Hwang, Z. Xu, “Scalable and Parallel
Computing”, WCB/McGraw-Hill, 1998.

[IEEE 90] IEEE, “IEEE Standard Glossary of Software Engineering
Terminology”, IEEE Std 610.12-1990, 1990.

[ISO 00] ISO 9126, “Software Qualities”, SO/IEC FDIS 9126-
1:2000(E), 2000.

[Kajko-Mattson 01] M. Kajko-Mattson, “Can we Learn Anything
from Hardware Preventive Maintenance”, in Proceedings of the 7:th
IEEE International Conference on Engineering of Complex Computer
Systems, Skövde, Sweden, pp. 106-111, June 2001.

[Kazman et al. 99] R. Kazman, M. Barbacci, M. Klein, S.J. Carrière,
“Experience with Performing Architecture Tradeoff Analysis”, in
Proceedings of the International Conference on Software
Engineering, Los Angeles, USA, May 1999, pp. 54-63.

[Kruchten 95] P. Kruchten, “The 4+1 View Model of Architecture”,
IEEE Software, November 1995, pp. 42-50.

[Larson & Krishan 98] P. Larson and M. Krishan, “Memory
Allocation for Long-Running Server Applications”, in Proceedings of
the International Symposium on Memory Management, Vancouver,
British Columbia, Canada, October, 1998.

[Lea] D. Lea, “A Memory Allocator”, http://g.oswego.edu/dl/html/
malloc.html (site visited August 14th, 2001).

[Lewis 96] B. Lewis, “Threads Primer”, Prentice Hall, 1996.

[Li & Henry 93] W. Li and S. Henry, “Object-Oriented Metrics that
Predict Maintainability”, Journal of Systems Software, 1993;23, pp.
111-122.

References

Sofware Design Conflicts 27

[Lundberg & Lennerstad 98] L. Lundberg and H. Lennerstad, “Using
Recorded Values for Bounding the Minimum Completion Time in
Multiprocessors”, IEEE Transactions on Parallel and Distributed
Systems, pp. 346-358, April, 1998.

[Lundberg & Svahnberg 99] L. Lundberg and Charlie Svahnberg,
“Optimal Recovery Schemes for High-Availability Cluster and
Distributed Computing”, in Proceedings of the 6th International
Australasian Conference on Parallel and Real-Time Systems,
Melbourne, Australia, pp. 153-167, November 1999 (Springer
Verlag).

[Lundin et al. 96] C. Lundin, B. Nguyen and B. Ewart, “Fraud
management and prevention in Ericsson’s AMPS/D-AMPS
system”, Ericsson Review No. 4, 1996.

[McCall 94] J. A. McCall, “Quality Factors”, Encyclopedia of Software
Engineering, Volume 2, pp. 958-969, 1994.

[Microquill] Microquill, “SmartHeap for SMP”, http://
www.microquill.com/smp, (site visited August 22nd, 1999).

[MC/ServiceGuard] MC/ServiceGuard, “Managing MC/ServiceGuard
for HP-UX 11.0”, http://docs.hp.com/hpux/ha.

[Pigoski 97] T. M. Pigoski, “Practical Software Maintenance”, Wiley
Computer Publishing, 1997, table 3.1, p. 31.

[Pfister 98] G. F. Pfister, “In Search of Clusters”, Prentice Hall, 1998.

[Roberts & Johnson 96] D. Roberts, RE. Johnson, “Evolving
frameworks: a pattern language for developing object oriented
frameworks”, in Pattern Languages of Programming Design 3,
Addison-Wesley Publishing Co.:Reading MA; pp. 471-486, 1996.

[Sun Cluster] Sun, “Sun Cluster 2.1 System Administration Guide”,
Sun Microsystems, 1998.

[TrueCluster] DEC, TrueCluster 2.1 System Administration Guide,
Digital Equipment Corporation 1998, http://www.unix.digital.com/
faqs/publications/cluster_doc/cluster_16.

[Vogels et al.] W. Vogels, D. Dumitriu, A. Argawal, T. Chia and K.
Guo, “Scalability of the Microsoft Cluster Service”, http://
www.cs.cornell.edu/rdc/mscs/nt98.

Software Design Conflicts

28 Software Design Conflicts

[Wilson et al. 95] R. Wilson, M. Johnstone, M. Neely and D. Boles,
“Dynamic storage allocation: A survey and critical review”, in
Prodeedings of the 1995 International Workshop on Memory
Management, Kinross, Scotland, UK, 1995 (Springer Verlag)
A slightly updated version of this paper can be found at: ftp://
ftp.cs.utexas.edu/pub/garbage/allocsrv.ps

[Zorn] B. Zorn, “Malloc and GC implementations”, http://
www.cs.colorado.edu/~zorn/Malloc.html, (site visited August 14th,
2001).

Paper Section

Software Design Conflicts 29

X
Optimizing Dynamic Memory Management in a Multithreaded

Application Executing on a Multiprocessor

Memory Allocation Prevented Telecommunication Application
to be Parallelized for Better Database Utilization

Maintainability Myth Causes Performance Problems
in Parallel Applications

A Simple Process for Migrating Server Applications to SMPs

Quality Attribute Conflicts - Experiences from a
Large Telecommunication Application

Attacking the Dynamic Memory Problem for SMPs

A Method for Automatic Optimization of Dynamic Memory
Management in C++

Paper Section

Recovery Schemes for High Availability and
High Performance Cluster Computing

I

XII

XIII

XIV

XV

XVI

XVII

XVIII

Software Design Conflicts

30 Sofware Design Conflicts

Paper I

Sofware Design Conflicts 31

Paper I

Optimizing Dynamic Memory Management
in a Multithreaded Application Executing

on a Multiprocessor

Daniel Häggander and Lars Lundberg
27th International Conference on Parallel Processing

Minneapolis, USA
August 1998

XI

Software Design Conflicts

32 Sofware Design Conflicts

Paper I

Sofware Design Conflicts 33

 Abstract

The Billing Gateway (BGw) is a large multithreaded object
oriented C++ application running on Sun Solaris. Due to
frequent allocation and deallocation of dynamic memory,
the initial implementation of this system suffered from poor
performance when executed on a multiprocessor.
In this paper we compare two approaches for improving the
performance of BGw. First we replace the standard Solaris
heap with a parallel heap. In the second approach we opti-
mize the application code by removing a number of heap al-
locations/deallocations. In order to do this, we introduce
memory pools for commonly used object types and replace
some heap variables with stack variables.
The parallel heap approach resulted in a dramatic speedup
improvement. The optimization of the application code did
also result in a dramatic speedup improvement. For this ap-
proach the performance using a single-processor computer
was also increased by a factor of eight. The optimizations
took approximately one week to implement.

1. Introduction

Today, multiprocessors are used in a number of applica-
tions. Multithreaded programing makes it possible to write
parallel applications which benefit from the processing ca-
pacity of multiprocessors. However, some parallel applica-
tions suffer from large run-time overhead and serialization
problems when using multiprocessors. The speedup for
multithreaded applications is usually good when the first
processors are added. When more processors are added, the
speedup curve increases more slowly. In some cases the
speedup can actually start to decrease when we add more
processors.

One serialization problem is sequential dynamic memo-
ry management. Moreover, most dynamic memory handlers
are implemented without any consideration of multipro-
cessing specific problems, e.g. false memory sharing [2].

Object-orientation helps the programmer to develop
large and maintainable software. Unfortunately, this use of
object-orientation often results in an more intensive use of
dynamic memory, making the dynamic memory perfor-
mance problem worse.

The standard implementation of dynamic memory is of-
ten rather inefficient. A number of more efficient imple-
mentations have been developed, e.g. SmartHeap [4] and
Heap++ [5]. The most common strategy is to use different
allocation algorithms depending on the size of the requested
memory. QuickHeap is a typical example [7].

An optimized heap often results in better performance
for none-parallel applications. However, a performance
evaluation of a weather forecast model [3] showed that a
heap implementation which was efficient on a single-pro-
cessor caused performance problems on a multiprocessor.

For multiprocessor systems ptmalloc [6] can be efficient.
ptmalloc is a heap implementation which can perform sev-
eral allocations and deallocations in parallel. The ptmalloc
implementation is a version of Doug Lea's malloc imple-
mentation that was adapted for multiple threads by Volfram
Gloger, while trying to avoid lock contention as much as
possible.

The Billing Gateway (BGw) is a system for collecting
billing information about calls from mobile phones. The
system is a commercial product and it has been developed
by the Ericsson telecommunication company. BGw is writ-
ten in C++ [11] (approximately 100,000 lines of code) using
object-oriented design, and the parallel execution has been
implemented using Solaris threads. The system architecture
is parallel and we therefore expected good speedup when
using a multiprocessor. However, the actual speedup of
BGw was very disappointing.

By using the BGw as an example, we explain why dy-
namic memory management can cause poor speedup when
using a multiprocessor, particularly for object oriented pro-
grams. We also describe and evaluate two methods which
dramatically improved the speedup of the BGw using a Sun
multiprocessor with eight processors. These two methods

Optimizing Dynamic Memory Management in a Multithreaded Application
Executing on a Multiprocessor

Daniel Häggander
Ericsson Software Technology AB

S-371 23 Karlskrona, Sweden
Daniel.Haggander@epk.ericsson.se

Lars Lundberg
University of Karlskrona/Ronneby

S-372 25 Ronneby, Sweden
Lars.Lundberg@ide.hk-r.se

Software Design Conflicts

34 Software Design Conflicts

are: using a parallel heap implementation and redesigning
memory usage within the application code, respectively.

The rest of the report is structured in following way: Sec-
tion 2 describes the BGw and its speedup problem. Section
3 describes the dynamic memory performance problem in
detail. In section 4 a parallel heap implementation is inves-
tigated. Section 5 describes a redesign which reduces the
number of heap allocations. Section 6 concludes the paper.

2. Billing Gateway (BGw)

2.1. Overview

BGw transfers, filters and translates raw billing informa-
tion from Network Elements (NE), such as switching cen-
ters and voice mail centers, in the telecommunication
network to billing systems and other Post Processing Sys-
tems (PPS). Customer bills are then issued from the billing
systems (see figure 1). The raw billing information consists
of Call Data Records (CDRs). A CDR contains information
about a call (in certain rare cases information about a call
may be split up into several CDRs, e.g. when the call is very
long). Each CDR is 175-225 bytes long. The CDRs are con-
tinuously stored in files in the network elements. With cer-
tain time intervals or when the files have reached a certain
size, these files are sent to the billing gateway.

Figure 1. The Billing Gateway system.

There is a graphical user interface connected to the gate-
way system. In this interface the different streams of infor-
mation going through the gateway are visualized as a
directed graph, i.e. each billing application is represented as
a graph. There are four major types of nodes in the applica-
tion graphs.

Network element (NE) and post processing system
(PPS) nodes represent external systems which communi-

cate with the gateway, e.g. each switching center is repre-
sented as a NE node and each billing system is represented
as a PPS node. There may be any number of NE and PPS
nodes in an application.

The information streams in an application start in a NE
node. An information stream always ends at a PPS node.
Using a Filter node, it is possible to filter out some records
in the information streams. In some cases the record format
in the information streams has to be changed, e.g. when the
post processing systems do not use the same record format
as the network elements. Formatter nodes make it possible
to perform such reformatting.

Figure 2 shows an application where there are two net-
work elements producing billing information (the two left-
most nodes). These are called “MSC - New York” and
“MSC - Boston” (MSC = Mobile Switching Center). The
CDRs from these two MSCs are sent to a filter called “is-
Billable”. There is a function associated with each filter,
and in this case the filter function evaluates to true for CDRs
which contain proper information about billable services.
CDRs which do not contain information about billable ser-
vices are simply filtered out. The other CDRs are sent to an-
other filter called “isRoaming”. In this case, there are two
stream going out from the filter.

Figure 2. BGw configuration window.

The function associated with “isRoaming” evaluates to
true if the CDR contains information about a roaming call
(a roaming call occurs when a customer is using a network
operator other than his own, e.g when travelling in another
country). In this case, the record is forwarded to a formatter,
and then to a billing system for roaming calls. If the filter
function evaluates to false, the record is sent to a formatter
and billing system for non-roaming calls. The billing sys-
tems are represented as PPS nodes.

The record format used by the billing systems differs
from the record format produced by the MSCs. This is why
the CDRs coming out of the last filter have to be translated
into the record format used by the billing system before they
can be sent from the gateway system to the billing systems.

Telecommunication Switching Centers (NE)

Billing Systems (PPS)

Billing Gateway
System

Raw Billing Information

Filtered and Translated
Billing Information

User
Interface

Billing Systems (PPS)

Paper I

Sofware Design Conflicts 35

The graph shown in figure 2 is only one example of how
billing applications can be configured. The system can han-
dle a large number of combinations of network elements,
filters, formatters and post processing systems.

2.2. Implementation

Figure 3 shows the major threads for the application
shown in figure 2. In order not to complicate the figure,
some threads which monitor disk and memory usage etc.
have been left out.

When there is no flow of data through the gateway, the
system contains a number of static threads. When there is a
flow of information going through the system, some addi-
tional threads are created dynamically.

When a network element wants to send a billing file to
the gateway it starts by sending a connect message. This
message is handled by the Network Interface Handler
thread. This thread checks if the message is valid and deter-
mines the identity of the requesting network element. If the
message is valid, a data collection thread is created. This
thread reads the file from the network element and stores it
on disk. When the complete file has been stored the data
collection thread notifies the thread that shall process the
data, and then the data collection thread terminates.

The data processing, i.e. the part of BGw that does the
actual filtering and formatting, is implemented in a different
way. When a configuration is activated, BGw creates one
data processing thread for each NE node within the config-
uration (see figure 3). Every thread is bound to a certain NE,

i.e a data processing thread can only process files which
have been collected by the corresponding NE.

For the application in figure 2 each file of billing infor-
mation from the network elements may generate a transmis-
sion of either zero, one or two files of billing information to
the post processing systems. If all CDRs are filtered out as
unbillable, no file is generated by the data processing
thread. If all billable CDRs are either roaming or non-roam-
ing, one file is generated for the billing system for roaming
or non-roaming calls. If the MSC file contains billable
CDRs for both roaming and non-roaming calls, one file is
generated for each of the two billing systems. The files gen-
erated by the data processing threads are put into an out-
buffer. When a file has been generated, the data processing
thread notifies the Out Buffer Handler thread. The data pro-
cessing thread then starts to process the next file in its In
Buffer. If the In Buffer is empty, the thread waits until the
next files has been collected.

The Out Buffer Handler is notified that a new file has
been put into its buffer and a data distribution thread is cre-
ated. This thread sends the file to the corresponding post
processing system. The data distribution thread terminates
when the file has been transmitted.

2.3. Performance

Billing Gateway versions 1 and 2 have been evaluated,
using a Sun Sparc Center 2000 and a Sun Enterprise 4000
with eight processors [10]. These evaluations showed that a
good speedup was achieved when the first processors were

Figure 3. The thread structure of Billing Gateway.

Buffer

Buffer

Data
processing

Data
distribution

Data
collection

In

Out

Network
Element

Billing Gateway System

Data
collection

Network
Element

Data
processing

Post
Processing

System

Network
Interface
Handler

Out
Buffer

Handler

Static Thread Dynamic ThreadData Flow

User
Interface
Handler

MSC - New York

MSC - Boston MSC - Boston

MSC - New York
NonRoaming

Roaming

Buffer
In

Data
distribution

Post
Processing

System

Software Design Conflicts

36 Software Design Conflicts

added. When more processors were added, the speedup
curve started to fall off. The speedup curves for BGw 1 and
BGw 2 can be seen in figure 4. The configuration is the
same as in figure 2 with the exception that there are eight
network elements (MSCs) instead of two.

BGw 3 is the latest version of the Billing Gateway. This
version has some new features. The most significant one is
a new language which makes is possible to define more
complex filters and formatters. The new language is of “C”
style with sub-functions and local variables. The new lan-
guage makes it easier to adapt BGw to new environments
and configurations. However, the speedup of BGw 3 was
extremely poor (see figure 4).

Figure 4. The speedup of the 3 BGw releases.

Previous investigations [3] have shown that dynamic
memory can cause performance problems for multithreaded
applications executing on multiprocessors. To find out if the
dynamic memory caused the performance problem in BGw
3, an additional test was made.

One of the new features in BGw 3 which uses dynamic
memory very frequently is the run-time interpreter of the
filter- and formatter-language. The implementation of the
language interpreter uses memory from the heap to store the
local variables. The design of the application is made in
such a way that at least one sub-function call was done when
a CDR was processed by a filter or a formatter. This design
led to a very intensive use of the heap, even for small con-
figurations.

Another feature which uses dynamic memory frequently
is the CDR decoder. More exactly, the decoding of CDRs
containing dynamic structures of information. The imple-
mentation of the decoding algorithm is (more or less) the
same in BGw 1, 2 and 3.

In order to test if dynamic memory management caused
the speedup problems, the problematic CDRs were re-
moved from the test files. Also, the filters and formatters
used in the test was redefined in such a way that the number

of sub-function calls and the use of local variables was min-
imized. The speedup of the adapted configuration and the
new work-load was almost linear, i.e. almost optimal. Con-
sequently, dynamic memory management caused most of
the speedup problems in BGw 3.

In the next section we will discuss why dynamic memory
management causes such large performance problems.

3. Dynamic memory management

Some features within the C++ language, such as dynam-
ic binding [11] make it possible to implement a more main-
tainable software design. This type of design often use
dynamic memory to become as general as possible. Reuse
issues, such as class libraries and object oriented frame-
works [9], advocate a general design and implementation,
often resulting in very frequent allocation and deallocation
of dynamic memory.

In C++, dynamic memory is allocated via the operator
new. The operator returns a pointer to an allocated memory
area The memory is then deallocated by the operator delete.
Most compilers simply map these operators directly to the
malloc() and free() functions of the standard C library. Con-
sequently, C++ applications which have been developed to
be general and reusable, use the malloc() and the free() func-
tions very frequently. Figure 5 shows examples of memory
management in C and C++ respectively.

In a multithreaded application, all threads use the same
memory [8][13]. This means that all threads use the same
heap for dynamic memory allocations. Therefore, the allo-
cation- and deallocation-functions should be reentrant. Oth-
erwise, they have to be protected against simultaneous
usage. The C library functions malloc() and free() are usual-
ly not reentrant and must therefore be protected. In the So-
laris implementation the heap is protected by a global
mutex. The mutex is locked on entrance and unlock before
returning, making sure that only one allocation or dealloca-
tion can be performed at the same time.

A major problem for a multithreaded application running
on a multiprocessor, is that only one thread can allocate or
deallocation memory at the same time. According to Am-
dahl’s Law, no application can run faster than the total exe-
cution time of its sequential parts. For applications where
dynamic memory is allocated and deallocated frequently,
the dynamic memory management significantly decreases
the speedup.

However, even if an application spends all its time allo-
cating and deallocating memory, i.e in malloc() and free(),
the speedup should never be less than one, which was the
case for BGw 3 (see figure 4). Consequently, there must be
some additional explanation.

1 2 4 8
Number of CPU:s

1

3

2

Speedup 4

BGw 1

BGw 2

BGw 3

Paper I

Sofware Design Conflicts 37

Figure 5. Data distribution in C and C++ respec-
tively.

To lock and unlock a free mutex is fast in Solaris. On a
single-processor, only one thread can execute at the same
time. It is, therefore, rare that a thread tries to lock the heap
mutex while another thread is holding it.

On a multiprocessor, several threads can execute at the
same time. It is, therefore, more likely that two threads want
to allocate or deallocate dynamic memory at the same time.
In that case, one of the threads will fail to lock the mutex
which protects the heap. In these cases, a queue of blocked
threads is created. When the global mutex is unlocked, all
the blocked threads in the queue try to complete their locks.
It is common that an allocation is followed by a deallocation
or a new allocation, i.e the thread which unlocks the mutex
is often the one which succeeds in locking it again.

The many lock attempts generated produce large system
overhead. The time in system mode increases and the time
in user mode decreases when the number of failed locks in-
creases. This can seen by using the Unix command time.

The system overhead produced when locking and un-
locking the global mutex protecting heap, is one reason for
speedup figures less than one (see figure 4). Another reason
is false memory sharing.

Cache memories consist of a number of blocks (cache
lines). The size of the cache line is system dependent. Sun
computers have a cache line size on 16-64 bytes [1]. Sun
multiprocessors have one cache for each CPU. It is possible
that a number of threads have allocated variables which are
stored in the same cache line. If these threads execute on
different CPUs, false memory sharing will appear. When
one thread changes its variable, the other copies of the cache
line are invalidated. When the copies are invalidated, the
other threads which are accessing data in the same cache
line have to update the caches on their CPUs. The overhead
costs of constantly updating the caches can be large.

The Solaris dynamic memory implementation has an
alignment of 16 bytes and a minimum allocation size of 16
bytes. If the multiprocessor uses caches with a cache line
size of 64 bytes (Enterprise 4000), up to 4 CPUs can share
the same cache line (16 bytes x 4 is 64 bytes).

By overloading the malloc() function in libc (se figure 6),
we were able to monitor the physical placement of the allo-
cated memory. The malloc() function was overloaded with
a new function which called the original malloc(), stored the
address value returned from it and finally evaluated the pos-
sibility of false memory sharing. An allocation which
shared a cache line with a memory area of another thread
was identified as a false memory sharing candidate. Tests
on Billing Gateway show that 50% of all dynamic memory
allocations are such candidates.

char[] char[] char[] char[] char[] char[]

engine
type

Wheel
type

Chassis
type

Wheel
type

Wheel
type

Wheel
type

C-struct Car

void foo() {
struct Car aCar;

Heap allocations: 0
Stack allocations: 1

void foo() {
aCar = malloc(sizeof(Car));

Heap allocations: 1
Stack allocations: 0

The C programer makes a “struct”, in which all the in-
formation about the four wheels, the engine and the chas-
sis are stored.
If the car-struct is defined as a local variable, no heap al-
location is made. Even if the programer chooses to make
a global car, i.e uses the heap, only one heap allocation
is necessary.

Car

Chassis

Wheel

WheelsEngine

String

Wheel

WheelWheel

String String String String String

char* char* char* char* char* char*

C++-Class Car

The C++ programmer often chooses to define a number
of sub-objects (this technique improves the reusability).
These sub-objects are combined into a car. The program-
er may also use a class library to handle the names of
items, i.e the String object in the figure above. In the con-
structor of the car object, four wheels, one engine and
one chassis are created via the operator new.
Even if the car object is defined as a local variable, at
least 19 heap allocations are needed. One for each car
item and one for each item name. Only the first object, the
car object, use stack memory.

void foo() {
Car aCar;

Heap allocations: 19
Stack allocations: 1

void foo() {
aCar = new Car();

Heap allocations: 20
Stack allocations: 0

Software Design Conflicts

38 Software Design Conflicts

4. A parallel heap implementation - ptmalloc

Two main problems with the standard malloc() and free()
functions are that they can not be executed in parallel and
the large overhead caused by the global mutex protecting
the heap. These two problems would be solved if malloc()
and free() were re-written in a way which made it possible
for threads to allocate and deallocate memory in parallel.

It is rather simple to replace the standard heap implemen-
tation in existing applications. The heap can either be insert-
ed when the application is linked or the heap library can be
preloaded before the application is started, using dynamic
libraries [12] (see figure 6).

Figure 6. Overload the standard heap imple-
mentation.

A straight forward solution to implement a parallel heap
is to have one heap area for each thread within an applica-
tion. However, each heap area must be protected with a mu-
tex even in this case. This is to make sure that no other
thread currently uses it for deallocation. However, the mu-
tex protection would probably not cause any major perfor-
mance problems. Allocating memory from one thread and
then deallocating it from another is not that common.

Many applications use a very large number of threads,
and having a very large number of heap areas results in bad
memory utilization. Most applications also create and de-
lete threads dynamically. To create a new heap area each
time a thread is created would generate large overhead for
such applications.

A better idea is to have one heap area for each simulta-
neous allocation, i.e one heap area for each processor. The
number of processors is low and static. However, to identify
the processor currently used, is very costly. In Solaris, this
operation requires a system call.

Most operating systems try to schedule a thread on the
same processor as much as possible. Consequently, when a
thread allocates dynamic memory, it is often executing on
the same processor as it was when it made the previous al-
location To use the same heap area as the last time can
therefore be a good approximation.

Figure 7. One heap for each simultaneous allo-
cation.

If one heap area is occupied, e.g if a thread is scheduled
up on a new processor, the thread will try to find a new heap
area using trylock (se figure 7). With the trylock function a
thread can test the status of a mutex without blocking the
thread. A trylock locks the mutex if it is free, otherwise it re-
turns an error status. The heap areas can in this way be test-
ed one by one until a free area is found. The new area found
will be used for further allocations, i.e. the thread will start
the next allocation by looking at this heap area.

If no free heap area is found, a new heap area is created
(see figure 7). In this way the number of heap areas will be
dynamically adjusted to the number of processors.

The implementation discussed so far is basically the im-
plementation of ptmalloc. In order to test how often a thread
has to choose a new heap area, the source code of ptmalloc
was modified. An alarm was raised every time a thread
changed heap area. Tests made on BGw showed that the
number of times a thread had to change heap area was very
limited.

ptmalloc has the same interface as the C library functions
and provides the same functionality. ptmalloc can therefore

BGw

C++-library(libC)

new malloc()

Kernel

C-library

CPU 1

CPU 2

CPU 3

Thread Queue

Heap area 1

Heap area 2

Heap area 3

A

B

C

DEF

An application has 6 threads and executes on a mul-
tiprocessor with 3 processors. On CPU 1, thread A is
currently allocating memory from heap area 1.
When thread B, which is running on CPU 2, wants to
allocate memory it first tests heap area 1. This heap
is locked. Thread B then tests heap area 2. This heap
is free and thread B can therefore lock and use this
area.
Thread C is scheduled on CPU 3 and tries to allocate
memory. Thread C tests heap areas 1 and 2, which
are both locked. Thread C therefore creates a new
heap (heap area 3), which is locked and used.

Paper I

Sofware Design Conflicts 39

replace the standard implementation without changing the
source code of the application.

ptmalloc also reduces the risk of having threads which
share the same cache block. The reason for this is that a cer-
tain heap area is often shared by a small number of threads
and a thread can often use the same heap area for long peri-
ods of time. Consequently, ptmalloc reduces the risk of false
sharing. However, the problem with false memory sharing
is still not completely solved, e.g ptmalloc has a static mem-
ory alignment of 8 byte.

Figure 8. The speed-up of BGw using ptmalloc.

5. Redesign of BGw

There are, at least, three different aspects of dynamic
memory management which affects performance negative-
ly. First, the sequential nature of most implementations
causes a serialization bottleneck. This problem was success-
fully removed by using a parallel heap implementation like
ptmalloc. The second problem is false memory sharing due
to the fact that variables from different threads, executing
on different processors, often share the same cache line.
This problem was reduced by using ptmalloc. The third
problem is that it is relatively costly to allocate and deallo-
cate memory from the heap. This problem affects not only
the speedup, but also the performance on a single-processor
computer. Replacing the standard heap implementation
with ptmalloc did not affect the performance on a single-
processor computer.

In order to improve also the single-processor perfor-
mance we introduced memory pools for commonly used ob-
ject types. Instead of deallocating an object, the object is

returned to the pool and when a new object of the same type
is needed it can be reclaimed from the pool. These pools are
managed by the application code, thus reducing the number
of heap allocations and deallocations. We also replaced a
number of heap variables with variables on the stack. After
doing these optimizations, the speedup was more or less the
same when using the standard heap implementation com-
pared to ptmalloc, i.e. the heap was no longer a serialization
bottleneck.

The simple stack functionality offers faster allocations
and deallocation of memory compared to the more complex
heap. The stack memory is also thread specific, i.e each
thread has its own stack. The allocations and deallocations
can therefore be performed in parallel. Another benefit of
having different memory areas for each thread is that the
space locality is better, thus reducing false memory sharing.

Applications often need temporary memory to perform
an operation. A bad habit is to use the operator new, even if
the size is constant.

readAndPrint(int fd) {
unsigned char* buff = new unsigned char[16];
read(fd, buff, 16);
printf("%s",buff);
delete buff;}

An alternative implementation is to use memory from
the stack.

readAndPrint(int fd) {
char buff [16];
read(fd, buff, 16);
printf("%s",buff);}

The typical situation were dynamic memory is used are
when the size of the allocated memory has to be decided in
run-time. In this cases the C library function, alloca() can be
used instead of the operator new. The function allocates a
dynamic number of bytes from the stack.

The designers used approximately one week to replace a
number of heap allocations with stack allocations and im-
plement memory pools for commonly used objects (BGw 3
consists of more than 100,000 lines of C++ code). The rede-
sign improved the speedup significantly (see figure 9). Fig-
ure 9 also shows that the design changes did not only
improve the speedup. They also improve the performance
of the application when it executes on a single-processor
with a factor of eight. Better single-processor performance
is one of the benefits of redesigning the application code
compared to using a parallel heap implementation.

1 2 4 8
Number of CPU:s

1

3

2

Speedup

4

6

5

7

BGw 3

BGw 3 with
ptmalloc

BGw 3 after
redesign

Software Design Conflicts

40 Software Design Conflicts

Figure 9. The new throughput of BGw.

6. Conclusions

Object oriented design, reusability and maintainability
aspects all encourage the use of dynamic memory. The Bill-
ing Gateway (BGw 3) was developed using object oriented
design, and reusability and maintainability were important
aspects.

This study shows that for BGw 3, and similar multi-
threaded object oriented applications, dynamic memory can
cause severe performance problems when using a multipro-
cessor. In the first version of BGw 3, the sequential imple-
mentation of dynamic memory allocation/deallocation and
false memory sharing resulted in a performance degradation
when using more than one processor.

Using a parallel dynamic memory handler, such as pt-
malloc, is the easiest solution to the performance problem.
The speedup improvement when using ptmalloc was dra-
matic. In fact, the speedup was almost linear, i.e. almost op-
timal. Consequently, the performance problems in BGw 3
were caused entirely by dynamic memory management, i.e.
there were no other overhead problems or serialization bot-
tlenecks. We expect that most multiprocessor manufactures
will offer implementations similar to ptmalloc in the future.
However, ptmalloc is not a commercial product, and the use
of non-commercial products is often restricted at profes-
sional software companies.

An alternative solution to the dynamic memory perfor-
mance problem, is to modify the application code in such a
way that the number of heap allocations/deallocations is re-
duced. We were able to reduce the number of heap alloca-
tions/deallocations by introducing memory pools for

commonly used object types and by replacing some heap
variables with stack variables. It turned out that this ap-
proach did not only result in almost linear speedup; the per-
formance using a single-processor computer was also
improved by a factor of eight (see figure 9). The redesign re-
duced the number of heap allocations/deallocations signifi-
cantly, thus making it possible to use the standard heap
implementation without suffering from any serialization
problems. The time for redesigning BGw in this way was
one week. Consequently, the performance improvement
was extremely good considering the limited effort.

Object oriented techniques make it possible to build
large and complex systems, which are reusable and main-
tainable. However, if not carefully designed, object oriented
programs may run into serious performance problems when
using a multiprocessor. The poor performance due to dy-
namic memory management is not isolated to BGw. A num-
ber of related products have similar problems.

References

[1] Adrian Cockcroft, "SUN Performance and Tuning", Prentice

Hall, 1995.

[2] M. Dubois, J. Skeppstedt, and P. Stenström, "Essential Misses

and Data Traffic in Coherence Protocols", J. Parallel and Distrib-

uted Computing 29(2):108-125, October 1995.

[3] R. Ford, D. Snelling and A. Dickinson, "Dynamic Memory

Control in a Parallel Implementation of an Operational Weather

Forecast Model, in Proceedings of the 7:th SIAM Conference on

parallel processing for scientific computing, 1995.

[4] http://www.microquill.com

[5] http://www.rougewave.com

[6] http://www.cs.colorado.edu/~zorn/Malloc.html

[7] Nick Lethaby and Ken Black, “Memory Management Strate-

gies for C++”, Embedded Systems Programming, San Francisco,

June, 1993.

[8] B. Lewis, “Threads Primer”, Prentice Hall, 1996.

[9] T. Lewis, L. Rosenstein, W. Pree, A. Weinand, E. Gamma, P.

Calder, G. Anderst, J. Vlissides, and K. Schmucker, "Object Ori-

ented Application Frameworks", Manning Publication Co, 1995.

[10] L. Lundberg and D. Häggander, "Multiprocessor Perfor-

mance Evaluation of Billing Gateway Systems for Telecommuni-

cation Applications”, in Proceedings of the ISCA 9th International

Conference in Industry and Engineering, December, Orlando

1996.

[11] B. Stroustrup, “The C++ Programming Language”, Addison-

Wesley, 1986.

[12] Microsystems, Inc., “Linker And Libraries”, 1994.

[13] Soft, “Solaris Multithreaded Programming Guide”, Prentice

Hall, 1995.

1 2 4 8
Number

100

300

200

400

600

500

of CPU:s

Throughputkilobyte/s

BGw 3

BGw 3 after
redesign

BGw 3 with
ptmalloc

Paper II

Sofware Design Conflicts 41

Paper II

Memory Allocation Prevented
Telecommunication Application to be

Parallelized for Better Database Utilization

Daniel Häggander and Lars Lundberg
6th International Australasian Conference on

Parallel and Real-Time Systems
Melbourne, Australia

November 1999

XII

Software Design Conflicts

42 Sofware Design Conflicts

Paper II

Sofware Design Conflicts 43

Memory Allocation Prevented Server Application to be
Parallelized for Better Database Utilization

Daniel Häggander and Lars Lundberg

Department of Software Engineering and Computer Science
University of Karlskrona/Ronneby,

S-372 25 Ronneby, Sweden
 Daniel.Haggander@ipd.hk-r.se, Lars.Lundberg@ipd.hk-r.se

Abstract. The rapid growth in the telecommunication market increases the
performance requirements on applications supporting telecommunication
networks. Many of these applications are based on commercial Relation
DataBase Management Systems (RDBMS), a component which tends to
become a bottleneck. Therefore, it is important to fully use the capacity of the
database. A database server can usually not be fully utilized using a single
client, especially not if the database server is executed on a Symmetric
MultiProcessor (SMP). Multithreading makes it possible for single process
applications to have multiple database clients. However, it is not trivial to in-
crease the performance using the multithreading technique, bottlenecks can
easily limit the performance significantly. In this study we have evaluated a
telecommunication application which has been multithreaded for a better
utilization of its parallel RDBMS. Our results show that multithreading can be
an effective way to increase the performance of single process applications.
However, this requires dynamic memory management optimized for
multiprocessors.

1 Introduction

Fraud is one of the cellular operator’s biggest problems. In some cases, operators have
lost nearly 40% of their revenues. According to the Cellular Telecommunication
Industry Association (CTIA), the global loss of revenue due to fraud in 1996
exceeded one billion USD, excluding costs of anti-fraud investments [7].

The Fraud Control Center (FCC) is an application that identifies and stops fraud
activities in cellular networks. The application is a commercial product and has been
developed by the Ericsson telecommunication company. FCC is written in C++ [10]
(approximately 10,000 lines of code), using object-oriented design and it is based on a
third party parallel RDBMS [1]. Since, the RDBMS stands for an essential part of the
application’s functionality, it is reasonable to believe that its performance has a great
impact on the total performance of the FCC.

In order to fully utilize the capacity of a database server, especially a parallel one,
the workload has to consist of a sufficient number of parallel database requests. For
most applications this is no problem since traditional database systems often have
several independent database client processes generating requests (see left part of
Figure 1). However, some applications only have a single database client. A reason

Software Design Conflicts

44 Software Design Conflicts

for this may be that the database client itself acts as a server for other systems. Shared
resources make it preferable to build server applications within a single process. The
result is a system with only one database client (see right part of Figure 1).

Fig. 1. Two RDBMS architectures.

In cases like this (see right part of Figure 1), multithreading can be an alternative to
obtain the number of parallel requests needed. Multithreading permits multiple
database clients within the same process. However, multithreaded programming on
SMP:s is not trivial. Earlier studies have shown that congestion within dynamic
memory can easily limit the performance significantly, especially if the application is
written in C++ using object oriented design [2, 3, 6]. In this study we are going to
quantify the performance gain of using multiple database clients and also evaluate the
performance of FCC on an 8-way SMP.

The rest of the paper is structured in the following way. Section 2 describes the
functionality and design of the FCC. In Section 3 the method used in this study is
described, and the results are presented in Section 4. Section 5 and Section 6
discusses and concludes the paper, respectively.

2 Fraud Control Center (FCC)

Fig. 2. The FCC system. Fig. 3. The five modules of FCC.

Paper II

Sofware Design Conflicts 45

2.1 System Overview

When operators introduce cellular telephony into an area, their primary concern is to
establish capacity, coverage and signing up customers. However, as their network ma-
tures financial issues become more important, e.g. lost revenues due to fraud. The
type of fraud varies from subscriber fraud to cloning fraud. Subscriber background
and credit history check is the two main solutions to prevent subscriber fraud.

In cloning fraud the caller uses a false or stolen subscriber identity in order to make
free calls or to be anonymous. FCC is a part of an anti-fraud system that combats
cloning fraud with real-time analysis of network traffic [6].

Figure 2 shows an overview of the FCC system. Software in the switching network
centers provides real-time surveillance of suspicious activities, e.g. irregular events
associated with a call. The idea is to identify potential fraud calls and have them
terminated. However, one single indication is not enough for call termination. FCC
allows the cellular operator to decide certain criteria that have to be fulfilled before a
call is terminated, e.g. the number of indications that has to be detected within a
certain time period. An indication of fraud in the switching network is called an event
in the rest of this paper.

The events are continuously stored in files in the cellular network elements (NE:s).
With certain time intervals or when the files contain a certain number of events these
files are sent to the FCC. The size of an event is about 250 bytes and maximum
number of events in a file is 20-30. In FCC, the events are stored and matched against
pre-defined rules. If an event triggers a rule, a message is sent to the switching
network and the call is terminated.

FCC consists of five software modules, all executing on the same SMP (see Figure
3). The TMOS module is an Ericsson propriety platform that handles the interaction
with the switching network (3a), i.e. collecting event files and sending messages
about call terminations. The collected events are passed on to the Main module (3b) in
FCC. In the Main module the event files are parsed and divided into separate events.
The events are then stored and checked against the pre-defined rules using module
three, the database (3c). If an event triggers a rule, the action module is notified (3d).
This module is responsible for executing the action associated with a rule, e.g. a call
termination via the TMOS module (3e). The last module is the graphical user
interface of the FCC (3f). The rest of this paper will focus on the Main and Database
modules.

2.2 Implementation

A commercial RDBMS (Sybase [8]) that allows SMP execution was used in the FCC.
It also reduces the development and maintenance cost compared to using ordinary
files. In most database applications, a database server is serving a large number of
clients via a network. Therefore, the performance of most RDBMS has been heavily
optimized for processing a large number of requests in parallel. Database servers
running on SMP:s are usually divided into a number of processes. In Sybase these
processes are called engines. In order to obtain maximum performance, each engine
should handle a number of parallel requests. Having parallel database requests is
therefore very important for database servers running on SMP:s.

Software Design Conflicts

46 Software Design Conflicts

If the database server is handling a large number of clients, there will automatically
be a large number of parallel requests. However, in the telecommunication domain,
we often have a situation where the database server only receives requests from one
client. FCC is one such application. Although there are some additional clients
performing maintenance and supervision tasks, the main part of the database requests
are made by a large single module (the Main module), executing in a single UNIX
process.

Fig. 4. The thread architecture of FCC

In order to improve performance, FCC has implemented parallel execution, using
Solaris threads. The parallel execution makes it possible to obtain a behavior similar
to a system with multiple clients, i.e. clients are modeled by threads. The parallel
execution is also intended to scale-up other parts of the application which are not
directly related to the RDBMS.

The processing within the Main module is based on threads. Figure 4 shows how
the threads are interacting. The events are distributed to the Main module packed in
files. A listener thread receives the event file (4a) and creates a parser thread (4b).
After it has created the parser thread, the listener thread is ready to receive the next
file. The parser threads extract the events from the file and insert the events into an
event queue (4c), where they are waiting for further processing. When all events in a
file have been extracted, each parser thread terminates. The number of simultaneous
parser threads is dynamic. However, FCC makes it possible to define an upper limit.

The parser in FCC is designed using object-oriented techniques in a way that
makes it highly adaptable. It is very important for FCC to quickly support new types
of events since a new network release often introduces new event types or changes the
format of old event types. However, the adaptable and object-oriented design results
in frequent use of dynamic memory.

The Main module has a configurable number of connections towards the database
module (4d), i.e. the database server. A dbclient thread handles each connection. A
dbclient thread handles one event at a time by taking the first event from the event
queue (4e) and then processing it. The interaction with the database is made with SQL
commands [8] via a C-API provided by the database vendor. Each SQL command is
constructed before it is sent to the database module. Since the final size of a SQL
command is unknown at compile time, dynamic memory has to be used for its
construction. The dbclient thread is also responsible for initiating resulting actions (4f,
4g) before it processes the next event in the event queue.

Paper II

Sofware Design Conflicts 47

In order to achieve high performance a database expert from Sybase was consulted.
The actions taken in order to improve the performance at that point were:

� A separate disk for the transaction log.
� Index tables on a separate disk for the six most accessed tables.
� Partition of the two most accessed tables.
� Small and static tables were bound to cache.

These optimizations are more or less standard (for more information about Sybase
optimizations, see [9]). Database optimization techniques are not a subject for this
study.

Two of FCC’s five modules are more CPU consuming than the other. These are the
Database and the Main modules. Neither of them is directly bound to any particular
processor. However, the engines in Sybase are designed in a way that prevents an
engine from being scheduled off a processor and an engine allocates a processor for
some period of time even though there are no immediate request waiting to be
processed. As a result, each engine more or less allocates a processor. The Main
module mainly uses the remaining processors.

3 Method

The intention with this study was to quantify the gain of using multiple database
clients and to evaluate the performance of FCC on an 8-way SMP. In order to do this,
FCC was moved to an experiment environment together with a special designed
workload simulator. Within this environment we evaluated the optimal number of
clients for one database engine (processor). Using this result, we evaluated and
compared two FCC versions on an 8-way SMP, a multi process and multithreaded
version, respectively. The evaluation showed that the multithreaded version had a
significantly lower throughput compared the multi process version.

The evaluation also showed that FCC had its maximum throughput using six
database engines. We therefore explicitly quantified the optimal number of clients for
six database engines, for the multi process version as well as for the multithreaded
version. The measurements showed that the multithreaded version had a lower
throughput for any number of threads. Detailed measurements on the multithreaded
clients, i.e. measurements on a multithreaded client in which we had removed all
database calls, showed that the low throughput was a result of a negative scale-up
within the client. Consequently, the multithreaded client was a serious sequential
bottleneck.

We had reasons to suspect that dynamic memory management caused the
bottleneck, since earlier evaluations have identified dynamic memory as a potential
bottleneck for applications written in object oriented C++ [10]. An additional FCC
version, using a dynamic memory management optimized with ptmalloc [11], was
developed, evaluated and compared with the results from the previous evaluation.

Software Design Conflicts

48 Software Design Conflicts

3.1 The experiment environment

The hardware used for the evaluations was a Sun Enterprise 4000 server with 8
processors. The server had two disk packages attached via separate disk controllers.
One disk package was serving the operating system (Solaris), and the other package
was used directly by the Sybase database. The package used by the database
contained 12 disks. All disks were partitioned and configured in the same way as the
real FCC disks. The database (Sybase 11.5) was install according to the FCC
installation description.

The TMOS, Action and the User interface modules were manually removed before
FCC was installed in the experimental environment.

FCC has an overload mechanism. When FCC no longer is capable of processing all
incoming events, it starts dropping events and notifies the loss. The maximum
capacity of FCC was measured by increasing the number of events sent to FCC until
the overload protection was activated.

One of the intentions with the experiment was to leave the database installation and
configuration intact. However, disk tracing during the initial phase of the performance
evaluation indicated a heavily write activity on the disk handling the database
transactions. This disk became a direct bottleneck in the system (see Figure 8). One
simple solution to this kind of problem is to use a disk package with “fast write”, i.e. a
write cache powered by battery for availability reason. However, disk packages of
this type are very expansive. In our experiment we instead used the buffering within
Solaris file system to simulate the characteristic of a “fast write” disk package. Apart
from this, no changes within the installation or the configuration of the database were
made.

It would be extremely difficult to use a real telecommunication network in the
experiment. The solution was to develop an event generator that simulated a
switching network. The simulator also made it possible to control the workload in
detail. The simulator replaced the switching network and the TMOS module, i.e. the
generator was connected directly to the Main module via the TCP/IP interface
between the TMOS and the Main module (see Figure 5). The same simulator was
used in the industrial Ericsson project.

Fig. 5. The experiment environment. Fig 6. Function for workload generation.

It is common practice in the telecommunication community to use simulated
workloads based on an exponential distribution function. The function used for event

F(t) = 1 – e -Ot

t = ln (x) / O
x = random [0..1]

Paper II

Sofware Design Conflicts 49

generation can be seen in Figure 6. The construction of the simulator made it possible
to control the number of events generated. Lambda (O) equals the number of events
generated per second in average and t equals the random time between two events.

Other parameters to the simulator were subscriber id range, maximum number of
events in a file, number of switches simulated, the time between two file transfers and
the number of different events types generated.

The following setting was used during the experiment:

� Subscriber identification: “0000000001-0000099999” (randomized)
� The maximum number of events in one file: 20
� The number of switches simulated: 5
� The file transfer interval in seconds: 5
� Number of different events types generated: 10

Ericsson considers these settings to be as a good representation of a medium size
network.

In the test case when the Main module was divided into processes, each process
was served by its own simulator instance. The total processing capacity was computed
by summarizing the workload of the simulators. Finally, all events were tested against
the three rules described below:

� Two or more indications from the same calling subscriber id in one minute.
� Two or more indications from the same calling subscriber id in one minute + a

match of called subscriber.
� Thousand or more indications from the same subscriber id in one hour.

3.2 Evaluation on an 8-way SMP

The hypothesis is that an introduction of multiple clients will increase the database
utilization, i.e. the performance of the application, compared to using a single client.
For a single engine database, i.e. a database server that only benefits from the power
of one processor, the potential increase in performance is limited. However, multiple
clients still make it possible to effectively hide disk access time and latency within
protocols used for the clients to server communication. The FCC throughput was
measured when using up to 8 database clients. For results see Figure 7.

We had now quantified the optimal number of database clients per database engine
(processor). The next step was to find the optimal number of database engines for the
FCC when it is executed on an 8-way SMP. The maximum throughput was measured
for both a multi process and a multithreaded FCC version. Measurements were made
for one to 8 engines (see Figure 8).

The evaluation showed that the multithreaded version had significantly lower
throughput than the multi process version. We thought that a possible reason for this
could be that the multithreaded version has its peak performance for a different
number of clients, i.e. the optimal number of clients may not be the same for the two
versions. We therefore explicitly quantified the optimal number of clients when using

Software Design Conflicts

50 Software Design Conflicts

6 database engines. The same measurements were made for both versions (see Figure
8). The results showed that the multithreaded version had a lower throughput for any
number of clients. In order to examine the reason, we measured the throughput of the
multithreaded client only. We did this by removing all database calls made by the
client. This showed that the multithreaded client had a negative scale-up when
increasing the number of threads (database clients). Consequently, the multithreaded
client was a serious sequential bottleneck.

3.3 Optimizing the dynamic memory management

We had now located the bottleneck to the multithreaded client. We also know that
earlier experiments have indicated that object-oriented techniques dramatically
increase the number of dynamic memory allocations for an application [3]. Object-
oriented design primary concerns the maintainability and the reusability aspects of a
product. In an object-oriented design, the application is modeled as a large number of
objects. System functionality and data are then distributed over these objects. The
general opinion in the software community is that small and well-specified objects
result in a maintainable and reusable design [4]. More complex objects are obtained
by combining a number of small objects. For example, a car can be represented as a
number of wheel objects, a car-engine object and a chassis object. A car-engine-
object uses a string object for its name representation and so on. Requirements on
maintainability has forced the designers, not only to use many and small object, but
also to build applications where objects are created at run-time, e.g. applications
where the number of wheels on a car can be decided after the code has been complied.
Since, each run-time creation of an object requires at least one dynamic memory
allocation, the number of memory allocations, generated in an object-oriented
application, can be enormous (for more information about object-orientation and
dynamic memory management, see [3]).

Dynamic memory, in C++, is allocated using the operator new which is an
encapsulation of the c-library function malloc(). Most implementations of malloc() do
not support parallel entrance, which makes memory allocations very costly on a SMP.
However, even more costly is the system overhead generated by the contention for
entrance.

Our hypothesis was that contention in the dynamic memory management was a
bottleneck in the multithreaded FCC database client (i.e. the Main module). This
hypothesis was tested doing measurements on an optimized FCC versions. We used
ptmalloc [11] that replaced the standard memory allocation routines. Ptmalloc is a
malloc() implementation which can perform several allocations in parallel. The
implementation is a version of Doug Lea's malloc implementation that was adapted
for multiple threads by Wolfram Gloger, while trying to avoid lock contention as
much as possible. Since ptmalloc has the same interface as the regular malloc(), this
optimization does not require re-compilation of the source code. This FCC version
was developed, evaluated and compared with the earlier results.

Paper II

Sofware Design Conflicts 51

4 Results

The first part of this section presents the results of our measurements (see Figures 7, 8
and 9), while the second part shortly describes some performance related issues which
Ericsson experienced during the real FCC project.

4.1 Throughput measurement

Fig. 7. Multiple clients using a single engine.

Figure 7 shows the increase in performance when using up to 8 database clients on
a single processor database server. The maximum scale-up using a single engine
database server was 1.3 and measured for 3 threads.

Fig. 8. FCC throughput on an 8-way SMP.

Software Design Conflicts

52 Software Design Conflicts

In Figure 8, the number of threads is three per engine and the figure shows the
increase in performance when using up to 8 database server engines on an 8 processor
SMP. The reason for having three threads per engine was that the thread scale-up
diagram indicated three clients to be the optimal number (see Figure 7).
The very first version of FCC did not scale-up sufficiently. The reason for this was
contention due to an un-cached transaction log. The rest of the FCC versions, the
multi process, the multithreaded and the ptmalloc versions, all used a buffered
transaction log (see Section 3.1).

The multi process version has its maximum scale-up (4.3) using six engines. The
lower performance for 7 and 8 engines can be explained in the following way. If the
FCC Main module should be able to generate requests enough to fully load the
database server, two processors have to be used. The maximum performance was
therefore achieved when six processors were used for the database server and two by
the FCC Main module (see Section 2.3).

The multithreaded FCC version has a maximum scale-up of only 2.7 and this
already for four engines. However, the same version with an optimized dynamic
memory management, i.e. the ptmalloc version, shows approximately the same
performance characteristic as the multi process version.

Fig. 9. Multiple clients using six engines.

Figure 9 shows how the multi process versions scales-up in a better manner than
the multithreaded when we are increasing the number of clients. The multi process
version reaches a maximum scale-up of 4.4 using 24 clients (processes), while the
multithreaded version has the maximum scale-up of 3.1, already for 8 clients
(threads). A quit modest scale-up considering a theoretical maximum of six or more.
The third curve in Figure 9 shows the performance of the FCC Main module when the
database server calls have been omitted. The curve shows how the bottleneck within
the dynamic memory management, when using more than five threads, prevents the
clients to generate a sufficient number of database requests. Consequently, the

Paper II

Sofware Design Conflicts 53

maximum throughput of FCC is limited by the multithreaded client and the reason for
this is congestion within the dynamic memory management.

When comparing the multithreaded result when using multiple clients on six
engines (Figure 9) with the results for the total FCC throughput test (Figure 8), the
first test comes up with a somewhat better peak performance. Our intention in the first
test was to quantify the scale-up for multiple clients. Therefore, the parser
functionality in FCC was made sequential, in order not to interfere. This change
obviously had a positive effect on the total FCC performance. We believe the reason
for this is that a sequential parser gives less dynamic memory contention. The fact
that the difference in peak performance between the two tests is much smaller for the
FCC versions with dynamic memory optimizations supports this theory.

4.2 Experiences from the FCC project

The project management had already from the beginning identified performance, in
terms of throughput and response time, to be of great importance. The project group
was assigned the task of building a prototype of the FCC system. The intention was to
collect workload information, in order to specify the database capacity needed. The
prototype indicated that the database had to utilize three engines in order to handle the
expected workload. An additional result of the prototype was that at least five
database clients had to be used for the database access. Otherwise, the database would
not be able to use the SMP efficiently. Although there was a lot of attention to
performance, the first version of the system had serious performance problems (see
UncachedLog, in Figure 8).

The impact of introducing multithreaded programming is large. One of the main
problems is that multithreaded and regular code can not be linked into the same
executable since they use different library definitions. In the case of FCC, it resulted
in a separation of the Main and the TMOS modules. The interaction with TMOS was
normally made via an API. Access via inter-process communication was now
necessary. The designers decided to use a TCP/IP based protocol. The interface
towards the Action module also had to be modified, since the “fork()” function in
multithreaded programs makes a complete copy of the parent process, including all
existing threads [5]. Further on, a new set of “thread safe” libraries had to be ordered
from Sybase, since the ones previously used were of an unsafe type.

Since most software developers were unfamiliar with concurrent programming,
they also lacked experience of documenting concurrent designs. An additional
problem, noticed late, was that it is really hard to test concurrent software. A problem
that consumes “man hours” and decreases the quality of the product.

During the time FCC has been in live operation, two performance problems have
been identified. The first concerns to the deletion of events and the other the
generation of statistical reports.

FFC has a clean up functionality which each night deletes events of a certain age.
The number of events to delete can be large. Sybase usually locks tables on a page
basis. However, the database has a build in congestion protection. When a transaction
holds more than a certain number of pagelocks, in FCC’s case 200, the whole table is
locked. The nightly deletion of events triggered the congestion protection which
resulted in that no more events could be insert into the database until the deletion was

Software Design Conflicts

54 Software Design Conflicts

competed, i.e. the FCC system stalled during the deletion phase. This operation could
take a couple of hours to perform.

In the design phase, none or very little attention had been paid to the performance
of generating statistical reports, e.g. the database design was completely focused an
efficient event flow. This led to poor performance for the report generation. Both of
these problems were relatively easy to solve. However, the process of identifying,
implementing and verifying the solution for an operating product always becomes
expensive.

5 Discussion

One important conclusion from the industrial Ericsson FCC project is that the present
and future performance requirements of this kind of telecommunication systems can
only be meet with multiprocessor systems. At least this is the conclusion made by
Ericsson.

The experience from the industrial project showed that the functional requirements
of FCC and similar applications require some kind of database. In order to reduce the
cost for development and maintenance, a commercial database management system
(often a RDBMS) will, in most cases, be used when developing the database. For the
same reasons, the designers use object-orient design techniques. Consequently, a large
and growing number of telecommunication applications use RDBMS, object-
orientation and SMP:s.

The overall performance of FCC relies to a large extent on its capability to utilize
the processing capacity of the RDBMS. In order to obtain high performance, it is very
important for the server to process a number of database requests in parallel.
Performance evaluations showed that there should be 3-4 clients for each database
server engine (processor). A database server with six engines can obtain 4.4 times the
performance of a one-engine system, if a sufficient number of simultaneous requests
are generated (see Figure 9). Consequently, the performance of the commercial
RDBMS scales up in a reasonable way on an SMP.

One way of obtaining parallel requests is to implement each database client as one
Unix process, and then create a sufficient number of such processes. This is, however,
not possible in all telecommunication applications. The reason for this is that the
process issues the requests to the database sever, i.e. the database client process, is
acting as a server to the systems (switching centers etc.) in the telecommunication
network. In order to provide the server functions to the network elements, the
database client often has to be implemented as one process. Consequently, many
telecommunication applications are single client systems.

In order to obtain high performance in such database applications, the designers
may use multithreading. However, experience from other multithreaded object-
oriented applications shows that dynamic memory management tends to be a
performance bottleneck [3]. This was also the case for FCC. There are two reasons
why FCC has an intensive use of the dynamic memory. The object oriented design
and the dynamic construction of database requests, respectively. By optimizing
dynamic memory management the speedup using 8 processors was increased from 2.7
to 4.4, now bound by the database server. However, before the optimizations of
dynamic memory the bottleneck was in the database client, i.e. the Main module in

Paper II

Sofware Design Conflicts 55

FCC. Consequently, optimizations of the database sever has no effect unless we have
removed the performance bottleneck caused by dynamic memory, e.g. by using a
parallel memory handler such as ptmalloc.

We expect that the problem with dynamic memory management will escalate when
the number of processors, and thus the number of threads increase. Moreover, the
urge to increase the reusability and maintainability of large telecommunication
systems will promote object-oriented design increasing the use of dynamic memory.
Consequently, future systems will need much more efficient implementations of
dynamic memory than the ones provided by the computer and operating system
vendors today.

6 Conclusion

A large and growing number of telecommunication applications use RDBMS, object-
orientation and SMP:s, the FCC is one example. The performance of a commercial
RDBMS scales up in a reasonable way on a SMP (4.3 times on an 8-way SMP), if the
workload consists of a sufficient number of parallel requests. Parallel requests can be
generated using multiple clients. Performance evaluations using a SMP with 8
processors showed that there should be at least 3-4 clients for each database server
engine (processor). However, in some applications there is only one database client
process.

Multithreading can in many cases be used for obtaining the performance benefits
of a multi client database application in applications with only one client process.
However, this study shows that dynamic memory management tends to be a
performance bottleneck, particularly when using object-oriented development
techniques. Although the database module performed most of the work, the limiting
factor in FCC was the multithreaded client (the Main module). Increasing the number
of threads in the Main module reduces the performance of the module unless we use a
dynamic memory handler optimized for SMP:s.

We successfully used ptmalloc for optimizing the dynamic memory management
in FCC. The performance characteristic of the multithreaded client version that used
ptmallloc was very similar to the version with multiple client processes.
Consequently, multithreading is a useful technique for obtaining high and scalable
performance in systems such as FCC, if and only if the dynamic memory handler is
optimized for SMP:s.

References

1. T.Connolly, C. Begg, A. Strachan, "Database Systems", Addison-Wesely, 1996.

2. R. Ford, D. Snelling and A. Dickinson, "Dynamic Memory Control in a Parallel
Implementation of an Operational Weather Forecast Model", in Proceedings of the 7:th
SIAM Conference on parallel processing for scientific computing, 1995.

3. D.Häggander and L. Lundberg, "Dynamic Memory Management in a Multithreaded
Application Executing on a Multiprocessor", in Proceedings of the ICPP 98, 27th
International Conference on Parallel Processing, August, Minneapolis 1998.

Software Design Conflicts

56 Software Design Conflicts

4. C. Larman, "Applying UML and Patterns", Prentice Hall, 1998.

5. B. Lewis, "Threads Primer", Prentice Hall, 1996.

6. L. Lundberg and D. Häggander, "Multiprocessor Performance Evaluation of
BillingGateway Systems for Telecommunication Applications", in Proceedings of the
ISCA 9th International Conference in Industry and Engineering, December, Orlando 1996.

7. C. Lundin, B. Nguyen and B. Ewart, "Fraud management and prevention in Ericsson’s
AMPS/D-AMPS system", Ericsson Review No. 4, 1996.

8. J. Panttaja, M. Panttaja and J. Bowman, "The Sybase SQL Server -Survival Guide", John
Wiley & Sons, 1996.

9. S. Roy and M. Sugiyama, "Sybase Performance Tuning", Prentice Hall, 1996.

10. B. Stroustrup, "The C++ Programming Language", Addison-Wesley, 1986.

11. W. Gloger, "Dynamic memory allocator implementations",
http://www.cs.colorado.edu/~zorn/Malloc.html

Paper III

Sofware Design Conflicts 57

Paper III

Maintainability Myth Causes Performance
Problems in Parallel Applications

Daniel Häggander, PerOlof Bengtsson, Jan Bosch
and Lars Lundberg

3rd International IASTED Conference on Software
Engineering and Applications

Scottsdale, USA
October 1999

XIII

Software Design Conflicts

58 Sofware Design Conflicts

Paper III

Sofware Design Conflicts 59

299-091 -1-

MAINTAINABILITY MYTH CAUSES PERFORMANCE PROBLEMS IN
PARALLEL APPLICATIONS

DANIEL HÄGGANDER, PEROLOF BENGTSSON, JAN BOSCH, LARS LUNDBERG
Department of Software Engineering and Computer Science

University of Karlskrona/Ronneby
S-372 25 Ronneby, Sweden

[Daniel.Haggander | PerOlof.Bengtsson | Jan.Bosch | Lars.Lundberg] @ipd.hk-r.se

Abstract. The challenge in software design is to find
solutions that balance and optimize the quality attributes
of the system. In this paper we present a case study of a
system and the results of a design decision made on weak
assumptions. The system has been assessed with respect to
performance characteristics and maintainability and we
present and evaluate an alternative design of a critical
system component. Based on interviews with the involved
designers we establish the design rationale. We analyzed
the evaluation data of the two alternatives and the design
rationale and conclude that the design decision is based
on a general assumption, that an adaptable component
design will increase the maintainability of the system. This
case study is clearly a counter example to that assumption
and we reject it as a myth. We also show how this myth is
responsible for the performance problem in the case
system.

Keywords. Performance, Maintainability, SMP, Object
oriented design, Frameworks, Multithreading.

1 INTRODUCTION
Software quality requirements are getting more and more
attention with the dawn of the software architecture disci-
pline. It is not always possible to maximize each quality
attribute in a design, and in that case one has to do trade-
offs. Maintainability and performance often serve as exam-
ples of inherently conflicting quality requirements where a
trade-off is inevitable [13]. In our experience, this is the
general opinion in research as well as in the software
development industry.

We have assessed a parallel commercial telecommuni-
cation system from Ericsson, a fraud control centre (FCC),
for performance and maintainability independently to see
if there was a conflict. The system is designed using
object-oriented techniques and the parallel execution is
implemented using threads [10]. The system seemed very
suitable since the two driving requirements during its
development were performance, i.e. throughput & scal-
ability, and maintainability, i.e. adaptation of the design to
new requirements. Our assessments show that the design
of one component, a parser, was a key factor for perfor-
mance as well as for maintainability.

Fine grained adaptable object designs (e.g. design pat-
terns [4]) are generally considered to be more maintainable
than designs based on rigid but exchangeable components.
Interviews with the designers related to the project showed

that this was also their opinion in the design of the FCC,
particularly for the parser component. However, fine
grained adaptable designs tend to be larger than designs
based on rigid but exchangeable components. This was the
main reason why maintainability assessments of an alter-
native design showed that the assumption above does not
apply universally, and we therefore reject it as a myth.

Performance evaluations showed that the performance
loss due to choosing the fine grained adaptable design
instead of the design based on rigid but exchangeable com-
ponents was very large, particularly when using multipro-
cessor platforms. Interviews with the developers show that
these performance problems were not anticipated. Conse-
quently, the design decision did not provide the anticipated
leverage with respect to maintainability, and it caused an
unexpected and serious performance problem. Thus, this
case presents an excellent instance of a general misconcep-
tion about maintainability and performance.

The rest of this paper is structured in the following way.
The next section presents the FCC system. Section 3
describes our method, consisting of implementation and
evaluation of an alternative design and interviews with the
designers at Ericsson. In Section 4 we present the result
from the evaluations of the alternative design and compare
those results with the assessments of the original design. In
Section 5 we discuss myths and reality regarding maintain-
ability and performance. Section 6 concludes the paper.

2 FRAUD CONTROL CENTER (FCC)
2.1 CELLULAR FRAUD

When operators first introduce cellular telephony into an
area, their primary concern is to establish capacity, cover-
age and signing up customers. However, as their network
matures financial issues become more important, e.g. lost
revenues due to fraud.

The type of fraud varies from subscriber fraud to clon-
ing fraud. Subscriber background and credit history check
are the two main solutions to prevent subscriber fraud. In
cloning fraud the caller uses a false or stolen subscriber
identification in order to make free calls or to be anony-
mous. There are a large number of different approaches to
identify and stop cloning. FCC is a part of an anti-fraud
system which combats cloning fraud with real-time analy-
sis of network traffic [12].

Software Design Conflicts

60 Software Design Conflicts

-2-

2.2 SYSTEM OVERVIEW

FIGURE 1. THE FCC SYSTEM.

Figure 1 shows an overview of the total FCC system. Soft-
ware in the switching network centers provides real-time
surveillance of suspicious activities associated with a call.
The idea is to identify potential fraud calls and have them
terminated. However, one single indication is not enough
for call termination.

The FCC application allows the cellular operator to
decide certain criteria that have to be fulfilled before a call
is terminated. The criteria that can be defined are the num-
ber of indications that has to be detected within a certain
period of time before any action is taken. It is possible to
define special handling of certain subscribers and indica-
tion types. An indication of fraud in the switching network
is called an event in the rest of this paper.

The events are continuously stored in files in the cellu-
lar network. With certain time intervals or when the files
contain a certain number of events these files are sent to
the FCC. In FCC, the events are stored and matched
against pre-defined rules. If an event triggers a rule, a mes-
sage is sent to the switching network and the call is termi-
nated. It is possible to define an alternative action, e.g. to
send a notification to an operator console.

The FCC application consists of five software modules,
all executing on the same computer (see Figure 2). The
TMOS module is an Ericsson propriety platform that han-
dles the interaction with the switching network (2a), i.e. it
is responsible for collecting event files and for sending
messages about call terminations. The collected events are
passed on to the next module (2b), which is the main mod-
ule of FCC.

In the Main module the files of events are parsed and
divided into separate events. The complete module, includ-
ing the parser, is designed using object-oriented techniques
and design patterns. The events are then stored and
checked against the pre-defined rules using module three,
the database (2c). If an event triggers a rule, the action
module is notified (2d). This module is responsible for
executing the action associated with a rule, e.g. a call ter-
mination. Standard Unix scripts are used to send terminat-
ing messages to the switching network via the TMOS
module (2e). The last module is the graphical user inter-
faces from which the FCC application is controlled (2f).

FIGURE 2. THE FIVE MODULES OF FCC.

2.3 PERFORMANCE ISSUES

The rapid growth in the telecommunication market
increases the performance requirements on applications
supporting telecommunication networks. In FCC, these
performance requirements are meet by using a Symmetric
Multiprocessor (SMP) [6], e.g. Sun multiprocessors. How-
ever, it is not trivial to increase the performance using
SMP:s because bottlenecks can easily limit the perfor-
mance significantly.

Performance evaluations showed that dynamic memory
management becomes such a bottleneck in FCC [7]. The
same evaluations showed that the parser was the limiting
component. Dynamic memory management has in several
evaluations of parallel applications been pointed out as a
major bottleneck, especially for application implemented
in C++ [3] [11] [8].

In C++ [15], dynamic memory is allocated using opera-
tor new which is an encapsulation of the c-library function
malloc(). Allocated memory is deallocated using the c-
library function free() via operator delete. Many imple-
mentations of malloc() and free() have very simple support
for parallel entrance, e.g. using a mutex for the function
code. Such implementations of dynamic memory result in
a serialization bottleneck. Moreover, the system overhead
generated by the contention for entrance can be substantial
[8]. The bottleneck can be reduced using an optimized re-
entrant implementation of malloc() and free(), e.g. ptmalloc
[16]. However, even better performance can be achieved
by decreasing the number of heap allocations [8]. A lower
number of allocations will also improve the performance
on uni-processors. Using a re-entrant implementation of
malloc() and free() will only increase SMP performance.

In an object-oriented design, especially with design pat-
terns, a large number of objects are used. An object often
requires more then one dynamic memory allocations (call
to operator new) in its construction. The reason for this is
that each object often consists of a number of aggregated
or nested objects. For example, a car can be represented as
a number of wheel objects, a car-engine object and a chas-
sis object. A car-engine-object may use a string object,
usually from a third-party library, for its name representa-
tion and so on (see Figure 3).

It is not rare that these objects are combined at run-time
in order to be as adaptable as possible. For example, a car

Paper III

Sofware Design Conflicts 61

-3-

could have an unspecified number of wheels. Such a
design requires that the each sub-object (Wheel) is created
separately. As a result of this, dynamic memory are allo-
cated and deallocated separately for each sub-object. The
total number of allocations is, according to the discussion
above, dependent on the composition of the object. There-
fore every design decision which affects the composition
of an object will also affect the number of memory alloca-
tions and deallocations during program execution.

FIGURE 3. AN OBJECT REPRESENTATION OF CAR.

The parser component in FCC is similar to the car example
above. The parser is constructed as a State pattern [4]
where each possible state is represented by a class. A
parser object holds one instance of every state class, in
FCC’s case nine. The nine instances are all created using
operator new. All states also contain a third party software
component; the “regular expression object”, see Figure 4.

FIGURE 4. THE OBJECT DESIGN OF THE FCC PARSER.

Consequently, the performance of the FCC application is
seriously limited by the large number of dynamic memory
allocations and deallocations generated by the design of
the parser.

3 METHODS
In Section 2.3 we described how congestion within the
dynamic memory handling significantly limitates the per-
formance of the FCC application. We also suggested that a
fine grained adaptable object design can be the reason for
this.

Interviews with the people responsible for the FCC parser
design, showed that maintainability requirements were the
main reason for the fine grained design of the parser com-
ponent. The interviews also showed that the designers
were quit pleased with the design result, and they did not
anticipate any substantial performance problems.

With the knowledge that fine grained designs can cause
performance problems, we performed an assessment
addressing the maintainability aspects of the FCC applica-
tion. Our intention was to find an alternative parser design
which meets the maintainability requirements without
causing performance problems. Based on the findings
from this assessment, we suggested an alternative parser
design which we implemented and evaluated with respect
to performance and maintainability.

3.1 INTERVIEWS

We performed interviews with four persons acquainted to
the FCC in order to determine the reasons for selecting the
fine grained design of the parser. Each person was inter-
viewed separately from the others. We selected four per-
sons by the following criteria:

1. The designer responsible for the product.
2. One of the persons implementing the parser
3. A person in the project not responsible for the design

or implementation of the parser.
4. A person outside the project but from the same product

area within the company.

This selection enables us to find out; what was the intended
design decisions from the responsible’s point of view; does
the person implementing the component have the same
point of view, does another programmer in the project have
the same understanding of the decision even when not
directly involved and does this apply for other projects.

We performed the interviews using a questionnaire to
help us remember all questions. The interview was divided
into two parts. The first part was questions to be answered
in a more discussive way. For example, one questions was
“Why did you choose to design the parser like you did?”.
The second part contained very direct questions to be
answered only yes or no, very rapidly. For example, “Did
you choose the parser design to reduce implementation
time?”.

3.2 MAINTAINABILITY ASSESSMENT

We used a modified version of the scenario based software
maintainability prediction method [2] on the software
architecture of the FCC to assess the maintainability. In
short the method consists of the following steps:

1. Identify categories of maintenance tasks
2. Synthesize scenarios
3. Assign each scenario a weight
4. Estimate the size of all elements
5. Impact analysis
6. Calculate the predicted maintenance effort

Car

Chassis

Wheel

WheelsEngine

String

Wheel

WheelWheel

String String String String String

char* char* char* char* char* char*

C++-Class Car

fccstorage_fccstorage_

fccstorage_

fccstorage_

fccstorage_

fccstorage_

fccstorage_ fccstorage_

fccstorage_fccstorage_

fccstorage_
FadActFoundState FeatFoundState EndState FadExm2FoundState StartState

SldcExmFoundState MtfadFoundState FadExm1FoundState GpfadActFoundState

ParsestateFadParser 9 1
Reg
Expr

Software Design Conflicts

62 Software Design Conflicts

-4-

The only difference to the method as presented in [2]
was that we did use a ordinal scale {Not applicable, Low,
Medium, High} for estimating the amount of code that (1)
needed to be modified and (2) the amount of new code that
needed to be written.

A person closely related to the FCC project synthesized
fourteen (14) scenarios to a scenario profile. Below is an
example scenario from the profile.

“Event format changed to include several fraud indica-
tions”

Size estimations and impact analysis was combined into
one activity and graded on the ordinal scale (above). A
score was calculated by calculating a sum of the impact on
each scenario in the scenario profile.

Besides the original design, a number of possible
designs alternatives were evaluated using this scenario
based maintainability assessment.

3.3 ALTERNATIVE PARSER DESIGN

The maintainability assessment of the FCC software archi-
tecture resulted in a proposal for an alternative design of
the parser component which seemed promising, both from
a maintainability and a performance point of view.

Instead of designing an object oriented adaptable
parser, an alternative is to design a special purpose parser
for each input format. When using this approach, instead
of having one parser component the system would include
one special purpose parser and determine what parser to
run for the particular input that arrives. A parser is a well
known component in the compiler community [1] and sev-
eral tools for generating parser implementations from
grammars in Backus-Naur format (BNF) exists, e.g. the
standard Unix tools Lex and Yacc.

The FCC input format is suitable to describe as a con-
text free grammar in BNF, i.e. a standard parser tool can be
used. That would enable generation of several parsers for
the time it takes to design, implement and test the flexible
parser. Not mentioning the reduced complexity of main-
taining the system. A new format would require some few
changes to the syntax specification, a few lines of code and
the generation of a new parser.

A developer was given the task to implement an alterna-
tive parser, using the architecture described above. The
input to the developer was, besides the architecture strat-
egy, the requirement specification from the original FCC
project. Furthermore, the developer was instructed to
implement the parser quick and simple, e.g. without con-
sidering the possibility that the source code has to be
adapted to new requirements within the future.

The development of the experimental parser would
incorporate two main activities, first learning to use the
Lex and Yacc tools and then the parser was designed and
implemented. The developer had no prior professional
experience with Lex or Yacc before the assignment. The
prototype development did not include design documenta-

tion and only limited verification of the parser was made.
These two aspects have to be taken into account when
comparing the time effort for the alternative parser with the
original FCC parser. The new implementation did not used
multithreading. Instead, ordinary UNIX processes was
spawned of in order to be able utilize all processors on
SMP:s hardware. This was a direct result of using the Lex
and Yacc tools, which can not be mulithreaded.

3.4 PERFORMANCE COMPARISON

The source code of the original parser was extracted from
the FCC application and then executed separately.

The performance of the two parser designs was evalu-
ated on a SUN enterprise with eight processors, hosting a
SUN Solaris operating system.

The throughput capacity was measured as the number
of events parsed per second using one to eight processors.
Since, the number of dynamic memory allocations has a
large impact on the final FCC performance (see Section
2.3) the number of malloc() calls was counted for the two
versions. The results of the measurements are presented in
Section 4.

3.5 MAINTAINABILITY COMPARISON

We compare the two different designs based on the follow-
ing research results:

• Software maintenance effort have been shown empiri-
cally to be strongly correlated to the code volume [9].

• Productivity for software development of new code is
higher than the productivity of modification of existing
code. Productivity being (>6x) higher when writing or
generating new code (>250 LOC/Man-month in C
[14]), compared to modifying legacy code (1,7 LOC/
Man-day ~ <40 LOC/Man-month [5]).

We make the comparison by measuring the code volume
for the two parser implementations, i.e. the original FCC
parser and the alternative parser we implemented. Since
the code volume is strongly correlated to the effort, we
then calculate an effort prediction based on the productiv-
ity measures and the code volume measures.

If the code volume is significantly different in the two
cases it is reasonable to assume that the comparison model
will be valid. If the code volume measures of the two cases
are very similar other factors might have to be involved in
the comparison.

4 RESULTS
4.1 INTERVIEWS

These are the results from the interviews. We have concat-
enated the answers to the questions and in the cases where
the interviewed persons have disagreeing answers, we
present both.

Paper III

Sofware Design Conflicts 63

-5-

These are the answers regarding the flexible parser:

1. Why did you choose to design the parser like you did?
Answer: We expected several input formats and late addi-
tions. It was a good way to introduce design patterns and it
was a good object-oriented design.

2. What alternatives were there?
Lex & Yacc? Not familiar with the tools. Did not like to use
generated code.
One hard-coded parser for every format? This was not
adaptable enough. Some were personally against it.
A parser framework? Not considered.

3. What consequences/advantages did you expect?
Answer: More cost-effective, and less effort to implement
support for new input formats even during the develop-
ment project.

4. What results have been achieved?
Answer: The parser is fairly easy to adapt to new input for-
mats.

5. How would you solve the same problem today, based
on your current experiences?

Answer: Basically the same way, using the state-pattern,
but the input formats have changed even more than antici-
pated. Therefore, more flexibility and adaptability would
be good.

The results from the direct questions in the interviews are
presented in Table 1. P1 through P4 is the persons inter-
viewed, where P1 is the main designer for FCC, P2 is the
parser programmer, P3 is another project programmer, and
P4 is a designer from another project within the same prod-
uct domain.

The result from the interviews show that the fine grained
design was selected for maintainability reasons, and that
no performance problems were anticipated. The answer to

question 5 shows that the designers had themselves not
been able to connect the performance problems with parser
design, i.e. the connection is obviously non-trivial.

4.2 MEASUREMENTS ON THE ORIGINAL
PARSER

The original implementation of the FCC parser has 3889
LOC (C++) and makes 100 calls to malloc() for each event
file parsed. The maximum throughput is, using one proces-
sor 1800 events per second and using eight processors 680
(see Figure 5 and table 2). This gives a speed-up less than
one, i.e. we get a slowdown. We have observed this kind of
behavior before in previous projects, and the reason for the
poor speed-up is congestions within the dynamic memory
handling [8]. According to Ericsson the time effort to
develop the original parser was 350 hours.

FIGURE 5. THE THROUGHPUT FOR THE ORIGINAL AND THE
ALTERNATIVE PARSER.

4.3 MEASUREMENTS ON THE
ALTERNATIVE PARSER

The experimental implementation was developed using the
standard Unix tools, LEX and Yacc. The number of LOC
(Lex, Yacc and C++) was 433. The parser is based on a

Question P1 P2 P3 P4

Did you choose the parser design to
reduce implementation time?

N N N N

Did you choose the parser design to
enable easy adaptation of the FCC to
new or changed requirements?

Y Y Y Y

Did you choose the parser design to
improve the performance of the FCC?

N N N N

Did you choose the parser design to
minimize error sources?

Y N N N

Did you anticipate any performance
bottlenecks at all from these designs?

N N N N

TABLE 1. The results from the interviews.

Parser Arch. LOC
No of
CPUs

Max
events
/sec.

No of
malloc
calls

FCC multi-
thread

3889 1 1800 100*ev.
+ 848 680

Alt. UNIX
-proc.

433 1 6800 11*ev.
+ 198 55600

TABLE 2. Experiment results.

1

10

100

1000

Processors

T
h

ro
u

g
h

p
u

t

FCC 18 10.3 7.2 6.9 6.9 6.8

Alt. 68 131 202 230 308 556

1 2 3 4 6 8

Software Design Conflicts

64 Software Design Conflicts

-6-

nine (1+8) UNIX processes architecture. The number of
malloc() calls is eleven for each file of events parsed. The
maximum throughput is, using one processor 6800 events
per second and when using eight processors 55600 events
per second (see Figure 5), i.e. somewhat more than eight
times speed-up. The work load generator interferes more
when only a few processors are used, and results in this
super-linear speed-up. However, this effect is marginal and
the speed-up is almost linear.

The time effort to develop the alternative parser was
approximately 2 days. A comparison with the original
FCC parser can be seen in Table 2. Consequently, the alter-
native parser has much better performance, particularly
when using multiprocessors. Moreover, the development
time for the alternative parser was much shorter than for
the original, and the code size was also much smaller for
the alternative parser.

5 DISCUSSION
Today, object oriented design and design patterns have
become best practise in industry. Many designers are
trained in state-of-the-art object oriented design and very
familiar with design patterns. The object oriented design
research community conveys that flexibility and adaptabil-
ity are best achieved by designing components using
design patterns. It is being taught and appreciated as a gen-
erally applicable assumption that guide the design of mod-
ern industrial applications.

Associated with this common assumption, it is assumed
and accepted that a flexible and adaptable solution will
have lower performance than the rigid exchangeable com-
ponent design, but one expects that the performance reduc-
tion will be limited or even marginal.

In the Ericsson FCC project, the parser was identified as
a key component for maintainability as well as for perfor-
mance. In their efforts to produce a design that enabled
them to adapt the parser component to new requirements
the designers introduced a major performance bottleneck
in their system. Interviews with the designers clearly show
that the parser design was chosen to increase the adaptabil-
ity, i.e. the designers adopted the general assumption that
making a component adaptable would increase the overall
system maintainability. By focusing on a single component
in the system they overlooked an alternative. By making
the system adaptable to changes and designing the compo-
nent to be exchangeable new requirements could be met by
replacing the component with a new one. The use of
design patterns resulted in a component that is clearly
adaptive. However, it requires nine classes and ~4 kLOC.

The results from the measurements of an alternative
parser design show that the source code for that parser was
about a tenth of the size of the original parser implementa-
tion. In [5] it is shown that the maintainability of a soft-
ware module is highly correlated to its size in lines of
code. Since the alternative design of the parser component
was implemented in significantly less lines of code than
the adaptable parser, we believe the maintainability effort

for our alternative to be significantly less. Measurements
of the implementation time for the original parser (350 h)
and the alternative parser (16 h) strongly support this.

Hence, the assumption that an adaptable component
design will increase the maintainability of the system
proved to be invalid in this case. Therefore, the general
assumption that fine grained adaptable designs are more
maintainable than designs based on rigid but exchangeable
components does not apply in all cases, and we reject it as
a myth.

Performance comparisons between the original and the
alternative design show that the alternative design has a
much higher performance, particularly when using a multi-
processor. The throughput using eight processors is more
than 80 times higher for the alternative design when using
a multiprocessor with eight processors, and we expect that
the performance difference will be even higher when using
more than eight processors. The interviews show that the
designers agreed unanimously that they had not antici-
pated the performance bottlenecks in their original design.
The designers had themselves not been able to connect the
performance problems with the parser design, i.e. the con-
nection is obviously non-trivial.

Performance measurements of the FCC system showed
that the parser component was the limiting bottleneck in
the original design [7]. The original parser design resulted
in a large number of object creations needed for parsing,
thus increasing the of use of dynamic memory signifi-
cantly. Consequently, the general assumption above, which
we rejected as a myth, affected the performance of the
FCC in a negative way. Hence, the performance problems
in FCC were caused by a myth.

In this study we have found no characteristics or other
evidence that distinguish this project from the general con-
ception of other industrial development projects.

6 CONCLUSIONS
It is a challenge to find solutions that balance and optimize
the quality attributes of a software system. It is not always
possible to maximize each attribute and one has to make
trade-offs. In this paper we have addressed the importance
of the design decisions made during software development
and the consequences of basing those decisions on
assumptions or even prejudice.

We present a case, based on a real telecommunication
application, where the performance has been significantly
limited because of the assumptions that an fine grained
adaptable object design (e.g. design patterns [4]) would
give the application higher maintainability.

An alternative design was implemented and evaluated.
The evaluation results show that the alternative parser has
much better performance characteristics as well as higher
maintainability. These findings show that the design deci-
sion was be based on a general assumption that proved
invalid, i.e. the performance problems in FCC were caused
by a myth.

The contribution of this papers is that the current prac-

Paper III

Sofware Design Conflicts 65

-7-

tise in object oriented design and design patterns is not
always the best alternative for neither performance nor
maintainability. A design based on rigid but exchangeable
components can give better performance as well as higher
maintainability.

Acknowledgments
We would like to express gratitude to the persons in the
FCC project who participated in the interviews and to Eric-
sson Software Technology AB for giving us the opportu-
nity to study their work.

7 REFERENSES
[1] A. Aho, R. Sethi, A. V. Aho, J. D. Ullman, Compilers,
"Principles, Techniques And Tools", Addison Wesley
Longman Inc., 1985, ISBN: 0201100886
[2] P. Bengtsson, J. Bosch, "Architecture Level Prediction
of Software Maintenance", in Proceedings of 3rd
European Con fe rence on Main t enance and
Reengineering, Amsterdam 1999.
[3] R. Ford, D. Snelling and A. Dickinson, "Dynamic
Memory Control in a Parallel Implementation of an
Operational Weather Forecast Model", in Proceedings of
the 7:th SIAM Conference on parallel processing for
scientific computing, 1995.
[4] E. Gamma, R. Helm, R. Johnson, J. Vilssides, "Design
Patterns", Addison-Wesley, 1997.
[5] Henry, J. E., Cain, J. P., "A Quantitative Comparison
of Perfective and Corrective Software Maintenance",
Journal of Software Maintenance: Research and Practice,
John Wiley & Sons, Vol 9, pp. 281-297, 1997
[6] K. Hwang and Z. Xu, "Scalable Parallel Computing",
McGraw-Hill, 1998.
[7] D. Häggander and L. Lundberg, "Memory Allocation
Prevented Telecommunication Application to be
Parallel ized for Better Database Util ization", in
Proceedings of the 6:th Annual Australasian Conference
on parallel and Real.Time System, Melbourne, Nov 1999.
[8] D.Häggander and L. Lundberg, "Optimizing Dynamic
Memory Management in a Multithreaded Application
Executing on a Multiprocessor", in Proceedings of the
ICPP 98, 27th International Conference on Parallel
Processing, August, Minneapolis 1998.
[9] W. Li, S. Henry, "Object-Oriented Metrics that Predict
Maintainability", Elsevier Publishiing, New York, Journal
of Systems and Software, v23, n2 , November, 1993, pp.
111-122.
[10] B. Lewis, "Threads Primer", Prentice Hall, 1996.
[11] L. Lundberg and D. Häggander, "Multiprocessor
Performance Evaluation of Billing Gateway Systems for
Telecommunication Applications", in Proceedings of the
ISCA 9th International Conference in Industry and
Engineering, December, Orlando 1996.
[12] Catharina Lundin, Binh Nguyen and Ben Ewart,
"Fraud management and prevention in Ericsson’s AMPS/
D-AMPS system", Ericsson Review No. 4, 1996.

[13] J .A. McCal l , "Qual i ty Fac tors" , Sof tware
Engineering Encyclopedia, Vol 2, J.J. Marciniak ed.,
Wiley, 1994, pp. 958 - 971
[14] K. D. Maxwell, L. Van Wassenhove, S. Dutta,
"Software Development Productivity of European Space,
Military, and Industrial Applications", IEEE Transactions
on Software Engineering, Vol. 22, No. 10: OCTOBER
1996, pp. 706-718
[15] B. Stroustrup, "The C++ Programming Language",
Addison-Wesley, 1986.
[16] W. Gloge r, "Dynamic memory a l l oca to r
implementations in Linux system libraries", "http://
www.dent.med.uni-muenchen.de/~wmglo/malloc-
slides.html" (site visited Aug the 3:th, 1999).

Software Design Conflicts

66 Software Design Conflicts

Paper IV

Sofware Design Conflicts 67

Paper IV

A Simple Process for Migrating Server
Applications to SMPs

Daniel Häggander and Lars Lundberg
Journal of System and Software

2001

XIV

Software Design Conflicts

68 Sofware Design Conflicts

Paper IV

Sofware Design Conflicts 69

� ������ ��	
��� �	� ����
���� ������
����

��	�� �	 �����

�
���� ��
��
����� �
�� �������� �

���������� 	
 �	
�����
����������� ���������� 	
 �������	����	������ ����� �� �	������ ��� ��

��
����� � �����
� !"""#

����� !� $�� !"""

��������

� ���	�� �	
�� 	� %�
���
��������� ��
&
� �
���
��
�����
�� '�(������ &
� �������� ��
 ������ 	� ��) ���&	�	�	����� �*�*�

	�+�
�,	�������
��
	��	����,�
��� �������)&�
&

� �����-

��� ����� �&�
����

��	� ����	��
�
�* � �
+	�
&
������ �� �	 -��

�	����	�� �&
� �
�
�
�
�� 	�����.� �&� %�
���
���������� �*�*� � ������
 �������	
���	� /���0 ����	��
�
�
	���
 �
���
��
�����

�� '�(������ * 1� &
�� ������� �&��� �
��� ��
�,���� ����
	�����

��	� ������
����

��	�� �����	��� � 2��
��	�* 3�
�� �&���

����

��	�� �
���
��
����� �� ���	��� ���	����.��* 4&�
����

��	��
��
��	 ��� ���
�����)��& �����
� �	 ����	��
�
� ��� �	

��
�,���� ��%��������� 	� �&�	��&���
�� ����	��� ����* �����
�� ������&��
����
�� ���� �� 	���� �	 ���� �&���
����

��	��

&��&
�� �

�
��� ����	��
�
�* 5�� �
�� -����� �� �&
� � �
��
 ���	� �
�
������ ��
 �
+	� �	������
6 �� �&��� � ��� 	�

����

��	��* 4&� �	������
6

�� &)����� �� ���	��� ����� ���	�
��	

�	�� 	�����.�� �	� ����� 	� � ����
��� �&� ������ 	�

��	

��	��* 1� �	��� �&
� �&� ������ 	�
��	

��	��

� �� �����-

��� ����
�� � �����
�����
���� ������ ���
������ �	� �
��,

�
��
�����
�� '�(������ * 7
��� 	� 	�� �(������
��)� &
�� ��-���
 ������ ���������,�
��� ��	
���)��& �&�
�� 	� &������ ��,

������� 	� ������
����

��	�� �	 ���
����&
 �
�
�
� ���)��� ��� ����	��
�
�� �
���
��
�����
�� '�(������ * � !""8 2�������

�
���
� 3�
* ��� ���&�� ��������*

����	� �! � ������
 �������	
���	� /���0# 9���������# ����	��
�
�# ������&��
����# ��
�,����
����

��	��# :�
���
���������

�	
����
������

����	��
�
� �� �	� ���
�� �&� �	�� ���	����.��
%�
���
��������)&�� �����	���� �
���
��
	����(

����

��	��* 5�&�� %�
���
��������� ��
&
� �
���
��,

�����
�� '�(������
��
	����
�
�� �	�� ���	��
���
���
� �	�� �;	�� �� ����� 	� �
���
����� �(������
�,
���

��	�� �&
� �����	���� ��) 	��� /���	�6�� 8<<=0*
���&	��& ����	��
�
� ��
	�������� ���� ���	��
���
�	��
����

��	�� ����� ���
�� &��& ����	��
�
�� �*�*�
��
�,����
����

��	��* �	� ��
&
����

��	��� ����	����
�
���
��
�����
�� '�(������ �� ������� ������ �&� ���,
�	��
�
� ��%���������
�� ���-����*

� ������� �*�*� ���
	��,�;�
�����)
 �	 ����	�� �&�
����	��
�
� 	�
�
����

��	� �� �	 ��
��
�� �&� ��	,

������

�

�� 	� �&� &
��)
��* 4&� ��	
������

,
�

��

�� �	� �(
����� �� ��
��
��� � �����
 ��)
��
�
���� ��	
���	�* 3���	���� �&�
����

��	� ����	��
�
�
� ����� �	�� �)����� &
��)
�� �

��	 ��
	����,
���� ����,��		�
� ���
��� �&� ������ ���
� �&� ��
6
����	��
�
� 	�
	������� &
� ��)� �(�	�����
��

��	� 8<�> �	 �&� ��������
�� �&��� �� ������ �	 �������
�&
� �&��)���
&
���* 4&�
	������
�
&���
����� ���� �	
����
�� ��)�&
��
&
������ &)����� ��	� �&� ��,
%�����
� �	 �&� �
�
���� /�	����� 8<<>0* � ������
 ���,
����	
���	� /���0 �� �&� �	��
	��	� �
�
����

�
&���
���� ��
	����
�
�
����

��	�� /�)
��
��
?�� 8<<@0* 3� �� �&�� ��
�	�
��� �	
����� �&
� �����,
	���� 	� ����	��
�
�,���
�����
����

��	��)��� ��
������� �	 ��� ����� ���
� �&���
����

��	�� ���� ����
��)
�� &��& ���
��� 	� ����	��
�
�* 4	 ����	�� �&�

����

��	� ����	��
�
� ����� �������	
���	�� �� �	�
�
������
� ����
���� �	
 �
���� ��	
���	�* 4&� �	��)
��

�
&���
����
��A	� ������ ���� ���
�� ��
�
����� �*�*�
�
�
�����.��
�� 	�����.�� �	� �&� �������	
���	�
�,

&���
����*

������&��
���� /��)��� 8<<B0 ��
 ��	��
�����
���&	� �&
�
��)� �
�
�������)��&��
�
����

��	�* 3�
��
&
�

����.�� � �) ���

� 	� �&� �	��
�
	�� ��
CDD /���	������� 8<@B0
����

��	�� ���
� �� �� �
��� 	�
�&
���
������ ��

�
�� C,����
�

���* ������&��
����

� �&�� ��
	��������
 ������
��
	��,�;�
����)
 �	
��	��
�
����

��	� �
�
�������* ��������� �E
����
�,
���

��	�� �	� �������	
���	�� ����� ������&��
���� &
��
&)����� ��	��� �	 ��
 �
� ��	� �����
� �
�6 �&
�

�
�
��� ����� �&�
����

��	� ����	��
�
� /��������
��

4&� $	���
� 	� � �����
�� �	��)
�� >= /!""80 F8G�F
)))*��������*
	�A�	

��A+��

� C	�����	�����
��&	�* 4��*� D�B,�>=,F@>,@FF# �
(� D�B,�>=,!=8,!>*

����� � ������! �
����*&
��
����H���*&6,�*�� /�* ��
��
����0�

�
��*��������H���*&6,�*�� /�* ��������0*

"8B�,8!8!A"8AI , ��� ��	�� �
���� � !""8 2������� �
���
� 3�
* ��� ���&�� ��������*

�33� � " 8 B � , 8 ! 8 ! / " " 0 " " 8 8 > , 8

Software Design Conflicts

70 Software Design Conflicts

��
��
����� 8<<B# ��
��
����
�� ��������� 8<<@�
8<<<# ��
��
���� ��
�*� 8<<<# �
���	�
�� J���&
��
8<<@# �	�� ��
�*� 8<<>0*

���������
����

��	�� �	� �������	
���	�� �� �	�&���
��) �� &��&,����	��
�
�
	�������* 2E
���� ���
������
	� &) �	 ������
�� ��������� �������	
���	�
����,

��	��
��)��� 6�)� /�	����� 8<<>0* 4&� ���	��
	�,
��
��	� ���)��� �������	
���	��
�� &��&,����	��
�
�

	������� &
�� &)����� �
���� ��
��
���
�� ���
������
���	��� �	
���� 	� �(�
���	� ����
�� �

�
����� *
5�&�� %�
���
��������� ��
&
� �
���
��
�����
��
'�(������ &
�� ���� �	�� 	� ���� ���	���* �� �&� �
��
����� ��
����	�
� �����	����� &
� �
6�� �&� 	��	����
����
��	�* � ���	�� �	
�� 	� �
���
��
�����
�� '�(�,
����� &
� �������� �� ��) ������
�� ���������
��	�
���&	�	�	����� �*�*� 	�+�
�,	������� ������
�� �&���
�
��
�
�� ����
����* 3� �� &
��� ���������� �&
�
� 	���,

�����	�� ��
�� 	�
 ���
����

��	� 	� �&��� ���&	�,
	�	����� ����	��� �
�
���
����

��	� ����	��
�
��
�
���
��
�� �	� ������&��
���
����

��	�� �(�
����� 	�
�������	
���	��* 3� �� �&�� �	�
�)
 � �	������ �	 �
(�,
��.� �

& %�
���
�������� ��
 ������� &��
� ��
��,	;�

�� 	���� ��
���
� * � ���
�
&
������ �� �&�� �	 -��
�	����	�� �&
� �
�
�
�
�� 	�����.� �&� %�
���
����,
����� /�������� ��
�*� 8<<<0*

1� &
�� ������� �&��� ������
����

��	�� �����	���
� �&� 2��
��	� ����
	�����

��	�
	��
� * 4&���
��
�������� �	
� ������� �
��)
 /79)0� ��
��
	���	�

������ /�CC0
�� �
�
 �	���	���� /��50* 3�
�� �&���

����

��	�� �
���
��
�����
�� '�(������
�� ���	���
���	����.��* 4&�
����

��	��
��
��	 ��� ���
�����
)��& �����
� �	 ����	��
�
� ��� �	 ��
�,���� ��%����,
����� 	� �&�	��&���
�� ����	��� ����* � ������

�������	
���	��
�� ������&��
��� ��	��
�����
��
���� �� 	���� �	 ���� �&���
����

��	��
 &��&
��
�

�
��� ����	��
�
�* 4&�� �
��� �������� �&� �������

�� 	�� -������* 3�
	�
�����)��&
 ���������,�
���
��	
����
��������)��& �&�
�� 	� &������ ��������� 	�
������
����

��	�� �	 ���
����&� ��
 �	�� �E
����
�
�����
 �
�
�
� ���)��� ��� ����	��
�
�� �
��,
�
��
�����
�� '�(������ *

4&� ���
����� �
���
�� 	��
��.��
� �	��)�* ��
,
��	� ! �������� �&� 79)� �CC
�� ��5
����

��	��*
��
��	� F ���
����� 	�� ���&	�)&�
&
	������ 	� ��
�,
�
��	���
�� ��������)�)��& �&� ���������
� 2��
��	�*
3� ��
��	� ��)� ����
��.� 	�� �
�� -������* ���
���
)	�6 �� ��������� �� ��
��	� >* 3� ��
��	� B�)� ���
���
	�� -������ ��	� ��
��	� � ��
)����
	���(�* ��
��	� =
�������� 	�� �����������
�� ��
��	� @
	�
����� �&�
�
���*

�	 ������ ������������

3� �&�� ��
��	��)� ���
���� �&��� ��������
�
����

,
��	��* ��� �&���
����

��	��
�� �(
����� 	�
 ������

����

��	�* 1�
	������ �&�
����

��	�� �	 �� �
����
�	�& �� ����� 	�
	�� ��.� /8"*""" �	 8""*""" ����� 	�

	��0
�� �
���� * � �	�� ���
���� ���
�����	� 	� �&�

����

��	��

� �� �	��� �� ��
��
����
�� ��������
/8<<@� 8<<<0*

�"#" $������ ������� %$&�'

79)
	���
�� ������� ���	��
��	�
�	��

��� ��	�
�	���� �&	���* 4&� 79) ��)������ �� CDD ����� 	�,
+�
�,	������� �������
�� �&� �
�
���� �(�
���	� &
� ����
����������� ����� �	�
��� �&��
��* 4&� 79) ��
�������
-�����
�� ��
���
��� �
) ������� ���	��
��	� ��	� ���,
)	�6 �������� /K20� ��
&
� �)��
&���
������
��
�	�
� �
��
������� �� �&� ����
	�����

��	� ���)	�6
�	 ������� � �����
�� 	�&�� �	�� ��	
������ � �����
/���0* C���	��� �����
�� �&�� ������ ��	� �&� �������
� �����* 4&� �
) ������� ���	��
��	�
	������ 	�

��
�
�
 ��
	��� /C���0* 4&� C���
��
	�����	���
��	��� �� -��� �� �&� K2* 4&��� -���
�� ���� �	 �&� 79)

�
���
�� ���� ������
�� 	�)&�� �&� -��� &
�� ��

&��

���
�� ��.�*

4&��� ��
 ��
�&�

� ���� ������

�
	���
��� �	 �&�
79)* 3� �&�� ������

� �&� ��;����� ����
�� 	� ���	�,
�
��	� �	��� �&�	��& �&� �
��)

�� ����
��.��* ���* 8
�&)�
�
����

��	�)&��� �&���
�� �)	 K2 ��	��
,
��� ������� ���	��
��	� /�&� �)	 �����	�� �	���0* 4&���

��

���� L��C,K�) M	�6N
�� L��C,7	��	�N
/��C��	���� �)��
&��� C�����0* 4&� C��� ��	�
�&��� �)	 ��C�
�� ���� �	
 -����

���� L��7���
���N*
4&��� ��
 ���
��	�
��	
�
���)��& �

& -�����
�� ��
�&��

�� �&� -���� ���
��	� ��
��
��� �	 ���� �	� C���
)&�
&
	��
�� ��	��� ���	��
��	�
�	�� ����
��� ���,
��
��* C���)&�
& �	 �	�
	��
�� ���	��
��	�
�	��
����
��� �����
��
�� ����� -������ 	��* 4&� 	�&��
C���
�� ���� �	
�	�&�� -����

���� L���	
����N* 4&�
���
��	�
��	
�
���)��& L���	
����N ��
��
��� �	 ����
�� �&� C��
	��
��� ���	��
��	�
�	��
 �	
����

��
/
 �	
����

�� 	

���)&��

���	��� �� �����

���)	�6 	���
�	� 	�&�� �&
� &��)�� �*�*�)&�� ��
�,
������ ��
�	�&��
	���� 0* 3� �&��

��� �&� ��
	�� ��
�	�)
���� �	
 �	��
�����
�� �&�� �	
 ������� � ����
�	� �	
����

���# �&� ��
	�� �� 	�&��)��� ���� �	

�	��
����
��
 ������� � ���� �	� �	�,�	
����

���*
4&� ��
	�� �	��
� ���� � �&� ������� � ����� ��;���
��	� �&� �	��
� ��	��
�� � �&� ��C�* 4&�� ��)&
�&� C���
	���� 	�� 	� �&� �
�� -���� ���� �� ���	�,
�
���� ���	�� �&�

� �� ���� �	 �&� ������� � �����*
4&� ��
�& �� ���* 8 �� 	�� �(
���� 	� &) �������
�,
���

��	��

� ��
	�-�����*

���* ! �&)� �&� �
+	� �&��
�� �	� �&�
����

��	� ��
���* 8* 1&�� �&��� �� �	 ') 	� �
�
 �&�	��& �&�
79)� �&� � ����
	��
���
 ������ 	� ��
��
 �&��
��*
1&�� �&��� ��
 ') 	� ���	��
��	� �	��� �&�	��& �&�
� �����
�����	�
� �&��
��
��
��
��� � �
��

�� *
1&��
� K2 �����
 ������� -�� �	 �&� 79)�
 �
�

F! �" (������ ���)")*� ���� � +,� -	*���� 	
 ������� �� �	
����� �� %�..#' �#/0�

Paper IV

Sofware Design Conflicts 71

	���
��	� �&��
� ��
��
���* 4&�� �&��
� ��
�� �&� -��
��	� �&� ���)	�6
�� ��	��� �� 	� ���6* 1&�� �&�

	������ -�� &
� ���� ��	���� �&� �
�

	���
��	� �&��
�
������
���* �
�
 ��	
������� �*�*� �&� �
�� 	� �&� 79)
�&
� �	�� �&�

��
� -�������
�� �	��
������ �� �����,
������ ��
 ��;�����)
 � �*�*� �&��� �� 	�� �
�
 ��	,

������ �&��
� �	� �

& K2 �	�� �� �&�
	�-���
��	�
/��� ���* !0*

4&� � ����
�
&���
���� �� �
�
����
��)� �(��
���
�		� �������	
���	� �����,��* 4&� �����,��)
��
&)����� ��� ���
��	������# �� �&� -��� �����	� �&�
����	��
�
� ��	����)&�� �&� ������ 	� ��	
���	��
��
��
��� ��

��� �&� � �
��
 ���	� �
�
������
)��&�� �&� ������ ��	
���)
�
 �
+	� �	������
6* 4&�
��������� 	� �&� 79))
����
 '�(���� � ����)&���
��) C�� �	��
��
	��� �� &
�����)��&	��
&
�����

���* !* 4&� �&��
� ����
���� 	� 79)*

���* 8* 79)
	�-���
��	�)���)*

�" (������ ���)")*� ���� � +,� -	*���� 	
 ������� �� �	
����� �� %�..#' �#/0� FF

Software Design Conflicts

72 Software Design Conflicts

�&� � ����* 5�� �
+	�
	��	���� �� �&� 79) ��
 ���
'�(���� �
���� �&
�
	��� &
���� �
�
 �	��
�� ���
�-��
����� ��K*8 /�
��	��&� 8<<<0* 4&�� �
���� ����
 �	� 	�
� �
��
 ���	� * 3� 	���� �	 ��
��
�� �&� '�(������ �����
����&���
 ��) �
���
��)&�
& �
6�� �� �	������ �	 ��,
-�� �	��
	����(-�����
�� �	��
�����)
� ��-���*
4&� ��) �
���
�� �
6�� �� �
���� �	
�
�� �&� 79) �	
��) �����	������
��
	�-���
��	��* 4&� ����	��
��	�
	� �&� ��) �
���
�� ���� &)����� �	
 ��� ���������
��� 	� � �
��
 ���	� � ���� �	� ��
��
	�-���
��	��*
4&� �(
������ ��� 	� � �
��
 ���	�)
�
 ����
� ��,
���� ��	� �&� �;	�� 	� ��������
 '�(����
��
	�-��,
�
���
����

��	�* 3� ��
������� �&
� �&� ����	��
�
�
��	�����

���� � � �
��
 ���	� �
�
������

	��� �� ���	��� ���
����� �
��� * 7 ����

��� �&�
��
��
�� ���	� �
�
������ �	������ �� �	�
���)��&

 �������	
���	� ���������
��	�

���� ���
��	

/9�	���� !"""0� �&� ����	��
�
�)
� ����	��� �����-,

��� * 7 �������� 	�� 	� �))��6� 	� ��,���������
�&� ����	��
�
�)
� ����	��� �
���	(��
���

�

�	� 	� @ �	� �&� ��%�����
�

���
��
 �

�	� 	� �	��
�&
� 8"")&�� �����
 �������	
���	�* 4&� �
+	� �
��
	� �&� ��������)
�
����
� ����	��
��� 	�+�
� �		��
�	�
	��	�� ���� 	�+�
��
�� �	 ��� ��

6 ���	�
)&�� �	������*

�"�" 1��* 2	���	� 2������ %133'

1&��
�����
� 	���
�	�� -��� ����	��
�
�����
� ����,
�&	� ��
�
��
 �&��� ����
�
	�
��� �� �	 ���
����&

�

�� �
	���
��
�� ������� ��
���	����* �)�����

� �&��� ���)	�6 �
����� -�
�
�
� ������ ��
	�� �	��
���	��
��� �*�*� �	�� �������� ��� �	 ��
�� /������
��
�*� 8<<B0*

�	��)
�� �� �&� �)��
&���
������ ��	����� ��
�,����
��������
�
� 	� �������
� ������
��	
�
���)��&

��*
4&� ���
 �� �	 ������� �	�����
� ��
��

����
�� &
��
�&�� ������
���* 5�� ������ ����

��	� �� �	� ��	��& �	�

�� ������
��	�* �CC
��)� �&� 	���
�	� �	 ��
���

���
��
������
 �&
� ���� �� ���-���� ���	��

�� ��
������
���� �*�*� �&� ������ 	� ����

��	�� �&
� ���� ��
����
���)��&��

���
�� ����	� 	� ����* 4&� ������
��

	�����	��� ��	��� �� -��� �� �&�
�����
� ���)	�6*
4&��� -���
�� ���� �	 �&� �CC
�
���
�� ���� ������
��
	�)&�� �&� -���
	��
���

���
�� ������ 	� ������*

4&� �CC
	������ 	� �	�� �
+	� �	��)
�� �	�����
/��� ���* F0* 4&� 4�5� �	���� ��
� 2��
��	� ��	,

����� ��
��	��
�� &
����� �&� �����

��	�)��& �&�
�)��
&��� ���)	�6* 4&�
	���
��� ������
�� �
���� 	�
�	 �&� �
�� �	���� 	� �&� �CC* 4&� ����� -���
��
�
����
�� ������� ���	 ���
�
�� ������ �� �&� �
��
�	����* 4&� ������
�� �&�� ��	���
��
&�
6��

�
���� �&� ���,��-��� ����� ����� �&� �
�
�
��* 3�
�
����� ��������
 ����� �&�

��	� �	���� �� �	��-��* 4&��
�	���� �� ����	������ �	� �(�
����� �&�

��	�
��	
�,

���)��&
 ����� �*�*� �	 ���� ������
���� ����
��� �	
�&� �)��
&��� ���)	�6*

�
����
� �
�� 	� �CC �� �
�
 ��	�
��
�� �
�
 ��	,

������* �
	����
�
� ��7�� /� �
��0 /�
���
+

��
�*� 8<<B0)
� ���� �� �&� ���������
��	�* 3� 	���� �	
����	�� ����	��
�
�� �CC &
� ����������� �
�
����
�(�
���	� ����� �	�
��� �&��
��* 4&� ��	
������)��&��
�&� �
�� �	���� �� �
��� 	� �&��
��* ���* F �&)� &)
�&� �&��
��
	�����

��* � �������� �&��
� ��
����� �&�
����� -�� /���* F/
00
��
��
���
 �
���� �&��
� /���*
F/�00* ����� �� &
�
��
��� �&� �
���� �&��
�� �&� ��������
�&��
� �� ��
� �	 ��
���� �&� ��(� -��* 4&� �
����
�&��
�� �(��

� �&� ������ ��	� �&� -��
�� ������ �&�
���
�
�� ������ ���	
� ����� %���� /���* F/
00�)&���
�&�)
�� �	� ����&�� ��	
������* 1&��
�� ������ ��
 -��
&
�� ���� �(��

���� �&� �
���� �&��
� ������
���* 4&�
������ 	� ������
��	�� �
���� �&��
�� �� � �
��
* 4&�
�
���� �� �CC �� �������� �� ��
&
)
 �&
� �� �� '�(����*
3� �� ��� ���	��
�� �	� �&� �CC �	 ����	�� ��) � ��� 	�
������ %��
6�)&��
 ��) ���)	�6 ����
�� 	���� ����	,
��
�� ��) 	��� 	�
&
���� �&� �	��
� 	� 	�� ������*
�)����� �&� '�(���� ������ ������� �� ���%���� ��� 	�
� �
��
 ���	� * 4&� �
�� �	���� &
�

	�-���
���
������ 	�
	���
��	�� �)
�� �&� �
�
�
�� ������ /���*
F/�00* 2

&
	���
��	� �� &
����� �
 ��
����� �&��
�*
� ��
����� �&��
� &
����� 	�� �����
�
 ���� � �
6���
�&� -��� ����� �� �&� ����� %���� /���* F/�00�
�� ��	,

������ ��* 4&� �����

��	�)��& �&� �
�
�
�� �� �
��
�&�	��& �:�
	��
��� ��

 C,��3 ��	����� � � ,
�
�� /�
���
+
 ��
�*� 8<<B0* 2

& �:�
	��
�� ��

	�����
��� ���	�� �� �� ���� �	 �&� �
�
�
�� �	����*
���
� �&� -�
� ��.� 	�
 �:�
	��
�� �� ��6�)��
� �
��
 ���	� �� ���� �	� ���
	�����
��	�* 4&� ��
,
����� �&��
� ��
��	 ����	������ �	� �����
����

��	��

���� � �&� ����� /���* F/�0
�� /�00 ���	�� �� ��	
�����
�&� ��(� �����*

5�� ���	��
��
	�
����	� ��	� �&� ��������
�
2��
��	� �CC ��	+�
� �� �&
� �&� �������
�� ������
����	��
�
� ��%��������� 	� �&�� 6��� 	� ����
	���,
��

��	� � �����

� 	�� �� ��� � �������	
���	��*
� �
��
 ���	� �
�
������)
�
��	 �	��� �	 ��

����	��
�
� �	������
6 �	� �CC* 4&���
�� �)	 ��
,
�	��)& �CC ��
� ��������� ���� 	� � �
��
 ���	� �
�&� 	�+�
�,	������� ������ 	� �&� �
�����
�� �&� ��� 	�

 ������ ����
� �	� � �
��

	�����
��	� 	� �
�
�
��
��%�����* 7 	�����.��� � �
��
 ���	� �
�
������
�&� �

����)
� ��
��
��� �����-

��� * 1� ���� �)	
��;�����
���	

&�� �	� 	�����.��� �&� � �
��
���* F* 4&� �CC
����

��	�*

F� �" (������ ���)")*� ���� � +,� -	*���� 	
 ������� �� �	
����� �� %�..#' �#/0�

Paper IV

Sofware Design Conflicts 73

���	� &
������ �� �&� �CC* 5��)
� �	 ����

� �&�
��
��
�� ���	� &
�����)��&
 �
�
���� ���	�
&
����� 6�)�
� ���
��	
* 4&� 	�&��
���	

&)
� �	
����� �&�
����� ���	 �)	 	� �&��� O��(��	
����� /O��(
��	
����� &
�� ��;����� ���	� ��
���0* 4&� ����	�,
�
�
�
&
�

�������
� 	� �&��� �)	
���	

&��)���
��� �����
�*

4&� ���

� 	� ����	��
��� ������&��
��� ��	��
�,
���� ��
	������
���* 5�� 	� �&� �
�� ��	����� �� �&
�
������&��
���
�� �����
�
	��

��	� �� ���6�� ���	
�&� �
�� �(�
��
��� ���
� �&� ��� ��;����� ����
�
��-����	��* 3� �&�

�� 	� �&� �CC� �&�� ��� �	
 ���
,
�
��	� 	� �&� �
��
�� �&� 4�5� �	�����* 4&� ��,
���

��	�)��& 4�5�)
� �	��
�� �
�� ��

� ��3*
�

��� ��

� �����,��	
���
	�����

��	� ��

��
��
���
� * 4&� ��������� ��
���� �	 ���
 4C�A3�,�
���
��	�	
	�* 4&� ������

� �)
��� �&�

��	� �	����
��	
&
� �	 �� �	��-�� ���
� �&� L�	�6/ 0N ���
��	� �� ���,
���&��
��� ��	��
� �
6��

	������
	� 	� �&� �
�,
��� ��	
���� ��
������
�� �(������ �&��
�� /��)��� 8<<B0*
3�)
� �����%����� ��
���
� �	 	����
 ��) ��� 	�
L�&��
� �
��N ����
���� ��	� � �
�� ���
� �&� 	��� ���,
��	��� ����)��� L�	�� �
��N* ���
� �	�� �	��)
�� ��,
���	����)��� ���
����
�)��&
	�
������ ��	��
�����
�&�
��	 �

6�� �(������
� 	� �	
��������
	�
������
�������* ��
�����	�
� ��	����)
� �&
� �� �� ��
��
��E
��� �	 ����
	�
������ �	��)
���
 ��	����)&�
&

	������)	�6 &	���
�� ��
��
��� �&� %�
��� 	� �&�
��	��
�*

�"�" ���� �	���	���� %�45'

4&� ��)�& �� �&� �	���� ����
	�����

��	� �
�6��
&
� ���� ��
�
��
 �� �&� �
�� �
��
�� �&��� �� ������ �	
������� �&
� �&��)���
&
���* �	���� 	���
�	��
	�,
��
��� &
�� �	 ��
��
�� �&�

�

�� 	� �&��� ���)	�6 ��
	���� �	 ��	���� �	���� �����
�� 	� �		� %�
��� * �
�

���)	�6 ���
��	�� �	� 	���
��	�
�� �
�����
�
�)���
	�����
�� �������� �	 	���
�� �� ���)	�6� ��
& ��
����
�&
� �&	�� 	� �	�
 * �� �&� ��.� 	� �&� ���)	�6 ��
��
����
�&��� ������� ��
	�� �	��
�� �	�� ��
��%�
��* 5��
�(
���� �� �&� �
�
������ 	� ����	��
�
� �
�
* �	,
���� ���)	�6� �	�
 �����
�� ��
& �
���
�	���� 	�
����	��
�
� �
�
 �&
� ��

� �	 �	���� �� �����������
)��&	�� &��� ��	�
	�������*

��5 ��
�
����

��	� �&
�
	���
�� ����	��
�
�
�
�

�� � ����� ��
�,����
�
� ��� �� ����
��� ������-��

�� �	��-�� ����	��
�
� ��	����� �� �	���� ���)	�6�
/��� ���* �0* 4&� ����	��
�
� �
�
 /
	������0
��
	�,
����	��� ��	��� �� -��� �� �&� K2* 4&��� -���
�� ���� �	
�&� ��5
�
���
�� ���� ������
�� 	�)&�� �&� -��� &
��
��

&��

���
�� ��.�* 4&� ��
����� �
�
 �� �
���� ���	
��
	�� 	�+�
�� �� �&� ��5* 2

& 	�+�
� �� �&��
�
,
� .��� �*�*� �
�
&��
�
���� �����-��� �����* 4&� ��5
&
� �)	 � ��� 	� ������ ��
��

��A	� &���	��

� �&���&,
	���* 4&� &���	��

� �&���&	���
��
	���
��� ���
���
�	� �

& �
�
 -�� ��
�����* 1&��
 ����	��
�
� ��	����
�� ����
���� �&�
����

��	� �����
 �	��-

��	� ��

�
��
�� 	� ��

 ��	�����
� 4C�A3� ������

� �	 �&� 	�,
��
�	� ����	��
�����* 4&� ��	
��� �� �
���
����
��
���������� ��

 ��
�&�

� ���� ������

�*

4)	 ������� ��	���)���
������� �&� �
�6 	� ��,
���	���� �)	 ��5
����

��	��* 4&� ��%���������
���
�-

��	�)
�
�������� � �&� 2��
��	� ����
	�,
����

��	�
	��
� * 2

& ��	��
	������� 	� �	��
��������)	�6��� ����,���� �	� 8")��6�* 2��� �&	��&
�&� �)	 ��	��� &
� ������

� ��%���������
� ���
���
���
��	�
��� �&� ��%���������)��& �����
� �	 &) �	
�����	� �&�
����

��	�� ��;����* 4&� -��� ��	��
/��5 80 ���� �&��� �
�� �		�� �����
�� �)&��� �&�
	�&�� ��	�� /��5 !0)
� �	� ��������� �	 ��� �&���
�
�� �		��� �(
��� �	� �&� 	���
���� � ���� /�	�
���0

�� �	�
���
��
�
�� ����
����* 7	�&
����

��	��)���
��%������ &)����� �	 ��� ��� �� 	���� �	 ��
�
����

���* �* 4&� ��5
����

��	�*

�" (������ ���)")*� ���� � +,� -	*���� 	
 ������� �� �	
����� �� %�..#' �#/0� F>

Software Design Conflicts

74 Software Design Conflicts

&��& �

�
���
����

��	� ����	��
�
�* 4&� ��;�����
��%��������� ���
����� &) �	 ��� �&��� �
�� �		��
�������� �� �)	 ��;����� �	��)
��
�
&���
����� /���
���* >0*

4&� ��5 8
�
&���
���� /�&� ����� �
�� 	� ���* >0 ��
�
��� 	�
� ��7�� /� �
��0

����� ��

 ��
�� CDD
������ �������)&��� �&� ��5 !
�
&���
���� /�&� �)��
	�� �� ���* >0 ��
 �
��� 	�+�
�,	�������
�� �����,
�&��
��� CDD ������ ����� ��
�� OK3? -��� �	� ������,
���� ��	�
��* ��5 8
�� ��5 !
�� �	�& �
���
����

�� ���������� ��

 $�P� 9O3�
	���
��� ��
 4C�A3�*

��5 ! �� ����������� ����� ������&��
��� ��	,
��
�����
��

� �&�� ��
��	�
��

�� �����������
	��� �&� ��	
���	�� ��
� ��� ��
 �	�
��� �1���
/��)��� 8<<B0* 4&� ��5 8
����

��	� ����
 ��;�����
��
&��%�� �	� �
6��� ��� 	� �������� ��	
���	��* 3�
��5 8� �&� �
�
������� ��

&����� � ��
�����
 ���,
����� ������ 	� ��5 8 ������� ����
�
��� �

&
� ���,

�
�� OK3? ��	
�����* 4&�� �
6�� �� �	������ �	� ��5
8 �	 �(�
��� 	� �������� ��	
���	�� �� �
�
����
�� �	
&
�� ������
��	�� �
�
�
��
	���
��	��* �������� �
�,

�
��
	���
��	�� ���
�� ���� ������ ��7�� �����.
,
��	�� ����
�
�� 	�
� ��� /��
��
����
�� ���������
8<<<0*

4&� ����	��
�
� 	� �&� ��5 8)
� ��� �		�* 4&�
�
�� ��
�	� �	� �&��)
� �&� �		� ����	��
�
� 	� �&�
��7��* �)�����)� �(��
� �&
� �
�
�
�� 	�����.
,
��	��� �*�*� ���6
	�
�� ����(�
�����)��� ��
��
�� �&�
����	��
�
� 	� �&� ��7�� ��
�
��

�� * 2��� �� �&�
����	��
�
�)
� �		�� �&�
����

��	� �

���,�� �
�&��
)��� 	�
� @,)
 ���* ���* B �&)� �&
� ��5 ! &
�
�����-

��� ������ �&�	��&��� ��
	��
���	�)��& �&�
��5 8* 4&��
����

��	� &
�� &)�����
 �	�� ���E,

���� �

��,��* 4&� �&�	��&��� ��
��
���)&�� �����
�	�� �&
� 	�� ��	
���	�* 4&� �	������
6 �� �&� � �
��

���	� �
�
������)
�
 �
+	�
	�������	� �

�	�*

1� ������� �&
�
� 	�����.�� � �
��
 ���	� &
������
)	��� �
6� �&�
����

��	� �

��,�� ��	���� *

7	�& ������� ��	��� &
� ��	����� ������� ��
����*
4&� ��
�	��)���� &)����� �	��)&
� ��;�����* 4&�
��5 8 ��	��� �&� 	��)��& ��%��������� 	� ����� �&���
�
�� �		��� ���
 �	� 	� �;	�� ���	 ��
��
���� ��;�����
�		��* 4&� ��5 ! ��	��� �&� ��	�� �	� ��������� �	 ���
�&��� �
�� �		��� &
�
 &
�� ����
&		���� �&� L���&�N

�
&���
�����
 ��	����)&�
& �	��)�� �&� ��
	��
��	�� �&�	��&	�� �&� ��	+�
�* 1� ��
���� �&
� �&�
��
�	� �	� �&��)
� ����� �&
� �&� &
� �		 �
�

&	�
��* � ��'�
��	� �
�� �� �&� ��5 8 ��	+�
�
��	
����	��� �&�� & �	�&����* 3� ������
�� �&� ��
���	� �	
���
� ��7�� ��� �	� 	�� ��-�� �&� �
�
�
��
�,

&���
����* 3�
��	 ������� �&� ������ 	� �	������
�
&�,
��
����� �� 	�&�� �
��� 	� �&�
����

��	��
 �����
��	�
�&
� ������ �	 ����� �&� �����	���� �� ��������� �&�

����

��	�*

1&��� ���� ��� �&� ��5 ! ��	+�
�)� �	��� �&
� �&�
�����	���� 	� ��5 !
	��� �� ������� ���	 �)	

��,
�	����� 	��

���	� �������� �&
� ������&��
���� ���,
���-�� �	�& ������
�� �&� ���������
��	�# �&� 	�&��
�������� ������&��
���� �
6�� ������
�� ���������
,
��	� &
����* �))��� �����	����
�
�� �	 �
�
����
��	��
����� ����� �	 �� ��� ��������
�*

�	 �����

1� &
�� ������� �&��� �
��� ��
�,���� ����
	�����,

��	� ������
����

��	�� /79)� �CC
�� ��50� �	�

����	� 	� > �* 4&�
����

��	�� &
�� ���� ������� ��
�&��� ��������
�
	���(�
�)���
� ��
� �(��������
�
�����	������
� @,)
 ��� 2��������� �������	
���	�
� ���� 	�)&�
& �&� �&���
����

��	�� &
�� ���� ��
�,
�
���� 	�����.��
�� �&�� ��,��
��
���* 4&� ����
��	

���* >* 4)	
�
&���
����� 	� ��5*

���* B* ��5 �

��,�� 	�
� @,)
 ���*

FB �" (������ ���)")*� ���� � +,� -	*���� 	
 ������� �� �	
����� �� %�..#' �#/0�

Paper IV

Sofware Design Conflicts 75

��
�����
 ������ 	� ��������)�)��& �����	����
�
2��
��	�*

4&�� ���	�� ��
 ����
� 	� 	�� -������* 1� &
��
������-�� ���
����
�� �	������ ��
�����
	��	� �	 �&�

����

��	��* 4&��� -������ &
�� ���� ������� ���	 -��

���	����* ���
�� �)� &
��
�������� 8" ������
����������)��& �&�
�� 	� &������ ��������� 	� ������

����

��	�� �	 �
�
�
� �������	
���	� ����	��
�
�

�
���� 	�&�� %�
���
��������� ��
&
� �
���
��
�����

�� '�(������ ��
 �	�� �E
���� �
����*

�	 ������� ������

1� &
�� ������� 	�� -������ ���	 �&� �	��)��� -��

���	����*
� ������� 8�)&�� �������	
���	�� &
�� ���� �;�
����*
� ������� !�)&�� �������	
���	�� &
��

���� ��	�,

����*
� ������� F�)&�� ������&��
���� &
� ���� �;�
����*
� ������� ��)&�� ������&��
���� &
�

���� ��	�����*
� ������� >�

��	��)&�
& �;�
����� ��
��
��� �&� ���,

�	��
�
� 	� ������&��
���
����

��	��*

0"#" 4*�����	2���	�� ,��� ���� �6�2����� � �

���
��� ���)&��
����

��	��
	����� 	� �)	 	� �	��
����������� ���,� �����*
��������� ������� 2	�������� 	
 ��	 	� �	�� �*��

�������� �,�2, ��� �	������ ��������2� 	� � *�����	2���
�	� 	� �7�2*�� 	� ��	 �������� 2	��*����� *�*���� �2����
� ���� 	� � ������	2���	�"
 !������� ������ �� &�8 �� �,� $&�� 133 ��

�45*
���
��� ���)&��
����

��	��
�� �
��� 	�
 �&���

�
�� � ���� �&
� &
� �&)� ������ �	 �

��,��)��� 	�
�������	
���	��*
��������� 4��� �,�� ����� �������� �"�"� ��$4�

,��� �,	�� �,�������� �	 �2����*� ���� 	� �*�����	2���
�	��" 8� ,�� ���	 ���� �,	�� �,�� �����2���	�� ���� 	�
�*2, ������� �2����*� �92������ 	� �*�����	2���	��"
 !������� +,� ������� ������� �� �,� 133 ��

�45 8*
���
��� ���)&�� �������� ����
�
�� 	� �&� �
��
�,

���

��	��

� �� �(�
���� �� �
�
����*
��������� 8� 	*� �7������2�� �,�� �� � ������ ���
	� �

�	���������� �����2���	� �	 *����:� � �*�����	2���	�"
7��
2*���� �*������ ������2�� 	
 �,� ���� �����2���	� �� ����
����� *���� �������� ��	2����� ,�� �,	�� �	 �� ����
�6�2����" +,� ���,	 2�� �� 2	����� �	 1�� ��� 8
* +,�
L�*���������N ,���� ,	������ ��2��� ������2�
�	� �,�
���� ��;*������ �����2���	�"
 !������� +,� ������� �� �,� ��	2��� �����	�� 	
 �,�

133 �� �45 8*

0"�" 4*�����	2���	�� ,��� 2�*�� ��	������ � �

���
��� ��� �	� ������&��
���
����

��	��*
���������
��� �,	*�, � �	� 	
 �6	�� ��� ����� ��

��������� �,� �����2���	��
	� �������� �7�2*��	�� �	�� 	

�,� �*����,��� � �����2���	�� ��* �� �*22�� � ��
�2������*� ��	����� ���,	*� �	 �<2���	��" +�� ���	���
 ����	����� ���,	 � �� ������ ��� �,*� �	� ��	*�, �	
 ����� �� �92���� �*����,��� � �����2���	�
	� �*����
��	2���	��" 5�2� �,� �����2���	�� ,� ���� ����*��� ��
	�����:� � ,	������ �,�� �*22�� � �� �2������*� ������

�2�	����"
 !������� $&� ������� 133 4��� �� �4. � ������*
���
��� �	�� ��

��� �� ��;��� ��	� &
��)
�� ��
��,

��	�
�� ����)��&�� �&��
����

��	� �	�
��*
��������� 4*�����	2���	�� /�4=��0 ��� � ���,�� ���

2	�2���
	� ����� ��������� ������ �����2���	��" +,��
����� �		��� �"�"� ���� �		�� ��
*�2��	� ��������� �*2, ��
,��� 	�����:���	� ���������� ��� *�*���� ���6�2���� 	� ����
�	��2	������� ���, �*�����	2���	��" >� ,���� ,	������
�7������2� � ���� ����	������ 	��� �,� ���� ! ��"
 !������� +,�� ����� 2���� ��������� �� ������		��

*�� �� �,� $&�� 133 �� �45"

0"�" 4*����,��� ��� ,�� ���� �6�2����� � �

���
��� ��� �	� ������������
����

��	�� 	��� ��������
��	
���	��*
��������� 5*� ����*���	�� ,��� �,	�� �,�� �� �� �	��

����� �	 �2,���� ��	��� �2��������� *���� �*����,��� ���"
+,��� ,	������ ��;*���� �7������� ����*���	�� �� 	������
:���	�" +�� ���	��� ����	����� ���,	 � �� ������ ���
�	� ��	*�, �	 ����� �� �92���� �*����,��� � �����2���	�

	� �*�����	2���	��"
 !������� $&� ���, ������	2� $&� �� ������ � 133

���, ������	2"
���
��� ��� �	� ������� ��� �&� ������
�� �����,

����
��	� 	� �
�
����
����

��	��*
��������� �����	���� 	
 �*����,��� � �����2���	��

2�� �� ����� ���	 ��	 2����	����� 	�� �,	 �������� �,��
�*����,��� ��� ������<�� �	�, ����� �� �,� ���������
����	�# �,� 	�,�� �,���� �,�� �*����,��� ��� ����� �����
�� ������������	� ,�� ��"
 !������� +,� �������� 	
 �,� $&�� 133 ��

�45 !*

0"0" 4*����,��� ��� ,�� 2�*�� ��	������ � �

���
��� ��� ��
����

��	��)&�
& ���%�����
��	

��

�� ��,
��	

�� � �
��
 ���	� *
��������� 8� 3 �� 3?? �����2 ���	�� ��

���	2��� �� �����	2��� ��� �,� 3��������
*�2��	��
������� � �� �	

� �* 4��� ������������	�� 	

������� � �� �	

� � ���
 �
	
 �����
 �����	� ��	

��	���
�
��	���
�
���� �,�� *�� � �*��7
	� �,�

*�2��	� 2	 �" �*2, ������������	�� 	
 �����2 ���	��

�" (������ ���)")*� ���� � +,� -	*���� 	
 ������� �� �	
����� �� %�..#' �#/0� F=

Software Design Conflicts

76 Software Design Conflicts

���*�� �� � �������:���	� �	������2� �� �*����,��� � ���
���2���	��" 4	��	���� �,� ������ 	���,�� �������� ��
�,� 2	������	�
	� ������2� 2�� �� �*��������� 	� �*����
��	2���	��"
 !������� $&� ������� 133 4��� �� �45 ! ������"
���
��� ��� �� 	�+�
�,	�������
����

��	��*
��������� @����2���	�� ����� ����	�� ���, 	�A�2��

	������ ��2,��;*�� /3?? �����2���	��0 *�� �����2
���	�� �	��
��;*����� �,�� � ���*2�*����� ������
�����2���	�� /3 �����2���	��0*
 !������� $&� ������� 133 4��� �� �45 ! ������*
���
��� ��� ��
����

��	�� ����� -�� ��
����
�
��,

��� 	�+�
� ������ �	� �
���
��
����� 	� '�(������ ��
,
�	��*
��������� 3*����� ���2��2� �� 	�A�2��	������ �����

�� ����� �������� �� �	� ������ �,� ���� �����������
����,��
	� ���
	����2� �	� ���������������" @ <��
������ � ������� 	�A�2� ����� 2�� ������ ����� �,� ����

	����2� �����<2������ ����2�����
	� �*����,��� � ���
���2���	�� �7�2*���� 	� �*�����	2���	��*
 !������ 133 4���
������� ��� ��

��� �� ��;��� ��	� ��
����	�
� �	��,

)
�� �����	�����*
��������� 4*����,��� ��� �� � ���,�� ��� 2	�2���
	�

�,�� ���� 	
 �����2���	��" +,�� ����� �		�� �*2, �� ����
�		��� ��
*�2��	� ���������� �"�"� ,��� 	�����:���	� ���
������� ��� �� �	��2	������� 	� ���6�2���� �� �*����
�,��� � �����2���	��" >� ,��� �7������2� � ���� ��
����	������ 	��� �,� ���� ! ��� ,	�����" @� � ���	���
��	���� �� �,�� ����	���� *�*���� ,��� ������ � *2���	�
�� ������� �������� �����2���	��� ����2����� �*����,��� �
	���" ������ �2�������� �*2, �� 	2*�������	� �� �������
	
 �������� �	
����� �,*� ���� ����	����� �	�� ���2��
2	����� �	 ��� ���	��� ����	����� 	
 ��;*������ ������
2���	��*
 !������� $&� ������� 133 4��� �� �45 ! ������*

0"�"
6�2���� �2��	�� ,��� ����� � �

���
��� "�� �	 ��� ����� ��� �(
&
���
���
	��	�����
�����
� 	�
 -�� ��
����
�
��
��� 	�+�
��*
��������� @ ����� ���� 	� ���� �*� �72,��������

2	��	����� ,�� ���� �,	�� �	 ���� ������ ���
	����2� ��
���� �� ������ ��������������� /��
��
���� ��
�*� 8<<<0*
 !������ 133 4��� /��2,���2�*�� �����0*
���
��� "�� �	 ����	��
� ���
�-
 	�+�
� �		�� �	�

	����(
�� � �
��
 	�+�
��*
��������� 8����� 	
 �����	2����� �� 	�A�2� �� ���

���	��� �� �� ���*��� �	 � �		� 	
 	�A�2�� �� �,�� � ���
	�A�2� 	
 �,� ���� ���� �� ��� � �� 2�� �� ��2�����
�	�
�,�� �		�" +,� ������������	� �� �����2���	� ���2�<2 ��
2�� �� ���������:� � �"�"� 	�A�2� �		�� 	 �	� 	��� �� *2�
�,� �*���� 	
 ���	2���	��� �,�� ���	 ����	�� �,� ���
	��
���2� 	
 �,� ��;*������ �7�2*��	�"
 !������ $&� ������ /	�A�2� ����� �����0*

���
��� "�� �	
&
��� ���	�
��	

��	� ��	� �&�
&�
� �	 �&� ��

6*
��������� @����2���	�� 	
��� ��� ����	���� ���	��

�	 ���
	�� �� 	������	�" @ �� ,���� �� �	 *�� �,� 	�����	�
���� ���� �
 �,� ��:� �� 2	������ /��� �,� 2	 � �7������0*

��
���������/��� ��0 Q
��������
&
�� ��;� ��) ��������
&
�R8BS#
��
�/��� ��;� 8B0#
������/��T���� ��;0#
������ ��;#U

@� ����������� ������������	� �� �	 *�� ���	��
�	� �,�
���2�*

��
���������/��� ��0 Q

&
� ��; R8BS#
��
�/��� ��;� 8B0#
������/��T������;0#U

@ ����2�� ���*���	� �,��� �����2 ���	�� �� *�� ��
�,�� �,� ��:� 	
 �,� ���	2��� ���	�� ,�� �	 �� �2� �
�� �*������" 8� �*2, 2����� �,� 3��������
*�2��	�� ���

����� � 2�� �� *�� ������ 	
 �,� 	�����	� ���" +,�

�2��	� ���	2���� � �����2 ����� 	
 �����
�	� �,�
���2�"
 !������ $&� ������ /������������	� �����0*
���
��� "
� �	 ����

� �&� ��
��
�� ���	� �
�,

������ �	������)��& ��) 	��� 	�����.�� �	� �����
��������� $� �����2��� �,� ���� �� ���	�� ����

������� �	*����� ���, �� �4=!� ������������	�� �,�
���
	����2� 2�� �� ����	�� �����<2�����" �����2��� �,�
���������� �	*����� �� ���� ������ ���2� �� 	�� �	� ���
;*��� ���2	�������	�� 	��� ���������� 	
 �,� �����2���	�"
$	�,
������� �� 2	����2��� �����	�� ��� ���������*
 !������� $&� ������ �� 133 4��� /	��������

������ �����0*

"	 #�����
 $��%

����	��
�
� ��
��,	;� &
��
�)
 � ���� �
���
��
)���
	������ �	 �� �
��� �� �&� ������ 	� �	��)
��*
�����
��	��
�� ���

� �����
��	��
��� &)����� 	����
�
��� 	� ���������
�
����
��&�� �
�&�� �&
� �
��	�
�
�����������* 1&�� ��
	��� �	 ����	��
�
� �����
��	��
����& /8<<"0 &
� ���������
 ���&	� 6�)�
� �&�
�	��)
�� ����	��
�
� 2���������� ���&	� /��20� ��
)&�
& �&�
�������� �&� ���	��
�
� 	� &
����
 ��	
���
�	 ������ �&
�
�� ����	��
�
� ��%���������
�� ���-����*
4&�
���	

& ��� &)����� ���
�����	��
��)��� �&��
�� ���� ����
��� 	�
����

��	��)��& &��&
�� ���
����
� ��%��������� 	� ����	��
�
�*

1��& �&� �(
����	� 	� ���
��	

�� ��
��&�
��)�
&
�� �	� �	��� �
� ������� 	� �
�
���� ���	�
��	,

�	��* � ���
�����
	������ ����� &
�� &)����� ����
)������ � �
���	�
�� J���&
� /8<<@0*

F@ �" (������ ���)")*� ���� � +,� -	*���� 	
 ������� �� �	
����� �� %�..#' �#/0�

Paper IV

Sofware Design Conflicts 77

� �
��
 ���	�
��	

��	� ��
� ���	��
�� �
�� 	�

����

��	��)������ �� CDD* ���&,����	��
�
�
��	,
���&�� �	� � �
��
 ��	�
��
��	

��	� &
�� �����
��
)���
	������ �	 ��� 	�
	������
��� ��������* V	�� &
�

�������� �&� ���+�
� ��
 ������ 	� �
����� �*�*�
������� ��
�* /8<<�0
�� V	��
�� 9���)
�� /8<<�0*
4&��� �
����
��� &)����� �	��� �	
���� 	� � ,
�
��
 ���	�
��	

��	�� �� ��%�����
�
����

��	��* �
&
����� 	� �
���� ���������� ��)
��
�
���� ��
��,	�,
�&�,
�� �	����	��� �*�*� �
������� &
�� ����)������*
�
&���� �� 	�� 	� �&� ��
���� ����
�
&��� �� �&��
��

/�
&����� !"""0* 4&� �
���� �&) �&
� �
�
���� �	��)
��
����	��
�� �&� ���� �	� ��) �
������
�� ���	��
/�
&����� !""80� ��� ��
��	 ��%����� �&
� �(�������)���,
6�)�
�� ��

������ �
������
��
�
���� 	�
	����,
������ �� 	���� �	 	���
�� �E
����� �� �&� ��)
	���(�*
5�� �(
���� �� �������	��
 ���
	��	� �
������
)&�
& &
� ��	��� �	 ��
� ��
	������ �	����	� �� �
�,

���� �	��)
�� ���
� �� 	��
�������� �&� ����� 	�
��
����
	�+�
�� /�
&����� 8<<<0* 3� 	���� �)	�6 ��	���� ��
�
�
���� �	��)
��� ��
��	 &
� �	
������ �&� ����� 	�
	�+�
� ������
��	�*

&	 '���������

1� &
�� �� ��
��	� � �	����� 	��
 ������ 	� 	
,

��	��)&���)�
	������ �������	
���	��
�� ���,
���&��
���� �	 ��
� �;�
����)
 	� ��
��
���� �&�
����	��
�
� 	� ������
����

��	��* 1� &
�� �	� ��

�)
 � &)�����
	��
��� �&� �;�
��������)��&
	�&�� 	�����.
��	� �	����������� ��
&
� 	�����.
��	� 	�
�&� �	��
�
	�� 	�
������ �)� 	� ���
��	�
��� * 4&�
79)� �*�*� &
� ��� ��%�����
� ��	
������

�

�� ��,

��
��� �
 �

�	� 	� @ � ������ ��,������* 3�)���
�
6�
� @)
 ,���)��& �����
� �

��,�� �	 �
�
&
��
&
� ��
��
�� �� ����	��
�
�* ��� �������	
���	��

� �;�
����)
 �	 ��
��
�� �&� ����	��
�
� 	� �&�
79)W ����&���	��� � ��
����� ��(����
�
�� /��	,

�����0 	�
 ��%�����
� �CC �������)� ��

&�� �&�
�
�� ��	
������

�

��
� �&
� ��	��
�� �� 	��
&��&� 	�����.�� ������&��
��� �CC �����	�* C
�)�
��
��
�
�� �&
� ������&��
���� ��
� �;�
����)
 	�
����	��
��� �
�
������� �	� �������	
���	� ����	��
�
�
���	 �&� �CCW 4&��� ���
��
����� � �	 ����
�
��)��

� �)&�� �	 ��� 	� �	� �	 ��� �������	
���	�� 	�
������&��
����*

4&� ��
�� 	� �������	
���	��
�� ������&��
����

��
���
 �
��� ������ 	� ��) ��	�����* �
� 	� �&���
��	�����

� ��	�
�� ��
�	���� ����� �	�� �(����,
��
�� �����	����* 1�
��	 ������� �&
� ��	�����)��&
���
���� �&��� �
�� �		��)��� ��
��
��
� �������	,

���	�� ��
	��
	��	� �� �&�� � �� 	�
����

��	��*
4&� ������ 	� &��&� �E
���� �
�
����
����

��	�� �	�
�������	
���	�� �	��� &)����� ��%����
 &��&�� ����� 	�

�6���
��
 ������ 6�)����� 	� �&� &
��)
��
�
&���
,
����
�
	��
��� �	 ��������� ��%�����
� �	��)
�� �	�
���,��	
���	��* 3� �� �	� ��
�	�
��� �	 �(��
� �&�
���
��

����

��	� �����	��� �	 &
�� ��
& 6�)������
�� ����
�� &� 	� �&� &
�� �� �
 ����� �	� �� �	������ �	 -��
�
�E
���� �	����	� ��

��� 	�
	,�(������ ��%��������� 	�
�
���
��
�����
�� '�(������ *

�
&
������ �� �	 -�� �
�
���� ������ ���
������)&�
&

� 	;�� �

�
��� ����	��
�
� �	� �	��)
��)&�
& �� �	�
����
��� �������� �	� �������	
���	�� 	�

��	� ��
&��&� 	�����.�� �	� �������	
���	��* 1� &
��
�
��,
�
���� �&
� � �
��
 ���	� � �*�*� ���	�
��	

��	�

�� ��,
��	

��	�� �� �&� �	��
	��	� �	������
6)&��
�(�
����� �&��� � ��� 	� 	�+�
�,	�������
����

��	�� 	�
� ������
 �������	
���	��* 4&� ��	����)��& � �
��

���	�

� �� ��
��)��& �� �
��	��)
 �
��
� ���,
������ ������� �*�*� ����� �(
&
���
��� �����
� 	� �(���,
�
���
	��	������ 	�+�
� �		��
�� �
�
�����.�� &�
�
���������
��	��* ��
 ������� �	�& �������	
���	��
��
������&��
����
�� �	�����
�� ���	��
�� �
��� �� ������

����

��	��* �������	
���	��
�� ����
�
�� ������&,
��
����
��
������� � &)����� �)	 �		�� �����	���
��
&�	�	����
	��������� �&� �
	�� �	� �����	���� �
���
��
�,���� ������
����

��	��* 4&� �

6 	� �6����
��
��,����& 6�)����� 	� �������	
���	�� ��
� �	 �
���
����
�
&�� ���)��� �&�
����

��	� �	��)
��
�� �&�
�������	
���	� &
��)
��# ����
�
&��)&�
& ����� �&�
�������	
���	� ����	��
�
� �����-

��� * C&		����

�
�
����
�
&���
����)&�
& �� ������
�� ��������� �	
�	��)
��A&
��)
�� ����
�
&��

� �&��� �� �&� �	�� ����
�� �	�� �E
���� �&
�
 �	�� ��
&��

��
��
�
��
�,

&���
����*

()��
������

C	������
 �	��)
��
	��
� �����	���� ������
�,
���

��	��* 5��� �&� �
��� �&�
	��
� &
� ��
��
��

�� ��

�������
�
���� �	���� �	��)
�� �����������
���
������� ��
������ 	�+�
�,	������� ������ /7		
& ��
�*�
8<<<0� ��
��)	�6� /�	�����
�� $	&��	�� 8<<B0
��
������ �
������ /9
��
 ��
�*� 8<<=0�
�� &
� ����

�����
���
�
�	��� 	� �&��� �
�� �		��
�� �	��)
��*
����	��
�
� ��%���������
�� �
��� ��� � ����� �&�
�
���� �� &��&,����	��
�
� 	;,�&�,�&��� ���,��	
���	�
&
��)
��* 3�
���� �&
� ��)
��
����
�
�� �	�
� �&�

����

��	� ��������� �	
	������

&
��� �� &
��)
��
���
��� � ��	�
 ���,��	
���	� �	 �������	
���	�
�
&�,
��
����� �*�*� ���*

4&� ��
�	�� �	� ����
���� �	 �������	
���	� &
��,
)
�� �
 �� &��&�� ��%��������� 	� ����	��
�
� 	�

	��������
� ��%���������)��& �����
� �	 �

�
���
����	��
�
�* 3������
���� 	� �&� ��
�	��� �&� ����
��	�
���� �� �
�� �� ��
&
)
 �&
�
 &��& ����� 	� �
��,
�
��
�����
�� '�(������ �� �
���
����� �*�*� �&�
����,

��	�� ���� ����� �����.� 	�+�
�,	������� ������� �&���

�" (������ ���)")*� ���� � +,� -	*���� 	
 ������� �� �	
����� �� %�..#' �#/0� F<

Software Design Conflicts

78 Software Design Conflicts

�
�� �	��)
��� ��
* 4&� ������ 	� �E
����
����

��	��
�	� ����� ��
 ���
� �
�6 ���
�
	�����

��	�
��
� �
&�	��.
��	�

� �
��� ����� �&� �

��,�� �����-,

��� * 2E
���� ���
������ �	� &) �	 ������
�� ��,
������� �������	
���	�
����

��	��
��)��� 6�)�
��	� �
�����-

�� ����������� �����
	������
����

,
��	��* 3� �&� � �� 	�
����

��	�
	�������� &��� �&�
�
�
���� ����	��
�
� ����� &)����� �� �
�
�
��)��&
	�&�� %�
���
��������� ��
&
� �
���
��
�����
��
'�(������ *

�	� �����	���� ���� �	 �����	���� �
���
��
���

�� '�(���� �	��)
��� ��� ���
����
�)��& �
�
����
&
��)
��
�
&���
�����
�� �
�
���� �	��)
��� �
6���
�&� ���&� ��
��,	;� �	� &��&�� �������	
���	� ����	�,
�
�
�

� �� ��� ��E
��� 	� ���� ���	������* 4&�
�	
� 	� �&�� ���� &
� �&�� ���� �	 ��-��
 ��� 	�
������ ����������)��& �&�
�� 	� &������ ��������� 	�
������
����

��	�� �	 ���
����&� ��
 �	�� �E
����
�
�����
 �
�
�
� ���)��� ��� ����	��
�
�� �
��,
�
��
�����
�� '�(������ *

4&� ���� 	� �&�� ��
��	� �������� 8" ����������)&�
&

�� �
��� 	� 	�� -������* 4&��� ����������
�� �	 ��
��

����� 	�� � 	��� ��
�����)��& ������ R3S� �����

��E
���� ��� ����	��
�
� &
� ����

&����� /���
���* =0* � �	�� ���
���� ')
&
��� ���
������
��	 �&�

������
� ��	
����� �	� �

& ����������

� �� �	��� �	,
���&��)��& �&� ��������� ��-����	�* 4&� ����������

��
����&���	��� �� ������� ���	 �	�� ��	��� /��� ���* =0*
4&� -��� �)	 ����������
�� �������� �	 &���
 ��������
�	 ��
���)&��&��
 ����	���
����

��	� ������ ��
�

�
��� 	�
� ���)��&	�� �	��-

��	���)&���
��������� R333S ��
	��
��� �&� �������� �	 ��
	������

�����
���� 	�����.
��	�� 	�
� �	��* 9��������� R3PS

�� RPS
�� ��������	��
� �	 &) �	
&		��
 �
�
����

�
&���
����* 4&� �
�� -�� ����������
	�
��� &) �	
������ �E
���� ������&��
��� ��	��
��)&�� �
��,
�
��
�����
�� '�(������ ����
��	 �� �
6�� ���	
	�,
�����
��	�* 4&� 	������� 	� �&� ���������� ��
��������
�	 ����	�� �&� �
�� ���
��� � LL����	�� �&� 	���
��
����	��
�
�)��& ������� �;	��� �*�*� ������� �
�,
&	���NN*

4&� ��	
��� �� ����
��� �������� �	� �(������
�,
���

��	��)&�
& &
�� ���� �����	��� �	�
 ���,��	,

���	� � ����* 4&� ��	
���

�� &)����� �� ������
��	
)&�� �����	���� ��)
����

��	��* 3� �&���

��� �&�
�����	����� �&	��� ��
��
� �� �&�
����

��	�)
� �	 ��
�����	��� �	� ���,��	
���	� &
��)
��* �)����� 	�

��� �
�� ��
���)&�� �&� ������ �����
	������ 	�
�	����
�� ��
��
��� �&� -��� ���������� �&	��� ��

	��������* O���� �&� ���������� �� ��
&
� �
�� ��
��
��%����� �	�� ���	�
�
��
��	��* �	� �(
����� �&�
����	��
�
� ��
��
��	�� ���� �� �
�� �����
�����
,
���� ��
��
��	�� ��
&��%��� /�*�*� �����
��	� ��
&��%���0�
���
�
� �(�
��
���
����

��	� �	�� �	� �� �(���* 1�
������� �&
� �� �&� -��� -�� ����������
��
������ �� �&�
�
�� ������� �&� �
�� -�� ����������)��� ����� &
�� �	
�� ����*

��
�����
���� �
��
��	 �� �&
�
�
����

��	�
���
�
&
� ���� �
�
�����.�� ����� ������&��
��� ��	��
�����
/)��&	�� �&��� ����������0* 3� �� ��6�� �&
� ��
&
�
�,
���

��	� ��;��� ��	� � �
��
 ���	�
	������	�* 4&�

�� 	� �&� ��	
��� �� �	 ����	�� �&� 	���
�� ����	��
�
�
��

	��,�;�
����)
 * ���
� �&� �
�
�������
���
� ��
������������ �&� -���

��	� �� �� �&��

�� �	 ���
� �		�
����	��
�
�
� �	������ ����� �&� �(������
	��
��

�
&���
����� �*�*� � ����	�
��� ���	���� �&� � �
��

���	� �	������
6* 4&�� ������� �&
� �&� 	����
� 	����
��)&�
& �&� ����������
�� �	 �� ��

����� ��;���* 3�,
���
� 	� ����� �&� ���������� ����
�� ��	� R3S �	 R?S�)�
�������
�
�����
���� 	���� /�&)�)��& �
�&��
��)�
�� ���* =0*

O���� �&� ���������� �� �&� 	���� ����

��� � �&�
�
�&�� ����� �
 -(
 ����	��
�
� ��	����)��&
������� �;	��* 2(������
�� ��	� �&� 79)� �CC
��
��5 ��	+�
�� �&)� &)����� �&
�
����

��	� ���
�-

	�����.
��	�� /�*�*� 	�+�
�� �		��0
�� ��E
��� �	
�
���
��
�� �
 �&����	�� �	�� �&��� �;�
�
����

������ 	� ��	��
� ����
���* 1&�� ��
	��� �	 �&� �	��,
���� ���
������)� �&�� ������� �&
� �&� 	�����
� 	�����
�*�*� ��	� R3S �	 R?S� �&	��� �� ����
��	 �� �&��� ����,

��	��*���* =* 4&� ���������,�
��� ��	
���*

�" �" (������ ���)")*� ���� � +,� -	*���� 	
 ������� �� �	
����� �� %�..#' �#/0�

Paper IV

Sofware Design Conflicts 79

)� *
+� C	������
 �������	
���	�)&�� �&�
����

,
��	� ������
	������ 	� �
� ����������� � ���� ��,
��
�
��*
��������� 5*� �7������2� �� �,�� �����2���	�� 2	��

������� 	
 �*������ ������ ������2�� /��	2�����0� �	������
�7�2*���� 	� �������� 2	��*���� 	� ���� ����2� 	� � *���
��	2���	�� �2����*� ���� 	� �*�����	2���	��" +,� ������
������2�� 2�� �� 	
 �6����� ������� 	� 2	���� 	
 �,� ����
������" 8
 �,� ������2�� *�� �,��� ���	*�2��� �"�"� � ���
����� ������� �,� ���2,�	��:���	� �*�� �� �*��	��� ��
�,� ���	*�2� �� �*
,���
 �� ���
����� 8

�� 8
*
-������ .�$�

)� *

+� C	������
 �������	
���	�)&�� �&�
����,

��	� ������ �� �
��� 	� �&��� �
�� � �����)&�
& &
��
�&)� �&�������� �	 �

��,��)��� 	� �������	
���	��*
��������� 5*� ����*���	�� �,	� �,�� ���� �,��

����� ������� �2����*� �92������ 	� �*�����	2���	��"
@����2���	�� ���� 	� �*2, ������� ���	 �2����*� ���� 	�
�*�����	2���	��" +,��� ,	������ *�*���� ��;*���� ���2���
�����	�� 	
 �,� �,�� ����� ������� �� � �� �	�� 2���� ���	
��2	�<�*����	� 	
 �,��� �������*
,���
 �� ���
���� 8�*
-������ .�$�

)� *

+� ��
	������ ����� ��
����	�
� ����	��
�
�
	�����.
��	� ��
&��%��� �����
� 	� �������	
���	��*
��������� >� ������� �,�� �,� ����� 	
 �*�����	2���

�	� �����2���	�� 2�*��� ��� ����� 	
 ��	�����" 8� �	��
2���� �*�����	2���	�� ����	 *2� �	�� ��	����� �,�� �,��
�	���" @���������� �	�*��	�� �*2, �� ��� ���	��� 2	 � 	����
��:���	� �,	*� �� 2	��� ��� <���" 8
 �,� �*�����	2���	�
 	���� �� ���� ��	��� ,	������ �� �,� �	������� ���� ��
���
	����2� �� ���������� �*�����	2���	� ,�� ���� �� �

2	��������� �����������
	� ����	���� ���
	����2� ���� ��
����� ��������� ������ �����2���	��"
,���
 �� ���
����� !

�� !� /���
��	 ��
��	� >0*
-������ .�$�

)� *
/+� C	������ �������� ��	
����� �	� &��& ���,
�	��
�
�
�� �

�
��� -���*
��������� >� ,���
	*� �	 �	�� �� ���
	����2� *��

��� �*������ ��	2����� �� 2	������	� �	 �*����,��� ���
��	��������" ���,��� A*�� �,� 	��	����" 4�������2���	� 	

	�A�2��	������ ����� ,�� �� �	 �
��;*��� *���� 	
 ��
����2 ���	��� �,����� ���������� �,� �*����,��� � ���
���2���	�
�	� �2������*�" 8� 	*� �7������2�� � ��������
��2,���2�*�� ���� 	� �*������ ��	2���	�� �� �	�� ���������
�	 �	
������,�� ���� ������2,��" 8� �	�� �����2���	���
,	������ �"�"� �����2���	� �������� �*������ ��	2��� �	�*�
��	�� ��� �	� �*������*
,���
 �� ���
����� 8
� 8
� !
� F
� F�� �

�� ��*
-������ .�$�

)� */+� C	������ ������&��
��� ��	��
���� ��

	����
��	�)��& �������� ��	
�����*
��������� 4*����,��� � ��	������� �� � ������ ��

2	����6�2���� ���,	
	� �������� �����2���	� �����������"
+,��� �	���,�� ���, ����2�� �*2, �� �92���� �2,� *����
�� ������<� 2	��*��2���	�� ���� �*����,��� ��� �
���� 2	��������� ����������� �	 �*������ ��	2�����" ���
������� �*����,��� � �����2���	�� 2������� ,	������ �
����� �*���� 	
 ��	������ �"�"� �	��2	�������
*�2��	�
��������� �� �,�� ����� �	
�����" @ �*������	2��� ���
2,���2�*�� �,��� 	��� �,� �	�� ���
	����2� 2����2�� �����
��� �*����,��� � ��	2����� �� *2�� �,� ���� 	
 ,�����
�*����,��� ��� ��	����� 	� �	
������,�� ���� ����
���2,��*
,���
 �� ���
����� 8
� 8
� !
� F
� F�� �

�� ��*

�" (������ ���)")*� ���� � +,� -	*���� 	
 ������� �� �	
����� �� %�..#' �#/0� �8

Software Design Conflicts

80 Software Design Conflicts

-������ .�$�

)� */
 +� ��	�� ���%����
��	

��	��
�� ��,
��	

,
��	�� 	� � �
��
 ���	� *
��������� +,� �	������2� ���,�� �,� �����2 ���	��

,�� ��� �� � ���� 2	��	� ���
	����2� ��	���� �� �*����
�,��� � �����2���	�� �7�2*���� 	� �*�����	2���	��� ����
��2*����� �����2���	�� ������ ���, �� 	�A�2��	������
���,	 	�	��" 8� �� ���	����� �	� 	��� �	 �� *2� �,� ���2�
*�� 	
 �����2 ���	��� �*� ���	 �	 �2����� �,� �*����
	
 ���	2���	�� �� *���� ���� 2	����7 �� 2	*����������
	�A�2� ���*2�*���*
,���
 �� ���
���� �
*
-������ .�$� ��� ��	
��� ') �	� 9� RPS*
)� */

+� ���� �
���
��
����� ��%���������)��&

�(
&
���
���
	��	����� �����
� 	� �(����
���
	�,
�	�����*
���������
72,�������� 2	��	����� 2�� �� �� �

���� �����2� �"�"� �,�� ���
	�� ���� �����2 ���	��
���	2���	�� �� �����	2���	��" 5*� ����*���	�� �,	�
�,�� �����2���	�� *���� �72,��������� ���,�� �,�� �7�
��� ���� 2	��	����� ��� �	� ��2�������� ���� ���������
����*
,���
 �� ���
����� �

�� >
*
-������ .�$� ��� ��	
��� ') �	� 9� RPS*
)� */

+� 2�
��
��
 &�
� ���������
��	� 	�����.��

�	� �������	
���	��*
��������� >� ,���
	*� �,�� ,��� ������������	��

	�����:�
	� �*�����	2���	�� 2�� �� ���� �6�2����" @
,��� ������������	� �� ���	 2,��� �� ������ �	 ��������
�"�"� 	�� ,�� ������,��� �	 ��� �� �	�,��� �	 �	��" $	�,

������� �� 2	����2��� �����	�� ��� ���������*
,���
 �� ���
���� >�*
-������ .�$� ��� ��	
��� ') �	� 9� RPS*
)� *
0+� O����.� ��

6 ���	� �� �	������*
��������� +,� �����2���	�� ��* �� ,��� � ��� ��2� �	

*�� �7������� ,��� ���	�� �,��� �� �	*� �� �	������ �	
�� ���2� ���	��" 8� �����,��� � �����2���	��� �,�
���2� �� �,��� ���2�<2 �� �,*� �	�� �92���� �,�� �,�
,���" $� ���� 2���
*�� ,	������ �	� �	 �72�� �,� ���2�
��:�� ����2����� �,�� *���� �����2 ���2� ���	2���	� ���,
������� �*
,���
 �� ���
���� >
*
-������ .�$� ��� ��	
��� ') �	� 9� RPS*
)� *0+� 3���	��
�
����

��	� ���
�-
 � �
��

���	� �
�
������*
��������� >,��� ��* ���� �,� �,��� �����2���	�� ��

	*� �,�� �,� �	�� �6�2���� ��� �	 ��2����� �,� 	������

���
	����2� ��� �	 ��������� �����2���	� ���2�<2 ��
����2 ���	�� ����������" �*2, ������������	�� 2��
�� �� � �	�� �92���� �� ��������� ���2� �,�� 2�� ��
����	���� �
	� � 2������ �����2���	�" +,� ��	���� ���,
�,�� ���� 	
 	�����:���	� �� �,�� �� ��;*���� ��� �����2��
��	� ��	��� ��� 	�,������ �,� ������������	� 2�� �� ����
���� 2	��*���� 	� ���� ���	������" >� ,��� ���	 �7���
����2� �,�� �����2���	� ���2�<2 	�����:���	�� ��� �	 �	��
�,��� �92���2� �,�� �,� �����2���	�� ��	�*
,���
 �� ���
����� >�
-������ .�$�

1	 ����������

3� �� �	�
�)
 � �	������ �	 �
(���.� �

& %�
���

�������� ��
 ������� �&���� �
6��� ��
��,	;� ��
��,
�
� * � �
+	�
&
������ �� �	��)
�� ������ �� �&�� �	 -��
�	����	�� �&
� �
�
�
�
�� 	�����.� �&� %�
���
����,
�����* ������
����

��	�� ���� �	 �
�
�
� ��������
%�
���
���������� �*�*� �
���
��
����� � '�(������
��
&��& ����	��
�
�* ���(������ ��%���������)��& �����
�
�	
����

��	� ���
��	�
��� ���� �� �
�
�
��)��&
&��&�
�
��
��� 	�+�
�,	�����
��	� ������ ���
�������

�� -�
�� 	�����.�� �	�
 �
�
���� &
��)
��
�
&���
,
����* 4&�� ���� �� �	�� ��

	��,�;�
����)
 � �����
�&��� �
�� �	��)
��
�� 	;,�&�,�&���
	��	����� �	 ��

	��������� 	� �&� �
���� �	���� ����
	�����

��	�
�
�6��* �	� �����	���� ���� �	 �����	���� �
���
��
���

�� '�(���� �	��)
�� ��� ���
����
�)��& �
�
���� &
��,
)
��
�� �	��)
��� �
6��� �&� ���&� ��
��,	;� �	�
&��&�� �������	
���	� ����	��
�
�

� �� ��� ��E
���
	� ���� ���	������* 5�� ��������
��	�� �&)� &)�����
�&
� �&�
�	��� 	� ���	��
��	� ������ �	 -��
 ���,
��-

��� ������ �	����	� �� �������*

1� &
�� ������� �&��� ����
	�����

��	� ������
�,
���

��	��* 4&�
����

��	�� &
�� ���� ������� �� �&���
��������
�
	���(�
�)���
� ��
� �(��������
� ����,
�	�����* 5�� -������
�� ��
���	���� ���	
 ������
���������,�
��� ��	
����)&�
&
��)� ��������� 	�
������
����

��	�� �	 �
�
�
� �������	
���	� ����	�,
�
�
�
�
���� �
���
��
�����
�� '�(������ *

#�2�������

7		
&� 9*� ����
��&� $*� $

	��	�� 3*� 8<<<* 4&� O��-�� �	������

�
���
�� O��� 9����* �����	�,1���� � ��
����� ��*

�! �" (������ ���)")*� ���� � +,� -	*���� 	
 ������� �� �	
����� �� %�..#' �#/0�

Paper IV

Sofware Design Conflicts 81

�������� �*� �	����� �*� V	��� 7*� 8<<�* ���	�
��	

��	�
	��� ��

�
��� C
�� CDD ��	��
��* �	��)
�� ��

��
�
�� 2(������
� !�

/B0� >!=G>�!*

�	��� �*� ��������� �*� ��
6���	�� �*� 8<<>* � �
��
 ���	�
	���	�

��
 �
�
���� ���������
��	� 	�
� 	���
��	�
�)�
�&�� �	��

��

�	���* 3�� ��	
������� 	� �&� ������& �3�� C	������
� 	�

�
�
���� ��	
������ �	� �
�����-
 C	�������*

�	����� 3*� 8<<>* ���������
�� 7������� �
�
���� ��	��
��* �����	�,

1���� � ��
����� ��*

9
��
� 2*� ����� �*� $	&��	�� �*� P��������� $*� 8<<=* ������

�
������* �����	�,1���� � ��
����� ��*

9�	���� 1*� !"""* � �
��
 ���	�
��	

�	� ���������
��	�� ��

����(� ���� ����
����* &����AA)))*����*���*���,����
&��*��A

�)���	A�
��	
,������*&��� /���� ������� F ������0*

�)
��� J*� ?�� V*� 8<<@* �

�
���
�� �
�
���� C	�������* 1C7A

�
9�
),����� K�) M	�6*

��
��
����� �*� ��������� �*� 8<<@* 5�����.��� � �
��

���	� �
�
������ ��
 ������&��
���
����

��	� �(�
�����

	�
 �������	
���	�* 3�� ��	
������� 	� �&� 3C�� <@� !=�&

3�����
��	�
� C	������
� 	� �
�
���� ��	
������� �����
�	����

������*

��
��
����� �*� ��������� �*� 8<<<* ���	�
��	

��	� ���������

����
	�����

��	�
����

��	� �	 �� �
�
�����.�� �	� ������ �
�,

�
�� �����.
��	�* 3�� ��	
������� 	� �&� ��(�& 3�����
��	�
�

�����
�
��
� C	������
� 	� �
�
����
�� ��
�,4��� � ������

����	����� �����
��
� K	������*

��
��
����� �*� 7������	�� �*� 7	�
&� $*� ��������� �*� 8<<<*

�
���
��
����� � �&

���� ����	��
�
� ��	����� �� �
�
����

����

��	��* 3�� ��	
������� 	� �2�N<<� �&� 4&��� 3�����
��	�
�

C	������
� 	� �	��)
�� 2����������
�� �����

��	�� �
	����
���

O��� 5
�	���*

��
��
����� �*� 7������	�� �*� 7	�
&� $*� ��������� �*� 8<<<*

�
���
��
����� � �&

���� ����	��
�
� ��	����� �� ���

����

��	��* 3�� ��	
������� 	� ���2CN<<� �&� ��(�& 3222

���
�,�

�-
 C	������
� 	� �	��)
�� 2����������� 4
6
�
����

$
�
�� ��
�����*

�
���
+
� $*� �
���
+
� �*� 7)�
�� $*� 8<<B* 4&� � �
�� �:� ������ G

������
� 9����* 1��� � C&�
&������ OJ*

���	�6�� 4*�*� 8<<=* ��

��

� �	��)
�� �
�����
�
�� 1��� C	������

������&���� K�) M	�6 /�* F8� 4
��� F*80*

�
��	��&� $*� 8<<<* ��K* 8 C	������* �	��
� J
���
��� �	� ���	��

C�*

�
���	� �*� J���&
�� �*� 8<<@* ���	�
��	

��	� �	� �	��,�������

������
����

��	��* 3�� ��	
������� 	� �&� 3�����
��	�
� � ��	,

���� 	� ���	� �
�
������� 3��� N<@� P
�
	����� 7C�

C
�
�
� 5
�	���*

��)��� 7*� 8<<B* 4&��
�� ������* ������
�,�
��� 2����)		� C��;�� K$*

�������� �*� ��
��
����� �*� 8<<B* �������	
���	� ����	��
�
�

��
��
��	� 	� ������� �
��)
 � ����� �	� ����
	�����

��	�

����

��	��* 3�� ��	
������� 	� �&� 3�C� K���& 3�����
��	�
�

C	������
� �� 3������
�� 2����������� 5��
��	� ��
�����*

��������� �*� 7	�
&� $*� ��
��
����� �*� 7������	�� �*� 8<<<* :�
���

��������� �� �	��)
��

&���
���� ������* 3�� ��	
������� 	�

�2�N<<� �&� 4&��� 3�����
��	�
� C	������
� 	� �	��)
�� 2���,

�������
�� �����

��	�� �
	����
��� O��� 5
�	���*

������� C*� K�� �� 7*� 2)
��� 7*� 8<<B* ��
�� �
�
������
��

��������	� �� 2��
��	�N� ����A�,���� � ����* 2��
��	� �����)

K	* �*

�	������ �*� $	&��	�� �*2*� 8<<B* 2�	����� ��
��)	�6��
 �
�����

�
���
�� �	� �����	���� 	�+�
� 	������� ��
��)	�6�* 3�� �
�����

�
���
��� 	� ��	��
����� ������ F* �����	�,1���� � ��
�����

��� ��* �=8G�@B*

�
&����� �*� 8<<<* �
	��������
� �
����� �	�
	���	����� 	�+�
�

��
��	�
�� ������
��	�* 3�� ��	
������� 	� �&� ��(�& �
�����

�
���
��� 	� ��	��
��� �	���
���	� 3�� O��� ������*

�
&����� �*� �
������
�� ���	�� �	� ������� ��� �����,�&��
��� CDD

	��	�����* CDD ���	�� �
�
.��� /�	
���
�0*

�
&����� �*� !"""* LL�	���
� C* �
&����NN* &����AA)))*
�*)����*���A

��
&���� /���� ������� F ������0*

����&� C*� 8<<"* ����	��
�
� 2���������� 	� �	��)
�� � �����*

�����	�,1���� � ��
����� ��*

���	������� 7*� 8<@B* 4&� CDD ��	��
����� �
���
��* �����	�,

1���� � ��
����� ��*

V	��� 7*� 9���)
��� �*� 8<<�* 2�
��
���� �	���� 	� ���	�

��	

��	�* �C� 4�
��

��	�� 	� �	������
�� C	������ ���,

��
��	� � /80� 8"=G8F8*

�" (������ ���)")*� ���� � +,� -	*���� 	
 ������� �� �	
����� �� %�..#' �#/0� �F

Software Design Conflicts

82 Software Design Conflicts

Paper V

Sofware Design Conflicts 83

Paper V

Quality Attribute Conflicts - Experiences
from a Large Telecommunication

Application

Daniel Häggander, Lars Lundberg and Jonas Matton
7th IEEE International Conference on Engineering

of Complex Computer Systems
Skövde, Sweden

June 2001

XV

Software Design Conflicts

84 Sofware Design Conflicts

Paper V

Sofware Design Conflicts 85

Abstract
Modern telecommunication applications must provide high
availability and performance. They must also be
maintainable in order to reduce the maintenance cost and
time-to-market for new versions. Previous studies have
shown that the ambition to build maintainable systems may
result in very poor performance. Here we evaluate an
application called SDP pre-paid and show that the
ambition to build systems with high performance and
availability can lead to a complex software design with
poor maintainability.
We show that more than 85% of the SDP code is due to
performance and availability optimizations. By
implementing a SDP prototype with an alternative
architecture we show that the code size can be reduced
with an order of magnitude by removing the performance
and availability optimizations from the source code and
instead using modern fault tolerant hardware and third
party software. The performance and availability of the
prototype is as least as good as the old SDP. The hardware
and third party software cost is only 20-30% higher for the
prototype. We also define three guidelines that help us to
focus the additional hardware investments to the parts
where it is really needed.

1. Introduction

A strong focus on quality attributes such as
maintainability and flexibility has resulted in a number of
new development methodologies, e.g., object-oriented and
multi-layer design. Unfortunately, it has also resulted in
less efficient applications [5][6], from a performance
perspective that is.

One of the main reason for this is that applications
developed using these new methodologies are more general
and dynamic in their design. This is good for
maintainability, but gives less application performance in
comparison with static and tailored software.
Consequently, the ambition of building maintainable
systems often results in poor performance (some conflicts,
but not all, are however based on myths and
misconceptions and can thus be eliminated [7]).

Our first hypothesis is that the conflict is bidirectional,
i.e., applications developed with high requirements on run-
time qualities such as performance (and availability) may
run into maintainability problems.

Performance is often gained by customizations, i.e., by
using less generic solutions. Common examples are
application specific buffering of persistent data, and
bypassing layers in multi-layer architectures.
Customization of functions tends to increase the amount of
application code, since code which is normally located in
the operating system or in third party software has to be
dealt with on an applications level. Previous experience
indicate that the maintenance cost is strongly related to the
amount of application code. Consequently, there are
reasons to believe that a too strong focus on performance
may lead to large and complex software, and thus poor
maintainability.

Our second hypothesis is that the best balance between
performance and availability on the one hand and
maintainability on the other is obtained by focusing on
maintainability in the software design and using high-end
hardware and software execution platforms for solving
most of the performance and availability issues. It has at
least been shown that it is rather simple to achieve high

Quality Attribute Conflicts

- Experiences from a Large Telecommunication Application

Daniel Häggander, Lars Lundberg and Jonas Matton
Department of Software Engineering

Blekinge Institute of Technology
Box 520

S-372 25 Ronneby
Sweden

Daniel.Haggander@bth.se, Lars.Lundberg@bth.se and Jonas.Matton@epk.ericsson.se

Software Design Conflicts

86 Software Design Conflicts

performance in applications developed with a strong focus
on maintainability by using SMP:s [8].

If our first hypothesis is true, it would be very important
to find (hardware and software) architectures and design
solutions which minimize the conflict between
maintainability and performance. If our second hypothesis
is true, we would like to estimate the additional cost (if
any) for using the high-end (hardware and software)
execution platforms. We would then like to compare the
additional cost with the estimated reduction of
maintainability costs and time to market for new versions
of the products.

In order to test our hypothesis, we will look at a
telecommunication application called SDP. SDP is a part of
a system which in real-time rates pre-paid subscribers. The
system has been developed for the cellular market by the
Ericsson telecommunication company. Rating of pre-paid
subscribers is a mission critical task, which requires
extremely high performance and availability. The current
software architecture of the SDP contains a number of
design decisions for obtaining high performance and
availability. The reason for this is that the designers thought
that these optimizations were necessary in order to obtain
the desired level of performance and availability.

The application code is very large (300,000 LOC) and
complex. Functionality which normally is seen in the
operating system or as licensed products, e.g. inter-
process-communication and databases, is in SDP
customized and “hard-wired” into the application source
code.

We have, in order to test our second hypothesis, re-
designed the SDP. The new prototype was designed to
minimize the conflict between maintainability and
performance, and according to our second hypotheses we
preferred maintainability over performance.
Customizations within the application code were removed
and advanced functions were put back to an operating
system level or to third partly software. The result was a
prototype containing less than 7,000 LOC capable of
handling three times more calls when the original SDP. The
additional cost for the platform was 20-30% for the
prototype compared to the old SDP.

The rest of the paper is structured in the following way.
Section 2 gives a brief description of the SDP and the SDP
architectures. In Section 3 we present our research method.
The prototype architecture and results from measurements
and benchmarks are presented in Section 4. In Section 5 we
elaborate on our results and discuss some related work.
Section 6 concludes the paper.

2. SDP

FIGURE 1. SDP OVERVIEW.

The SDP (Service Data Point) is a system for handling
prepaid calls in telecommunication networks. The basic
idea is simple; each phone number is connected to an
account (many phone numbers can in some rare cases be
connected to the same account), and before a call is
allowed the telecommunication switch asks the SDP if
there are any money left on the account. This initial
message in the dialogue is called First Interrogation. The
call is not allowed if there are no, or too little, money on the
account.

If there are money on the account the call is allowed and
the estimated amount of money for a certain call duration
(e.g. three minutes) is reserved in a special table in the
database (the account should not be reduced in advance).
When the time period (e.g. three minutes) has expired, the
telecommunication switch sends a request for an addition
three minutes to the SDP. This type of message is called
Intermediate Interrogation. The SDP then subtracts the
previous reservation from the account and makes a new
reservation for the next three minutes. This procedure is
repeated every third minute until the call is completed. The
telecommunication switch sends a message (Final Report)
to the SDP when the call is completed, and at this point the
SDP calculates the actual cost for the last period (which
may be shorter than three minutes) and removes this
amount from the account. Calls that are shorter than three
minutes will only result in two messages, i.e., a First
Interrogation message and a Final Report message. We
refer to such a call as a short call.

The scenario above is the most common case, i.e., the
case when there are enough money on the account. If there
are money for a period shorter than three minutes when a
First Interrogation or Intermediate Interrogation message
arrives, the response to these messages will indicate that
the call will only be allowed for a period x (x < 3 minutes),
and that the call will be terminated after x time unites.

It is possible to use an optimized dialogue between the
telecommunication switch and the SDP, and in that case no
money is reserved in the First Interrogation if the amount

Telecommunication

SDP

SS7

SS7

IP

(Real time
rating engine) Payment server and

other administrative
systems

Switches

$$

Paper V

Sofware Design Conflicts 87

of money on the account exceeds a certain limit. This
means that we do not need to calculate the cost for the first
three minutes before the call is allowed to continue. This
reduces the response time and the number of database
accesses.

Figure 1 gives an overview of the SDP. The SDP
communicates with the switches in the telecommunication
network using the INAP and USSD protocols on top of the
SS7 protocol. The most intense communication is via the
INAP protocol, which is used for inquiring whether a
certain call will be allowed (to continue) or not.

The USSD protocol is used for communication which
makes it possible for the subscribers to obtain the current
balance on their accounts. The balance is communicated in
the form of a text message to the subscriber’s phone. In
some cases the subscriber will get a text message with the
account balance automatically after a call has been
completed.

The SDP communicates with administrative systems
using standard TCP/IP. The most important administrative
system is the Payment server from which the accounts can
be refilled. Examples of other administrative system tasks
are report generation and calculating statistics.

It is also possible to connect the SDP with traditional
billings systems that are based on CDR (Call Data
Records) processing. The SDP should therefore be able to
process CDRs. Communication of CDRs to and from the
SDP is done via TCP/IP.

2.1 SDP architecture

FIGURE 2. LOGIC VIEW OF THE SDP.

Figure 2 shows a logical view of the two computers
(servers) in the SDP. The two Sun 4500 Enterprise
multiprocessor servers [15] are connected in a mated pair.

Each server has 4 processors and a SS7 connection on
which SDP interacts with the telecommunication network.
Performance evaluations of the SDP have shown that the
performance will not increase if we put more than 4
processors in each server. Both servers are active during
normal operation. If one of the servers goes down, the
service is maintained by the other server.

Besides availability, performance was considered as a
major potential problem. The software architecture of the
SDP thus contains a number of design decisions for
obtaining high performance. The reason for this is that the
designers thought that these optimizations were necessary
in order to obtain the desired level of performance,
availability and capacity. At the time of the first design
there was no time for evaluating different alternatives and
the designers wanted to be sure that they would meet the
performance and availability requirements. The safest way
to guarantee this was to limit the use of third party
software, such as commercial database systems, and
instead provide the desired performance and availability by
optimizations in the application code.

One performance optimization is that the application
contains a cache for the entire database in RAM. The
application programmer is responsible for guaranteeing
that the RAM database is consistent with the one on disk.
This complicates the application code. One similar
example concerning availability is that the application is
responsible for maintaining redundant copies of the
database on the different servers. This also complicates the
application code.

The mated pair solution may look rather simple.
However, in order to reach the desired level of availability
and performance a large amount of additional application
software was needed. In SDP, this type of application code
stands for over 85% of the total amount of code.

3. Method

This study consists of two parts. First, we have to find
out if the conflict between maintainability and performance
is bidirectional, i.e., if strong requirements on performance
lead to larger and more complex application source code.
We did this by studying the source code of the commercial
SDP product. Secondly, we wanted to investigate if it was
possible find alternative strategies which reduced the
conflict thus making it possible to achieve high
performance without causing maintainability problems. In
order to do this, we built a new prototype of the SDP. The
prototype was designed according to a three step process,
which was assembled with the aim of helping the
developers to achieve a high level of performance without
adding more source code than necessary. Source code
measurements on the prototype were compared with

SS7

SS7

Database A

Database B

Server A

Server B

Application based
replication

IP

IP

Software Design Conflicts

88 Software Design Conflicts

identical measurements from the SDP. The attributes
measured were maximum throughput and application code
size, i.e., performance and maintainability respectively.
Measuring maintainability via the code size is not an
agreed method. However, previous experience indicate that
the maintenance is strongly related to the amount of
application code [11][3].

3.1 Source code measurements on the SDP

SDP consists of approximately 300.000 LOC. The
measurements did, however, focus on a particular
component in SDP. This was the rating engine which
provides the core functionality, i.e., the part which handles
calls and account withdraws. The size of this component is
approximately 60.000 LOC. The source code was
classified using three categories:

1. High Availability, concerning matters of system fail-
over, handling of plug-in addition and removal at run
time as well as on-line data replication of persistent
storage.

2. Database, transforming transient storage to persistent
storage.

3. Application Logic, the core business functionality. In
this case the logic for rating and account handling.

The first category concerns availability. However, when
the SDP was designed, it was the performance requirement
which forced the developers to implement the availability
facilities in the application source code instead of using a
standard third party solution. The amount of code in this
category can thus be considered as code improving the
application performance. The next category of code is a
direct result of a database optimization. Finally, in the third
category, is code handling the application logic, e.g. rating
calls.

The classification of the SDP source code was made by
hand and with help from Ericsson personnel. The code size
was measured using a software metrics tool called RSM
(Resource Standard Metrics [1]). Only lines of code (LOC)
were used in the results presented in this report.

3.2 The READ project

The prototype was developed in a research project
called READ. The main objective of READ was to design
a SDP prototype which had both high performance and
maintainability. High performance was defined as fulfilling
the hard performance requirement for the SDP. According
to Ericsson personnel, SDP’s major maintainability

problem was the high complexity of the source code, which
made it very difficult and time consuming to maintain the
application, and the large amount of source code. Thus,
less and simplified source code was considered as an
effective way to increase the maintainability of the SDP.

A group consisting of six persons was assigned the task
to find a new hardware and software architecture. Three out
of the six came from Ericsson, two application experts and
one database expert. One senior sales engineer and a free
usage of Sun’s and Oracles product portfolios were
provided by Sun Microsystems. The project was managed
and evaluated by researches at the Blekinge Institution of
Technology.

READ used a three step iterative process for designing
the prototype:

1. Start with the most simple architecture fulfilling the
functional requirements, i.e., we do not consider any
performance and/or availability requirements.

2. Start evaluating this solution. The first step of the evalu-
ation usually consists of discussions and rough esti-
mates based on expected performance bottle-necks,
e.g., disk accesses, communication need etc. If these
initial evaluations seem promising, a partial implemen-
tation is started. The implementation initially focuses
on the parts of the design where one can foresee perfor-
mance or availability problems. The performance and/
or availability qualities of these parts are then evalu-
ated. As long as there are no performance or availability
problems, the rest of the system is gradually imple-
mented, and if there are no problems along the way we
will end up with a complete system which meets the
performance and availability requirements. However, if
some stage in the evaluation shows that we will not
meet the performance and availability requirements, we
go to step 3 in this design process.

3. Based on our accumulated experience from step 2 (we
may have gone through step 2 more than once), we
select a new architecture. The new architecture is the
most simple architecture that meets the functional
requirements, and based on what we know also the per-
formance and availability requirements. Consequently,
we do not select the minimal modification of the archi-
tecture last evaluated in step 2, instead we select the
simplest architecture possible based on what we know.
We now again go to step 2.

The intention of using such a process was to ensure that
the most simple design solution possible was found. Each
design alternative was evaluated with respect to
performance (response-time and throughput), scalability

Paper V

Sofware Design Conflicts 89

(number of subscribers for low-end and high-end) and
availability (planned down-time, unplanned down-time,
disaster recovery).

When defining step three of the process we discussed
two alternative approaches: either to consider the minimal
modification of the current architecture that would meet the
performance and/or availability requirements, or to
consider the simplest architecture possible (without
considering the last architecture) that would meet those
requirements. We expected that the first alternative would
minimize the development time, whereas the last
alternative would minimize the complexity and thus the
maintainability of the resulting system. As shown in the
process, we selected the last alternative, since
maintainability was a major concern for us.

3.3 Source code measurements

The prototype has the same functionality as the rating
engine component in the SDP. The SDP code
measurements discussed above were therefor reused, and
the corresponding measurements were done for the
prototype.

3.4 Performance measurements

In order to get accurate and comparable performance
measurements for the prototype a work load simulator had
to be built. The simulator was designed according to the
load case specified by Ericsson for the SDP. The
simulator’s load scenario was defined as follows:

• 17% subscriber/account inquiries via USSD
• 28% calls with no answer
• 50% successful calls with USSD notifications
• 5% low credits resulting in short calls or call refused.
• 1.000.000 different subscribers
• 1.000.000 different accounts

The maximum capacity was measured with and without
optimized dialog. In our test case an optimized dialog
means that 5% of the calls were made using pre-allocations
setup and 95% without pre-allocations. Furthermore, the
capacity was measured for long and short calls,
respectively. We also evaluated the SDP for the load model
described above.

4. Result

We have three major results, the code measurements on
the SDP, the new architecture and the result from the
source code and performance comparison measurements.

4.1 Source code categories of SDP (rating engine)

The result of the source code measurements for the
rating engine component in SDP is shown in Figure 3. The
total amount of source code in the component is 60.000
LOC. It can be seen that less than 15% of the source code
is related to functional requirements. Obviously, the hard
requirement on performance (and availability) has in SDP
resulted in seven times the amount of source code. The cost
of maintaining an application is strongly related to the
number of code lines, i.e., performance (and availability)
stands for 85% of the total maintenance cost of the rating
engine component.

4.2 Prototype architecture

Figure 4 shows the logical view of the computers in the
SDP prototype. The architecture supports two levels of
availability; high and very high, 99.99% and 99.999%
availability respectively. The most mission critical

FIGURE 3. SOURCE CODE MEASUREMENTS ON SDP

Two or more
stateless front-

Database
server

Administration
interface computer

SS7

SS7

IP

end computers

99.999% availability
Max down-time: 5 min/year

99.99% availability
Max down-time: 1 h/year

FIGURE 4. LOGICAL VIEW OF THE PROTOTYPE.

Software Design Conflicts

90 Software Design Conflicts

functions, e.g. SS7 signalling and account withdraws, are
executing on the higher level. Services less critical, e.g.
report generation and administration, are running on the
next highest level. The separation of a high and a very high
availability reduced, in a cost-effective way, the conflict
between maintainability and performance. One effect of
this separation was that most of the code could benefit from
standard third party software cluster solutions and thus did
not have to be aware that it was running on a cluster.

There are two SS7 connections, each connected to a
front-end computer. The messages from each
telecommunication switch are under normal conditions
split equally between these two front-end computers. If one
front-end computer breaks down, the switch will send all
messages to the other computer. The number of front-end
computers is normally two, but may be more than two. The
front-end computers are stateless, i.e. the user accounts, the
subscriber database and the tariff trees are stored on the
database server. Restarting or replacing a faulty front-end
is thus uncomplicated. Separating the stateless parts from
the rest of the application made it possible achieve high
performance and high availability to a low cost.

The parts of the application which are state depended
and require very high availability are hard to design. READ
solved this problem by using a third party RDBMS on a
fault-tolerant multiprocessor computer.

Figure 5 shows the physical view of the SDP prototype
architecture. The administrative interface computer is
implemented as two Sun Netra multiprocessors running
Sun Cluster 3.0. Each front-end computer is a Sun Netra
T1 [16]. The functionality of the system could still be
maintained if one of these Sun Netra T1 computers breaks
down, i.e., these computers are not a single point of failure.
If one of the front-end computers breaks down, the SS7
communication bandwidth will be reduced to 50%. It one
of the two computers implementing the administrative
interface computer breaks down, there will be some
transient disturbances during the switch over. This is,
however, acceptable, since the response time requirements
on this computer are soft, i.e., one can accept long response
times occasionally.

The response time requirements from the SS7 side are,
however, strict and they would be very difficult to meet
using standard software clustering (e.g. Sun Cluster 3.0).
The database server is therefore implemented as a fault
tolerant multiprocessor, i.e., a Sun FT1800 [14].

The TCP/IP communication within the SDP prototype is
based on two redundant networks, each network is based
on a switch from Cisco.

The realization of the SDP prototype HW architecture
ensures that there is no single point of failure, i.e., the
prototype will still work if one component fails. The
performance may, however, be degraded. Further, there is
no single point of failure in the propriety software, apart
from the store-procedures which are installed in the
RDBMS. However, this “code” is executed in an
encapsulated and “protected” environment. A programing
error is most likely to result in that the RDBMS reports the
error and continues with the next request.

Switch A

Switch B

Netra Multiprocessor

Netra Multiprocessor

FT
1800

Netra T1

Netra T1

Terminal concentrator

SS7

SS7

100-BaseT

E
xt

er
na

l N
et

w
or

k

In
te

rn
al

 N
et

w
or

k

Te
rm

in
al

 C
on

ne
ct

io
n 99

.9
99

%
5

m
in

/y
ea

r

RS232C/RS 432 (DB25)

99
.9

9%
1

h/
ye

ar

10
0

M
bi

t F
as

te
th

er
ne

t

10
0

M
bi

t F
as

te
th

er
ne

t

SCSI

100-BaseT

Netra D1000

FIGURE 5. THE PHYSICAL VIEW OF THE PROTOTYPE.

Paper V

Sofware Design Conflicts 91

4.3 Source Code Size Measurements

Figure 6 shows our result from the code size
measurements. The chart displays lines of code measures
for three different categories and a total. The categories are
again: code used for obtaining high availability, code used
for data handling and storage, and code used for
application logic.

The total amount of source code in the prototype is
significantly less compared to the SDP. In the SDP, the first
two categories, i.e. High Availability and Database, were
implemented in the application source code. In the
prototype these code categorizes are, however, more or less
located to third-party software or hardware. The source
code used for the application logic in the prototypes is
approximately 60-70% of the lines used in SDP. We believe
the major reason for this is the simplified design from the
READ project.

4.4 Performance Measurements

Figure 7 shows a performance comparison between
SDP and the prototype. Instead of a Sun FT1800 we used a
Sun Enterprise 4500 with four CPUs. The performance of
the FT1800 and the Enterprise 4500 are the same; the
difference is that the FT1800 provides fault tolerance. The
y-axis in Figure 7 represents the throughput in calls per
second. The maximum throughput was measured for four
alternative load scenarios. These scenarios were:

1. Non-Optimized dialogue with intermediate interroga-
tions (NO I)

2. Non-Optimized dialogue without intermediate interro-
gations (NO)

3. Optimized dialogue with intermediate interrogations
(O I)

4. Optimized dialogue without intermediate interrogations
(O)

FIGURE 6. PERFORMANCE COMPARISON OF SDP AND PROTOTYPE

FIGURE 6. SOURCE CODE COMPARISON OF SDP AND PROTOTYPE.

Software Design Conflicts

92 Software Design Conflicts

In reality, the most common case is number 4 (O), i.e. an
optimized dialogue without intermediate interrogations.

Using optimized dialogue generates a significant
speedup for the prototype. A reason for this is that the
prototype performance is limited by the number of
transactions per second. A optimized dialogue results in
less transactions and thereby also a higher performance.
The reason for the constant SDP performance is the
architecture of the SDP. The persistent storage used by
SDP is based on an object oriented database that utilizes
the operating system’s virtual memory algorithms for
physical reads and writes. Each physical write or read
always manipulates at least one whole memory page.

It is difficult to estimate the system level availability of
the SDP and the prototype. The hardware availability is
more or less the same for both solutions (in the SDP we
have two multiprocessors, and in the prototype we have
one fault tolerant multiprocessor). However, due to the
large difference in code size between the SDP and
prototype, we expect more errors during operation in the
SDP than in the prototype. We therefore expect equal or
better availability for the prototype compared to the SDP.

5. Discussion

We have in previous studies of large telecommunication
applications shown that the ambition to obtain a
maintainable system may result in (very) poor performance
[5][6]. Our first hypothesis that we wanted to investigate in
this project was if the ambition to obtain high performance
(and availability) results in poor maintainability. By
analyzing the code in the SDP we see that the ambition to
obtain high performance and availability may result in very
poor maintainability. The maintainability cost is strongly
related to the code size. Further, 85% of the application
code in the SDP is caused by performance and availability
optimizations. We have thus been able to verify and
quantify our first hypothesis, at least for this application.

The simple three step design process that we used when
developing the prototype was based on our second
hypothesis, i.e., that it is more difficult to afterwards
increase the maintainability of a large and complex
performance efficient application compared to increasing
the performance of a maintainable design. The result of the
three step process was the new prototype, which had a
number of attractive qualities, e.g., one order of magnitude
less code as well as comparable or better performance and
maintainability. The experience from this project is thus a
indication that our second hypothesis is true. The practical
engineering implication of this is that one should use an
optimistic approach and give higher priority to
maintainability than performance when designing this kind
of large real-time systems. One should only introduce

performance optimizations when one knows that it is
absolutely necessary.

The design of the prototype gave us some valuable
experiences that can be formulated as three guidelines on
how to handle high performance and availability
requirements without introducing more application code
than necessary:

• Separate the functionality which requires (very) high
performance and availability from the other functional-
ity in the system.

We put the functions with high performance and avail-
ability requirements in the two front-end computers and
the database server, whereas the less critical tasks are
handled by the administrative interface computer.

The application code for the less critical functionality
can usually be implemented paying less attention to
performance and maintainability. The desired level of
maintainability and performance can usually be
obtained be standard cluster software and standard mul-
tiprocessor hardware (in our case Sun cluster software
and Sun multiprocessors).

• Split the implementation of the performance demanding
part of the system into a stateless and a state-full part,
and try to put as much as possible of the functionality in
the stateless part.

We have introduced two stateless front-end computers
and a state-full database server computer. The state-full
server executes only the Solaris operating system and
the Oracle database server software, i.e., there is no
“self developed” application software on this computer.

It is generally much easier to obtain high availability
and performance for stateless applications, and the cost
(in terms of increases complexity and lines of code) for
obtaining these qualities is thus very limited.

• Solve as much of the availability and performance
requirements for the state-full part of the performance
(and availability) functionality by high-end hardware
and/or third party software.

We introduced a fault-tolerant multiprocessor - the Sun
FT1800 - for this part of the system. This machine was
the key component for obtaining very high availability
(99.999%) in the system.
The state-full part of the performance (and availability)

Paper V

Sofware Design Conflicts 93

critical functionality is the most challenging part of the
system, and it is thus highly motivated to concentrate
the economical resources in terms of hardware and
third party software to this part.

One of the goals with the READ project was to
investigate if one could buy reduced complexity (in terms
of less lines of code) by using high capacity hardware,
which would give us enough performance in term of
capacity and switch over time to allow us to ignore (most
of) the performance and availability requirements in our
software design. The experience from the READ project
shows that this was possible, and that the code size could
be reduced with one order of magnitude.

One interesting question is how large the additional cost
for the high capacity hardware really is. By using the three
design guidelines above we were able to focus the
economical resources to the critical parts of the system,
thus reducing the additional cost to a minimum.

The cost for hardware and third party software for the
prototype is approximately $300.000, provided that the
Administrative interface computer is shared between a
reasonably large number of database servers (e.g. between
5-10 servers). This is only 20-30% more than the hardware
and third party software cost for the current SDP.

The original design of the SDP was based on the
assumption that the performance and availability
requirements had to be handled in the application code.
The arguments for this were that the use of third party
products (e.g. databases) would lower performance and one
would not like to take that risk. Also, one underestimated
the problem and did not anticipate the size and complexity
of the resulting application code. At the start of the SDP
project, the project managers were thus faced with a
situation were they could either take the (presumably) safe
alternative and handle the performance and availability
requirements in the source code, or they could spend
valuable time evaluating other alternatives which may have
to be discarded due to insufficient performance and/or
availability. As usual, there were very tough time-to-market
requirements, and there were thus very little time to
investigate alternative and less complex solutions.
However, the experiences from this study show that it is
important to take some time to evaluate alternative
solutions, and to avoid handling the performance and
availability requirements in the application code unless
absolutely necessary.

We went through our three step process five times, i.e.,
we discarded four solutions before we found one that
would meet the performance and availability requirements.
Most of these solutions could, however, be discarded early
without investing too much time evaluating them. We also
found that the time spent evaluating these solutions

contributed significantly to our understanding of the
requirements of on the system. Consequently, very little, if
any, time was actually wasted.

The need for considering a number of qualities (e.g. not
only performance) during system design has been
recognized by many researchers. In his article “The Future
of Systems Research” in the 1999 August issue of IEEE
Computer John Hennessy writes “Performance - long the
centerpiece - needs to share the spotlight with availability,
maintainability, and other qualities” [4]. Kazman et al have
developed the Architecture Tradeoff Analysis Method
(ATAM) which addresses the need for trade-offs between
different quality attributes [9]. The main goal of ATAM is
to illuminate risks early in the design process. However,
ATAM does not contain any concrete guidelines regarding
the software architecture and design. Lundberg et al have
developed a set of guidelines and a simple design process
that can be used for making design and architectural trade-
offs between quality attributes [12]. Kruchten has
suggested the “4+1 View Model” [10] which makes it
possible to communicate and engineer different aspects of
a software system, e.g., development as well as run-time
aspects. Boehm and In have developed a knowledge based
tool that helps the designers to identify conflicts already in
the requirement phase [2].

For sure, there are a number of important issues which
have to be addressed when developing application with
high requirements on performance and availability. Most
studies have, however, their focus on the development
process or on the early development phases. This study
focuses on the architectural trade-off in the design phase.

6. Conclusion

It is not always possible to maximize each quality
attribute in a design, thereby making trade-offs necessary.
A major challenge in software design is thus to find
solutions that balance and optimize the quality attributes.
Large real-time telecommunication applications is an
application domain highly dependent on balancing
multiple quality attributes, e.g., maintainability,
performance and availability.

Earlier studies have shown that the ambition to obtain a
maintainable system may result in (very) poor
performance. It has, however, been shown that it is possible
to achieve high performance also in applications with a
strong focus on maintainability, by following a few simple
guidelines which help the developers to minimize the
performance problems in designs optimized for
maintainability.

In this study we show that the ambition to build systems
with high performance and availability may result in very
poor maintainability, i.e., we have found support for our

Software Design Conflicts

94 Software Design Conflicts

first hypothesis (stated in the Introduction section). For the
SDP application we estimate (based on code size) that 85%
the maintainability cost was caused by performance and
availability requirements.

The prototype developed in this project supports our
second hypothesis, e.g., that it is more difficult to
afterwards increase the maintainability of a large and
complex application in comparison to afterwards improve
the performance. We have thus found support for the two
hypotheses we formulated in the Introduction section.

In the prototype, we used high-end hardware and third
party software to reach the desired performance and
availability levels. We also defined three guidelines that
help us to focus our hardware investments to the parts
where it is really motivated. These guidelines resulted in a
cost-effective design, where we could obtain a dramatic
reduction of time to market and maintainability costs for an
additional hardware and third party software cost of 20-
30% (Ericsson thought that an addition cost of 20-30% was
very low considering the major reduction of the estimated
maintenance cost and time to market for new versions of
the system).

The original design of the SDP was based on the
assumptions that the performance and availability
requirements had to be handled in the application code, and
there was no time to investigate alternative and less
complex solutions. The experiences from this study show
that it is important to take some time to evaluate alternative
solutions, and to avoid handling the performance and
availability requirements in the application code unless
absolutely necessary. Our experience also shows that very
little, if any, time was actually wasted evaluating alternative
solutions.

Our experience from this project shows that hardware
fault tolerant computers can indeed simplify the software
design, i.e., the existing software cluster solutions are not
sufficient in all cases [13].

7. References

[1] RSM, Resource Standard Metrics,
http://mSquaredTechnologies.com (site visited January
2001).

[2] B. Boehm and H. In, "Identifying Quality-Requirement
Conflicts", IEEE Computer, August 1999, pp. 27-33.

[3] J. C. Granja-Alvarez and J. Barrancp-Garcia, “A Method for
Estimating Maintenance Cost in a Software Project: A Case
Study”, Journal of Software Maintenance: Research and
Practice, John Wiley & Sons, Volume 9, 166-175, 1997.

[4] J. Hennessy, "The Future of Systems Research", IEEE Com-
puter, August 1999, pp. 27-33.

[5] D. Häggander and L. Lundberg, "Optimizing Dynamic
Memory Management in a Multithreaded Application Exe-
cuting on a Multiprocessor", in Proceedings of the 27th
International Conference on Parallel Processing, August,
Minneapolis, USA, 1998.

[6] D. Häggander and L. Lundberg, "Memory Allocation Pre-
vented Telecommunication Application to be Parallelized
for Better Database Utilization", in Proceedings of the 6th
International Australasian Conference on Parallel and
Real-Time Systems, Melbourne, Australia, November 1999.

[7] D. Häggander and P. Bengtsson, J. Bosch, L. Lundberg,
"Maintainability Myth Causes Performance Problems in
Parallel Applications", in Proceedings of the 3rd Interna-
tional Conference on Software Engineering and Applica-
tion, Scottsdale, USA, October 1999.

[8] D. Häggander and L. Lundberg, "A Simple Process for
Migrating Server Applications to SMPs", to appear in The
Journal of Systems and Software.

[9] R. Kazman, M. Barbacci, M. Klein, S.J. Carrière, "Experi-
ence with Performing Architecture Tradeoff Analysis", in
Proceedings of the International Conference on Software
Engineering, Los Angeles, USA, May 1999, pp. 54-63.

[10] P. Kruchten, "The 4+1 View Model of Architecture", IEEE
Software, November 1995, pp. 42-50.

[11] W. Li and S. Henry, “Object-Oriented Metrics that Predict
Maintainability”, Journal of Systems Software,
1993;23:111-122.

[12] L. Lundberg, J. Bosch, D. Häggander, and PO. Bengtsson,
"Quality Attributes in Software Architecture Design", in
Proceedings of the 3rd International Conference on Soft-
ware Engineering and Applications, Scottsdale, USA, Octo-
ber 1999, pp. 353-362.

[13] G.F. Pfister, “In search of clusters”, Prentice hall, 1998.

[14] Sun Microsystems, "Fault Tolerant Servers", Netra ft 1800,
http://www.sun.com/products-n-solutions/hw/networking/
ftservers/ (site visited January 2001).

[15] Sun Microsystems, "Midrange Servers", Sun Enterprise
4500, http://www.sun.com/servers/midrange/e4500/ (site
visited January 2001).

[16] Sun Microsystems, "Netra t1 Server", http://www.sun.com/
netra/netrat/t1/article.html (site visited January 2001).

Paper VI

Sofware Design Conflicts 95

Paper VI

Attacking the Dynamic Memory
Problem for SMPs

Daniel Häggander and Lars Lundberg
13th International ISCA Conference on Parallel and

Distributed Computing System
Las Vegas, USA

August 2000

XVI

Software Design Conflicts

96 Sofware Design Conflicts

Paper VI

Sofware Design Conflicts 97

ABSTRACT
We have studied three large object oriented

telecommunication server applications. In order to obtain
high performance, these applications are executed on
SMPs. Dynamic memory management was a serious
serialization bottleneck in all applications. The dynamic
memory problem was attacked in a number of ways for the
three applications, and in this paper we summarize our
experiences from these attacks. There are two basic ways
of attacking the problem: either to reduce the cost of using
dynamic memory or to reduce the usage of dynamic
memory. The problem can also be attacked at different
levels, i.e. the operating system level, the implementation
level, and the software architecture and design level. Each
of the investigated ways of attacking the dynamic memory
problem has its advantages and disadvantages. We argue
that the attack should focus on the operating system level
when dealing with existing code and on the software
architecture level when developing new applications.

Keywords
Symmetric Multiprocessor (SMP), Dynamic memory

contention, Performance, Multithreading, Maintainability.

1 INTRODUCTION
Performance is usually not the primary quality

attribute when developing large and complex applications.
Other attributes such as maintainability and flexibility are
often more important, since more effort is spent on
maintaining existing applications than developing new
ones [12]. Although performance is considered less
important, some applications still require high
performance. For such applications, improving
maintainability and flexibility is useless unless the
performance requirements are fulfilled. A simple and cost-
effective way to improve the performance of an
application is to increase the processing capacity of the
hardware. The peak performance of computers has grown
exponentially from 1945 to the present, and there is little
to suggest that this will change. The computer
architectures used to sustain growth are changing,
however, from the sequential to the parallel [4].
Symmetric Multi-Processor (SMP) is the most common
parallel architecture in commercial applications [6]. It is
thus reasonable to assume that developers of performance-

demanding applications will use SMPs since their
applications must meet new and high demands on
performance. To improve the application performance
with multiprocessors is not as simple as migrating to a
faster processor. The software architecture and/or design
must usually be adapted, i.e. parallelized and optimized
for the multiprocessor architecture.

Multithreading [15] allows parallelism within an
application. It is characterized by low impact on the source
code in C++ [22] applications since it is based on shared
address space and C-library calls. Multithreading can thus
be considered a simple and cost-effective way to obtain
application parallelism. Designing efficient applications
for multiprocessors using multithreading has, however,
proven to be a far from trivial task that can easily limit the
application performance [16][7][8][9][14][3].

Designing applications for multiprocessors is nothing
new in high-performance computing [4]. The strong
connection between multiprocessors and high-
performance computing has, however, raised standards
and strategies strongly focused on execution time and
scalability. Other quality attributes such as maintainability
and flexibility have been more or less ignored. At the same
time, traditional development has taken the opposite
direction. A strong focus on maintainability and flexibility
has resulted in new design and implementation
methodologies, e.g. object-oriented design and third party
class libraries. It turns out that maintainable designs tend
to use dynamic memory very frequently. The shared heap
can thus become a serious performance bottleneck when
running multithreaded programs optimized for
maintainability on an SMP. The applications may suffer
severely from dynamic memory contention [3][7][8]. We
refer to this as the dynamic memory problem for SMPs.

We have studied three server applications developed by
the Ericsson telecommunication company. These are
referred to as BGw, FCC and DMO. In all three
applications, maintainability and flexibility are strongly
prioritized. The applications are also very demanding with
respect to performance due to real-time requirements on
throughput and response time. SMPs and multithreaded
programming are used in order to give these applications a

Attacking the Dynamic Memory Problem for SMPs

Daniel Häggander and Lars Lundberg
University of Karlskrona/Ronneby

Dept. of Computer Science
S-372 25 Ronneby, Sweden

{Daniel.Haggander, Lars.Lundberg}@ipd.hk-r.se

Software Design Conflicts

98 Software Design Conflicts

high and scalable performance. The dynamic memory
problem has been attacked in a number of different ways
in these applications. In this paper we summarize our
experiences from these attacks.

The remaining pages are organized as follows. The
next section presents the BGw, FCC and DMO
applications. Section 3 summarizes our findings regarding
the dynamic memory problem. Related work and other
aspects are discussed in Section 4, and Section 5
concludes the paper.

2 SERVER APPPLICATIONS
In this section we describe three industrial server

applications. We consider the applications to be large, both
in terms of code size (10.000 to 100.000 lines of code) and
variety. A more detailed description of the applications can
be found in [7][8].

Billing Gateway (BGw)
BGw collects billing information about calls from

mobile phones. The BGw is written in C++ using object-
oriented design, and the parallel execution has been
implemented using Solaris threads. The BGw transfers,
filters and translates raw billing information from Network
Elements (NE), such as switching centers and voice mail
centers, in the telecommunication network to billing
systems and other Post Processing Systems (PPS).
Customer bills are then issued from the billing systems.
The raw billing information consists of Call Data Records
(CDRs). The CDRs are continuously stored in files in the

network elements. These files are sent to the BGw at
certain times intervals or when the files have reached a
certain size. There is a graphical user interface connected
to the BGw. In this interface the different streams of
information going through the gateway are visualized.
Figure 1 shows an application where there are two
network elements producing billing information (the two
leftmost nodes). These are called “MSC - New York” and
“MSC - Boston” (MSC = Mobile Switching Center). The
CDRs from these two MSCs are sent to a filter called
“isBillable”. There is a function associated with each filter,
and in this case the filter function evaluates to true for
CDRs which contain proper information about billable
services. CDRs which do not contain information about
billable services are simply filtered out. The other CDRs
are sent to another filter called “isRoaming”. The function
associated with “isRoaming” evaluates to true if the CDR
contains information about a roaming call (a roaming call
occurs when a customer is using a network operator other
than his own, e.g when travelling in another country). In
this case, the record is forwarded to a formatter, and then
to a billing system for roaming calls; the record is
otherwise sent to a formatter and a billing system for non-
roaming calls. The record format used by the billing
systems differs from the format produced by the MSCs.
This is why the CDRs coming out of the last filter must be
reformatted before they can be sent to the billing systems.
The graph in Figure 1 is one example of how billing
applications can be configured.

FIGURE 1. BGW CONFIGURATION WINDOW.

Paper VI

Sofware Design Conflicts 99

Figure 2 shows the major threads for the application in
Figure 1. When there is no flow of data through the BGw,
the system contains a number of static threads. When there
is a flow of information going through the system,
additional threads are created dynamically. When a NE
sends a billing file to the BGw, a data collection thread is
created. This thread reads the file from the network and
stores it on disk. When the complete file has been stored,
the data collection thread terminates. Data processing, i.e.
the part of the BGw that does the actual filtering and
formatting, is implemented in a different way, i.e. there is
one data processing thread for each NE node in the
configuration (see Figure 2).

The system architecture is parallel and we expected
good multiprocessor speedup. The speedup was, however,
very disappointing; in the first version the performance
dropped when the number of processors increased because
the dynamic memory management within the server
process was a major bottleneck.

The designers of the BGw wanted a flexible system
where new CDR formats could be handled without
changing the system. One major component in the BGw is
a very flexible parser that could handle data formats
specified using ASN.1 [13]. This parser uses a lot of
dynamic memory. In order to increase the flexibility still
further, a new language which makes it possible to define
more complex filters and formatters was defined. The new
language makes it easier to adapt the BGw to new
environments and configurations. The introduction of the
new language led, however, to a very intensive use of
dynamic memory, even for small configurations. The

excessive use of dynamic memory was a direct result from
the effort of building a flexible and configurable
application. It transpired that the performance problems
caused by dynamic memory management could be
removed relatively easily. By replacing the standard
memory management routines in Solaris with a
multiprocessor implementation called ptmalloc [5], the
performance was improved significantly. By spending one
or two weeks on re-designing the performance was
improved by approximately a factor of 8 for the sequential
case, and a factor of more than 100 when using an SMP.
The major part of the redesign was aimed at introducing
object pools for commonly used objects and to use stack
memory when possible.

Fraud Control Centers (FCC)
When cellular operators first introduce cellular

telephony in an area their primary concern is to establish
capacity, coverage and signing up customers. As their
network matures, however, financial issues become more
important, e.g. lost revenues due to fraud [17].

Software in the switching centers provides real-time
surveillance of irregular events associated with a call. The
idea is to identify potential fraud calls, and have them
terminated. One single indication is, however, not enough
for call termination. FCC allows the operator to decide
certain criteria that must be fulfilled before a call is
terminated, e.g. the number of indications that must be
detected within a certain period of time. The events are
continuously stored in files in the cellular network. These
files are sent to the FCC at certain time intervals or when
the files contains a certain number of events.

FIGURE 2. THE THREAD STRUCTURE OF BGW.

Buffer

Buffer

Data
processing

Data
distribution

Data
collection

In

Out

Network
Element

Billing Gateway System

Data
collection

Network
Element

Data
processing

Post
Processing

System

Static Thread Dynamic ThreadData Flow

User
Interface
Handler

MSC - New York

MSC - Boston MSC - Boston

MSC - New York
NonRoaming

Roaming

Buffer
In

Data
distribution

Post
Processing

System
Out

Buffer
Handler

Network
Interface
Handler

Software Design Conflicts

100 Software Design Conflicts

The FCC consists of four major software modules (see
Figure 3). The TMOS module is an Ericsson propriety
platform and handles the interaction with the switching
network. The collected events are passed on to the Main
module of the FCC. The event files are parsed and divided
into separate events in the Main module. The events are
then stored and checked against the pre-defined rules using
the database. If an event triggers a rule, the action module
is notified. This module is responsible for executing the
action associated with a rule, e.g. to send terminating
messages to the switching network.

A central part of FCC is data storage and data
processing. A commercial RDBMS (Sybase) [11] was
used in the implementation. In order to improve
performance. FCC has implemented parallel execution
using Solaris threads. The processing within the Main
module is based on threads. Figure 3 shows how the
threads communicate. A listener thread receives the event
file (3a) and creates a parser thread (3b). After it has
created the parser thread, the listener thread is ready to
receive the next file. The parser threads extract the events
from the file and insert the separate events into an event
queue (3c), where they wait for further processing. When
all events in a file have been extracted, the parser thread
terminates. The number of simultaneous parser threads is
dynamic. The parser in FCC is designed in such a way that
it is flexible. It is very important for the FCC to support
new types of events quickly when a new network release
often introduces new ones, or changes the format of old
events. The Main module has a configurable number of
connections toward the database server (3d). Each
connection is handled by a dbclient thread. A dbclient
thread handles one event at a time by taking the first event
in the event queue (3e), and processing it. The interaction
with the database is made through SQL commands via a
C-API provided by Sybase [11]. Each SQL command is
constructed before it is sent to the database module. Since
the final size of a SQL command is unknown, dynamic

memory must be used for its construction. The dbclient
thread is also responsible for initiating actions caused by
the event (3f,3g) before it processes the next event.

Dynamic memory management was found to be a
performance bottleneck for FCC. There are two reasons
why FCC is an intensive user of dynamic memory: the
object oriented design of the parser, and the use of a string
library for dynamic construction of database requests. By
optimizing dynamic memory management the speedup
was increased significantly. We used two different
approaches for optimizing the dynamic memory handling
in the FCC. One was to replace the standard memory
handler with ptmalloc [5]. The other approach was to split
the Main module into a number of Unix processes (Unix
processes have different memory images). The
performance characteristics of these two approaches were
very similar [8].

Interviews with the designers showed that the reason
for the frequent use of dynamic memory in the parser was
that they wanted to obtain a maintainable and flexible
design which would make it easy to adapt the parser to
new input formats [9][10]. We implemented and evaluated
an alternative parser design, which was rigid and “hard-
coded”, i.e. this design was not at all optimized with
respect to maintainability. The number of dynamic
memory allocation was dramatically reduced in the rigid
parser. The size of the rigid parser was a order of
magnitude smaller than the original and flexible parser.
When comparing the maintainability of these two
approaches, using state-of-the-art techniques for
maintainability evaluation, we concluded that the rigid
parser was at least as maintainable as the flexible parser,
i.e. it was at least as costly to adapt the flexible parser to a
new input format as it was to write a new rigid parser. The
performance of the rigid parser was more than one order of
magnitude better than the performance of the flexible
parser.

FIGURE 3. THE FCC APPLICATION.

Paper VI

Sofware Design Conflicts 101

Data Monitoring (DMO)
The growth in the mobile telecommunication market

has been dramatic in the last years and there is little to
suggest that this will change. Mobile operators constantly
have to increase the capacity of their networks in order to
provide mobile services of good quality. Many network
functions for operation and maintenance were originally
designed to operate in networks much smaller than those
of today. As the size of the network increases, these
designs become more and more inadequate. One example
is the management of performance data. Mobile networks
today generate such large amounts of performance data
that it can no longer be interpreted without help from
computers.

FIGURE 4. THE DMO APPLICATION.

Data Monitoring (DMO) is an application that collects
performance data and by using real-time analysis it
detects, identifies and notifies performance problems in
mobile networks (see Figure 4). The performance data
(counters) are continuously stored in files in the network
elements. These files are sent to the DMO at certain time
intervals or when the files have reached a certain size. The
received data is parsed into record objects in the DMO.
Each object is then analyzed, i.e. matched against
predefined rules. The DMO has two types of rules, static
and historical thresholds. The historical thresholds are
constantly updated for each data file received. When a
performance problem is detected, the application sends a
notification via an email, or via a proprietary TCP/IP
interface to the operator support center. The process is
supervised via a graphical user interface.

Two student groups were assigned the task of
developing two DMO applications. The requirements
specification was assembled by the Ericsson
telecommunication company. Each group consisted of
four students working full-time for 10 weeks. Even though
the two groups had identical requirements as regards
functionality the requirements with respect to how to
develop the applications differed. The first group (DMO 1)

used third party tools liberally, while the other group
(DMO 2) was not permitted to use third party tools, except
for the operating system (Solaris) and for certain class
libraries. Both applications were required, however, to use
SMPs in order to guarantee high scalable application
performance. The different requirements as to how to use
third party tools resulted in two different software
architectures (see Figure 5).

The DMO 1 architecture (the upper part of Figure 5) is
based on an RDBMS (Sybase) that is accessed via a small
C++ server engine, while the DMO 2 architecture (the
lower one in Figure 5) is a large object oriented and
multithreaded C++ server using plain UNIX files for
persistent storage. DMO 1 and DMO 2 are both supervised
via a Java GUI, connected via TCP/IP.

FIGURE 5. TWO ARCHITECTURES OF DMO.

DMO 2 is implemented using multithreaded
programming and can thus be automatically distributed
over the processors in an SMP via Solaris LWPs [15]. The
DMO 1 uses a different technique for making use of
multiple processors. In DMO 1, the parallelism is achieved
by starting a number of DMO 1 engines instances, each as
a separate UNIX process. This makes it possible for DMO
1 to execute on multiple processors in parallel.The DMO 1
application scaled-up well (almost linearly) on an 8-way
SMP. The DMO 2 application had, however, a most
inefficient scale-up. The throughput decreased when using
more than one processors. The bottleneck in the dynamic
memory management was the main reason for this. We
believe that an optimized dynamic memory handling
would make the application scale-up properly.

The DMO 1 application scaled-up well (almost
linearly) on an 8-way SMP. The DMO 2 application had,
however, a most inefficient scale-up. The throughput

Process Process Process Process Process

GUIC++ EngineRDBMS

Solaris

SUN Enterprise 4000

DMO 1

Process

GUILarge C++ Server

Solaris

SUN Enterprise 4000

Multithreaded Process

DMO 2

communication

communication

Software Design Conflicts

102 Software Design Conflicts

decreased when using more than one processors. The
bottleneck in the dynamic memory management was the
main reason for this. We believe that an optimized
dynamic memory handling would make the application
scale-up properly.

While studying the DMO 2 project we found that the
developers were divided into two categories: one category
thought that multithreading simplifies both design and the
implementation; the other thought that multithreading
makes design and implementation harder. How well
developers adapt to parallel programming seems to be
very individual.

3 LESSONS LEARNED
The experiences from the BGw, FCC and DMO

applications show that the design techniques used for
obtaining high maintainability and flexibility result in very
frequent allocation and deallocation of dynamic memory
at run time. Our experience also shows that dynamic
memory management has a serious impact on the SMP
performance of these applications. The main reason for
this is that the heap is a shared resource in a multithreaded
program, i.e. the heap can easily become a serialization
bottleneck when using an SMP.

As discussed in the previous section, the dynamic
memory problem in SMPs has been attacked in a number
of ways in the three applications, e.g. by using a parallel
heap (ptmalloc), by using processes (with a private heap)
instead of threads, or by introducing object pools. In this
section we summarize the experience we have of attacking
the dynamic memory problem in SMPs (see Table 1).

There are two basic ways of attacking the dynamic
memory problem: either to reduce the cost of dynamic
memory allocation and deallocation, or to reduce the
usage of dynamic memory. For each of these two basic
ways, the attack can be made on different levels. We have
found it useful to distinguish between three levels:
software architecture and design level, implementation
level, and operating system level.

Starting from the bottom in Table 1 we see that using a
parallel heap is a useful way of reducing the cost for

dynamic memory allocation and deallocation. We have
evaluated ptmalloc for BGw and FCC, and found that it
solved the dynamic memory problem for these
applications, at least when the number of processors was
less than or equal to eight. Other studies [1] have,
however, showed that for some applications even highly
optimized parallel heaps such as ptmalloc and smartheap
can suffer from serious dynamic memory problems even
for a small number of processors, e.g. less than eight
processors.

One very successful way of attacking the dynamic
memory problem is to introduce objects pools. We have
evaluated this in the BGw and found that it does not only
provide very good multiprocessor speedup, it also
improves the single-processor performance significantly.
The reason for this is that allocation of memory from
object specific pools can be done much faster than
allocation of memory from a general heap. The major
disadvantage with object pools is that they introduce
additional complexity in the application program (i.e. we
move the task of dynamic memory management from the
operating system to the application programmer). The
additional complexity makes it harder to maintain the
program, thus negating the main reasons for using object
orientation and maintainable design techniques in the first
place. Experience from the BGw shows that the object
pools tend to degenerate after a number of revisions of the
application. The reason for this is that the designers that
are changing the application from one revision to the next
do not fully understand how to use the object pools. The
result of this is that they start to use the ordinary heap
instead.

A simple but effective way of attacking the dynamic
memory problem at the implementation level is to use the
stack instead of the heap. This is of course not possible in
all cases, but experience from the BGw shows that a bad
habit is to use the operator new, even if the size is constant
(see the code examples on next side).

readAndPrint(int fd) {
unsigned char* buff = new unsigned char[16];
read(fd, buff, 16);
printf("%s",buff);
delete buff;}

Table 1: Summary of our experiences of attacking the dynamic memory problem in SMPs

Level \ Type Reduce cost Reduce usage

Architecture and Design Processes instead of threads Rigid but exchangeable components

Implementation Object pools Use stack instead of heap

Operating System Parallel heap Not investigated by us

Paper VI

Sofware Design Conflicts 103

An alternative is to use memory from the stack.

readAndPrint(int fd) {
char buff [16];
read(fd, buff, 16);
printf("%s",buff);}

A typical situation where dynamic memory is used is
when the size of the allocated memory has to be decided at
run-time. In such cases, the C library function, alloca() can
be used instead of the operator new. The function allocates
a dynamic number of bytes from the stack.

The dynamic memory problem can also be attacked at
the architecture and design level. One way of reducing the
cost for dynamic memory allocation in SMPs is to split the
application into a number of processes that each have their
own heap. Some applications, e.g. applications that
operate on one large data structure, may be difficult to split
into processes. We have, however, found that it was
possible to split the FCC and the DMO (i.e. DMO 1)
applications into a number of processes without any
problems. The versions of FCC and DMO that consist of a
number of processes do not suffer from the dynamic
memory problem, whereas the multithreaded versions do
suffer from this problem.

The dynamic memory problem can also be attacked by
changing the design style from very flexible components
to more rigid ones. The detailed study of the parser
component in the FCC, showed that a design based on
rigid but exchangeable components can in some cases be
at least as maintainable as a design based on components
which are designed for maximum flexibility [9][10].

The techniques presented in Table 1 all have their
advantages and disadvantages, and they can of course be
combined. When working with existing code the best
choice is probably to start with using a parallel heap and
see if this solves the problem. If a parallel heap is not
sufficient one should consider the techniques on the
implementation level as a second step, and only as a very
last resort consider altering the architecture and design of
the system.

When developing new code we would, however,
suggest that the designers start at the top in Table 1, i.e.
they should consider using processes instead of threads
when possible (and reasonable), and they should also
consider using rigid but exchangeable components instead
of flexible and extendable components.

We believe that it is a better long term solution to
reduce the usage of dynamic memory compared to just
reducing the cost for using dynamic memory. The reason

for this is that it is generally easier to add on techniques
for reducing the cost later, e.g. you can always relink the
program with a parallel heap at a later stage.

4 RELATED WORK AND DISCUSSION
With the exception of Ptmalloc [5], Smartheap [18]

and Hoard [1], we have not found many studies of parallel
memory allocators. Larson and Krishan [14] also suggest a
parallel heap and they include a relatively good survey.

High-performance algorithms for dynamic memory
allocation have been, and will continue to be, of
considerable interest. Benjamin Zorn has addressed the
subject in a number of papers, e.g. [2][23]. These papers
are, however, mostly focused on dynamic memory
allocations in sequential applications. A handful of papers
presenting new and adapted state-of-the-art solutions, e.g.
design patterns, have been written. Douglas C. Schmidt is
one of the leading researchers in this area [21]. The papers
show that parallel software introduces the need for new
patterns and idioms [20], and it also requires that existing,
well-known and successful patterns are adapted or
complemented in order to operate efficiently in the new
context. One example is singleton, a very common pattern,
which has proved to be an incomplete solution in parallel
software since it only addresses the issue of creating
objects [19]. In order to work properly in parallel software,
it also has to address the issue of object destruction.

Our experience indicates that some designers like
multithreading while others do not. It is, however, clear
that the usage of multiprocessors and multithreading
creates a number of new problems. We believe that
problems with immature third party tools will decrease as
SMPs become common in this type of applications; our
positive experiences from the database management
systems in FCC and DMO support this.

A challenge is to find design strategies which can offer
scalable performance for software which is not primarily
designed for SMPs or cannot be highly optimized for
SMPs. We have ascertained that dynamic memory
allocation and deallocation is the most common bottleneck
when executing these types of object oriented applications
on SMPs.

5 CONCLUSION

We have studied three large object oriented
telecommunication server applications, for a period of five
years. The applications have been studied in their
industrial context as well as in an experimental
environment - an 8-way Sun Enterprise multiprocessor
system - on which the applications have been evaluated,
optimized and then re-evaluated. The studies also include
a number of interviews with developers at Ericsson.

Software Design Conflicts

104 Software Design Conflicts

One important finding is that dynamic memory
management was a serialization bottleneck in all
applications, i.e. there is a dynamic memory problem for
SMPs for this type of applications. The large number of
memory allocation and deallocation are caused by the
designers’ ambition to obtain a maintainable and flexible
software design.

The dynamic memory problem was attacked in a
number of ways for the three applications. Our
experiences from these attacks could be summarized in a
table (Table 1). This table shows that the problem can be
attacked at different levels, i.e. the operating system level,
the implementation level, and the software architecture
and design level. The table also shows that there are two
basic ways of attacking the problem: either to reduce the
cost of using dynamic memory or to reduce the usage of
dynamic memory. The investigated methods can be
combined.

Each of the investigated ways of attacking the dynamic
memory problem has its advantages and disadvantages.
We argue, however, that the attack should focus on the
operating system level when dealing with existing code
and on the software architecture and design level when
developing new applications.

REFERENCES
1. E. D. Berger and R. D. Blumofe, “Hoard: A Fast, Scal-

able, and Memory-Efficient Allocator for Shared
Memory Multiprocessors”, http://www.hoard.org.

2. D. Detlefs, A. Dosser, and B. Zorn ‘‘Memory Alloca-
tion Costs in Large C and C++ Programs’’ Software
Practice and Experience 24(6):527-542, June 1994

3. R. Ford, D. Snelling and A. Dickinson, "Dynamic
Memory Control in a Parallel Implementation of an
Operational Weather Forecast Model”, in Proceedings
of the 7:th SIAM Conference on parallel processing for
scientific computing, 1995.

4. I. Foster, "Designing and Building Parallel Programs",
Addison Wesley, 1995.

5. W. Gloger, "Dynamic memory allocator implementa-
tions in Linux system libraries", "http://
www.dent.med.uni-muenchen.de/~wmglo/malloc-
slides.html".

6. K. Hwang, Z. Xu, "Scalable and Parallel Computing",
WCB/McGraw-Hill, 1998.

7. D. Häggander and L. Lundberg, "Optimizing Dynamic
Memory Management in a Multithreaded Application
Executing on a Multiprocessor", in Proceedings of the
ICPP 98, 27th International Conference on Parallel
Processing, August, Minneapolis 1998.

8. D. Häggander and L. Lundberg, "Memory Allocation
Prevented Telecommunication Application to be Paral-

lelized for Better Database Utilization", in Proceedings
of the 6th International Australasian Conference on
Parallel and Real-Time Systems, Melbourne, Australia,
November 1999.

9. D. Häggander and P. Bengtsson, J. Bosch, L. Lund-
berg, "Maintainability Myth Causes Performance
Problems in Parallel Applications", in Proceedings of
SEA’99, the 3rd International Conference on Software
Engineering and Application, Scottsdale, USA, Octo-
ber 1999.

10. D. Häggander and P. Bengtsson, J. Bosch, L. Lund-
berg, "Maintainability Myth Causes Performance
Problems in SMP Applications", in Proceedings of
APSEC’99, the 6th IEEE Asian-Pacific Conference on
Software Engineering, Takamatsu, Japan, December
1999.

11. J. Panttaja, M. Panttaja and J. Bowman, "The Sybase
SQL Server -Survival Guide", John Wiley & Sons,
1996.

12. T. M. Pigoski, "Practical Software Maintenance”,
Wiley Computer Publishing, 1997, table 3.1, page 31.

13. J. Larmouth, “ASN.1 Complete”, Morgan Kaufmann,
1999.

14. P. Larsson and M. Krishan, "Memory Allocation for
Long-Running Server Applications”, in Proceedings of
the International Symposium on Memory Management,
ISMM ’98, Vancouver, Canada, October, 1998.

15. B. Lewis, "Threads Primer", Prentice Hall, 1996.

16. L. Lundberg and D. Häggander, "Multiprocessor Per-
formance Evaluation of Billing Gateway Systems for
Telecommunication Applications", in Proceedings of
the ISCA 9th International Conference in Industry and
Engineering, December, Orlando 1996.

17. C. Lundin, B. Nguyen and B. Ewart, "Fraud manage-
ment and prevention in Ericsson’s AMPS/D-AMPS
system", Ericsson Review No. 4, 1996.

18. Microquill, “SmartHeap for SMP”,
http://www.microquill.com/smp.

19. D. Schmidt, “A Complementary Pattern for Control-
ling Object Creation and Destruction”, in Proceedings
of the 6th Pattern Languages of Programs, Monticello,
Il, US, August, 1999.

20. D. Schmidt, “Patterns and Idioms for Simplifying
Multi-threaded C++ Components”, to appear in the
C++ Report Magazine.

21. D. Schmidt, “Douglas C. Schmidt”, http://
www.cs.wustl.edu/~schmidt.

22. B. Stroustrup, "The C++ Programming Language",
Addison-Wesley, 1986.

23. B. Zorn and D. Grunwald, ‘‘Evaluating Models of
Memory Allocation,’’ ACM Transactions on Modeling
and Computer Simulation, 4(1):pp.107-131, January
1994.

Paper VII

Sofware Design Conflicts 105

Paper VII

A Method for Automatic Optimization of
Dynamic Memory Management in C++

Daniel Häggander, Per Lidén and Lars Lundberg
30th International Conference on Parallel Processing

Valencia, Spain
September 2001

XVII

Software Design Conflicts

106 Software Design Conflicts

Paper VII

Sofware Design Conflicts 107

A Method for Automatic Optimization of Dynamic Memory Management in C++

Daniel Häggander, Per Lidén and Lars Lundberg
Department of Software Engineering and Computer Science

Blekinge Institute of Technology
SE-372 25 Ronneby, Sweden

{Daniel.Haggander, Per.Liden, Lars.Lundberg}@bth.se

Abstract
In C++, the memory allocator is often a bottleneck

that severely limits performance and scalability on
multiprocessor systems. The traditional solution is to
optimize the C library memory allocation routines. An
alternative is to attack the problem on the source code
level, i.e. modify the applications source code. Such an
approach makes it possible to achieve more efficient and
customized memory management. To implement and
maintain such source code optimizations is however both
laborious and costly, since it is a manual procedure.

Applications developed using object-oriented
techniques, such as frameworks and design patterns, tend
to use a great deal of dynamic memory to offer dynamic
features. These features are mainly used for
maintainability reasons, and temporal locality often
characterizes the run-time behavior of the dynamic
memory operations.

We have implemented a pre-processor based method,
named Amplify, which in a completely automated
procedure optimizes (object-oriented) C++ applications
to exploit the temporal locality in dynamic memory usage.
Test results show that Amplify can obtain significant
speed-up for synthetic applications and that it was useful
for a commercial product.

1. Introduction

Most applications use a great deal of dynamic memory
these days. As the trend towards larger applications
continues, there will be even greater demands on the heap
manager. Another trend that increases the importance of
efficient heap management is the increasing popularity of
C++ [12]. C++ programs by their nature use dynamic
memory much more heavily than their C counterparts,
and often for many very small, short-lived allocations [8].
Previous studies show that C++ programs invoke one
order of magnitude more dynamic memory management
than comparable C applications [3]. Modern software
systems also tend to use various frameworks and design

patterns. A main reason for this is to make the source
code easy to maintain. Frameworks and design patterns
introduce dynamic features. These features are to a large
extent based on abstract object types and the introduction
of new object types. In C++ this increases the use of
dynamic memory even more. However, the dynamic
features present in many frameworks and design patterns
are mainly used to make the system adaptable to future
changes. Thus, temporal locality will characterize the run-
time behavior, where the same object structures tend to be
created and used over and over again [9].

On multiprocessors, dynamic memory is an exclusive
resource that must be protected against concurrent
accesses by multiple threads running in the same
multithreaded (C++) program. As a result of this, it is
often not useful to add more computation power to a
system by using multiple CPU:s, since frequent allocation
and deallocation of dynamic memory becomes a
bottleneck [11]. Several methods for solving this problem
have been evaluated [10]. A common approach to make
the memory management routines reentrant. This is,
usually, solved by creating a dynamic memory manager
that handles multiple heaps internally [1][4][5]. This way,
the allocation and deallocation routines can work in
parallel with a minimum need for mutual exclusion.
Nevertheless, evaluations have shown that application
specific design and implementation techniques, such as
introducing handmade structure pools, is more beneficial
in terms of performance [11]. However, this method
suffers from some major drawbacks, which makes it a less
attractive option. Using pools for reuse of object
structures requires the programmer to incorporate these
into every class by hand. This means that the programmer
must be very familiar with the code. Further, these pools
tend to be very tailored and optimized for a specific
application, thus making them less reusable. As the
system grows the pools must be maintained to reflect
changes in the system. In the end, this all adds up to a
time consuming activity requiring extensive knowledge of
the system’s internal structure. Also, since the pools are
handmade there is a potential source for errors.

Software Design Conflicts

108 Software Design Conflicts

It would be beneficial if the process for incorporating
structure pools in a system could be automated. Most of
the identified drawbacks of this method could then be
eliminated, or at least substantially reduced. We have
approached this problem by implementing a pre-processor
that inserts the optimizations into the code before it is
compiled. The problems with high costs for maintaining a
handmade version are eliminated, since it is only a matter
of recompiling the code. Further, the potential errors
caused by the programmer creating the pools are
eliminated (as long as we assume that the pre-processor
implementation is correct). Finally, there is no need for
special expertise in this area among the developers in a
team. Instead they can go on using the traditional
programming and design methods and use the pre-
processor when compiling the system.

Our results show that the performance speedup gained
by using handmade structure pools can be preserved,
however not completely, by using a pre-processor based
automation. On synthetic programs, Amplify (our
method) has shown to be up to six times more efficient,
compared to the available, state of the art, C library
allocators we have tested. This study also includes tests
on a commercial product developed by the Ericsson
Telecommunication Company, the Billing Gateway
(BGw). BGw is a system for collecting billing
information about calls from mobile phones. The
application is written in C++ and is an example of a
product dependent on a parallel memory management to
scale-up on multiprocessors. The tests show a 17%
performance increase when the BGw source code was
pre-processed by a slightly modified version of Amplify.

The remaining pages are organized as follows. Section
2 describes in further detail problems surrounding
dynamic memory. In Section 3 we describe the Amplify
method. The test method is presented in Section 4. Our

results can be found in Section 5, while Section 6 is a
short presentation of related work. Finally, Section 7
concludes the paper.

2. Problems with dynamic memory

In C++ [12], dynamic memory is allocated using the
operator ne w, which normally is an encapsulation of the
C-library function ma l l oc () . Allocated memory is
deallocated using operator de l e t e , which normally is
encapsulating the C-library function f r e e () . Many
implementations of ma l l oc () and f r e e () have very
simple support for parallel entrance, e.g. using a mutex
for the function code. Such implementations of dynamic
memory result in a serialization bottleneck. Moreover, the
system overhead generated by the contention of entrance
can be substantial [11]. The bottleneck can be reduced by
using an optimized reentrant implementation of
ma l l oc () and f r e e () , e.g. ptmalloc [4] or Hoard [1].
However, even better performance can be achieved by
decreasing the number of heap allocations, e.g. by
implement structure pools [9]. A lower number of heap
allocations will also improve the performance on uni-
processors, whereas using a reentrant implementation of
ma l l oc () and f r e e () will only improve performance
on multiprocessors.

In an object-oriented design, especially with design
patterns and frameworks, a large number of objects are
used. Creating an object often requires more than one
dynamic memory allocation (call to operator ne w). The
reason for this is that each object often consists of a
number of aggregated or nested objects. For example, a
car can be represented as a number of wheel objects, an
engine object and a chassis object. An engine object may
use a string object, usually from a third-party library, for
its name representation and so on (see Figure 1).

Car

Chas s is

W he e ls

W he e l W he e l W he e lW he e l

Eng ine

TurboEngine S tandardEngine

S tring

char*

S tring

char*

S tring

char*

S tring

char*

S tring

char*

S tring

char*

S tring

char*

Figure 1. An object representation of a car

Design pattern (Strategy)

Reuse

Modularity

Encapsulation

Future requirements
solved using run-time
dynamics

Paper VII

Sofware Design Conflicts 109

It is not rare that these objects are combined at run-
time in order to be as adaptable as possible. For example,
a car could have an unspecified number of wheels. Such a
design requires each sub-object (Wheel) to be created
separately. As a result of this, dynamic memory is
allocated and deallocated separately for each sub-object.
The total number of allocations is, according to the
discussion above, dependent on the composition of the
objects. Every design decision, which affects the
composition of an object, will therefore also affect the
number of memory allocations and deallocations during
program execution. Large numbers of allocations and
deallocations often become a big performance problem,
especially on multiprocessor hardware. Actions must
therefor often be taken, such as redesigning the
application or using an alternative heap manager.

2.1. Structure pools

The concept of object pools, also known as memory
pools, is a well-known memory management technique.
An object pool acts as a layer between the application and
the dynamic memory management subsystem. When
allocating memory for an object, a call to an object pool is
made instead of making direct calls to the memory
manager, i.e. ma l l oc () . An object pool holds a free list
containing objects of a specific type. When an object is
requested an object is extracted from the free list and
returned to the caller. Thus, no call to the memory
manager is needed, instead an already allocated, but not
currently used, object is reused. Further, when
deallocating memory a call to the pool is made instead of
directly calling the memory manager, i.e. f r e e () . The
pool will then insert the object into its free list for later
reuse. This kind of strategy reduces the number of calls
made to the memory management subsystem. However,
in a multithreaded environment there is still a need for
mutual exclusion during operations on the pool’s free list.

Using object structures, rather than single objects, as
the reusable units in a free list leads to what we call
structure pools. Each object that contains references to
other objects is a potential root node in an object
structure. When an object is deallocated it is placed in the
free list, keeping its references to other objects. This
means that if we would like to allocate a Car object (see
Figure 1) we only need to access the Car’s pool once to
get the complete car with an engine, wheels and chassis.
If we were using traditional object pools we would have
had to access the pools of each and every class used by
Car to build the same structure. By using pools to store
object structures we not only reduce the number of calls
made to the memory management subsystem, but we also
reduce the number of calls made to pools.

The details on how these pools are implemented are
discussed further in Section 3.

3. Amplify

When generalizing and automating the process of
using structure pools we started by writing and analyzing
handmade versions. During this process we found several
points where the programmer makes decisions concerning
the application source code or design. These decisions
had to be made by the pre-processor when the process
was automated. However, a pre-processor can never know
as much about the source code as the programmer. Design
decisions, rationale, unwritten coding rules, etc, are things
a pre-processor can not comprehend. We therefore
designed Amplify (which is the name of our method) to
solve these problems in a general way, not depending on
information unavailable to the pre-processor. By
inspecting the input source code using a pattern matching
approach we were able to modify the code to make use of
structure pools.

3.1. Building structure pools by hand

In the case where a structure pool is handmade, the
programmer selects the root object of the structure (i.e.
Car in Figure 1). The programmer then creates a new
class that handles a pool of such root objects. The new
pool class typically has three static member functions,
i n i t () , a l l oc () and f r e e () (see Figure 2). These
functions manage a free list. Whenever the programmer
wants to create or destroy a new structure he/she must not
use operator ne w or de l e t e , but instead make calls to
the pool’s a l l oc () and f r e e () functions, which
removes respectively inserts an object into the free list. It
is not only up to the programmer to do the right thing
when allocating and deallocating a structure, he/she is
also responsible for writing the pool’s a l l oc () and
f r e e () member functions. Further, before starting to
make calls to a l l oc () , the pool has to be initialized by
a call to i n i t () . This is done in order to let the pool
pre-allocate a number of structures that is inserted into the
free list.

Since structures may not be identical every time they
are used, the pool can only pre-allocate the objects that
are common to every case (from now on referred to as
template). In the case with the Car structure, a template
would consist of a Car, a Chassis, and a Wheels object.
Everything else is dependent on what kind of car is to be
created. However, there are cases where the programmer
knows that he will only create cars with a maximum of
eight wheels. In these cases eight wheels are allocated and
inserted into the template. Later, when a template is used,
there are always eight wheels available. However, not all
of them are used if the car only has four wheels. This
memory overhead might be acceptable if it yields better
performance. At this point the object structure has
everything except an engine. The type of engine used can

Software Design Conflicts

110 Software Design Conflicts

vary from time to time and must thus be allocated
separately when the car is created.

Moreover, since the traditional memory management
functions are bypassed when using these kinds of pools
another addition is often made to the classes that compose
the structures. It must be possible to initialize and destroy
objects without calling operator ne w and operator
de l e t e . Thus, each class in a structure gets two new
member functions, i n i t () and de s t r oy() . These
functions act as replacements for the traditional
constructor and destructor (see Figure 2).

Finally, the pools must be usable in a parallel
environment. A solution to this would be to protect parts
of the pools’ code with mutual exclusion. However, this is
often not a desirable solution since global locks are
potential bottlenecks (and what causes ma l l oc () and
f r e e () to be inefficient). Instead the programmer keeps
track of which pools are used by which threads and
manually avoids simultaneous allocations/deallocations
from the same pool.

3.2. The Amplify method

Automatically modifying the source code of an
existing program requires the decisions made by the

programmer to be generalized to a level comprehensible
to the pre-processor. Therefor, we introduce a general
structure pool (see Figure 3). The general structure pool
must be flexible enough to fit every case and work
completely transparent to the programmer. The following
sections will describe the generalization.

When building a structure pool by hand, the
programmer selects the root object of the structure. The
programmer knows which structures are frequently used
and can thus decide to only use structure pools in cases
where he/she knows it will be beneficial. However, by
just looking at the class structure in the source code we
can not decide which objects are roots and which are not
during execution. Since each object is a potential root
node in a structure we can not during pre-processing treat
some classes differently from others. Instead we treat
every class as if it was a root in a structure, i.e. letting
each class have its own pool.

The common parts of a structure were selected by the
programmer and composed into a template. The
characteristics of a template is based on design decisions
and assumptions, e.g. “we will not create a car with more
than eight wheels”. It is obviously impossible for a pre-
processor to make such assumptions and thus the contents
of a template must be based on some other information.

One fundamental idea behind Amplify is to exploit
temporal locality, which often characterizes object-
oriented programs using frameworks and design patterns.
In this case, it means that when the program creates a new
structure we assume that it will be identical to the
structure last deleted (which had the same type of root
object). If we later find that the structures were not
identical we will then take the overhead of reorganizing
the structure to fit this specific case.

Before the programmer started to use a handmade pool
he/she called i n i t () to pre-allocate a number of
structures. The programmer knows that he/she will never
use more structures simultaneously than present in the
pool after the initialization.

Instead of pre-allocating a number of structures,
Amplify will start with empty pools. If a pool is empty
when the application makes a memory request, the pool

Figure 2. Example of handmade pool

class Ca r {
public:

virtual void i n i t (int numbe r Of Whe e l s , . . .) ; / / I ni t i a l i z e
virtual void de s t r oy() ; / / Cl e a n up

. . .

class Ca r Pool {
public:
 static void i n i t (int numbe r Of Ca r s) ; / / Pr e - a l l oc a t e a numbe r of s t r uc t ur e s
 static Ca r * a l l oc () ; / / Ge t a s t r uc t ur e f r om t he pool
 static void f r e e (Ca r * c a r) ; / / Re t ur n a s t r uc t ur e t o t he pool
. . .

Figure 3. Structure of an Amplify pool

Thread Specific DataAmplifyLocke dPool

char s pinlock
Object* root

Object* alloc(int s ize)
void free (Object* object)

AmplifyPool

AmplifyLockedPool** Pools
ThreadS pecificDataKey Key

Object* alloc(int s ize)
void free (Object* object, int poolnumber)

Paper VII

Sofware Design Conflicts 111

itself will simply allocate more memory using the normal
dynamic memory manager, i.e. ma l l oc () .

To allocate a structure using handmade pools, all
traditional allocations (using operator ne w) are
exchanged with a call to the member function a l l oc ()
of the corresponding pool. Further, to be able to initialize
an already allocated structure the member function
i n i t () is called, instead of the constructor.

Amplify solves this by overloading operator ne w of
each class that is associated with a pool. Operator ne w
redirects all memory requests to the pool’s member
function a l l oc () . This function will extract a structure
from the pool’s free list and return it. Only if the free list
is empty a new piece of memory is allocated on the heap.

If the pre-processed class already has a ne w operator
defined, the pre-processor will respect that and not
generate another one.

One problem with the standard ma l l oc () and
f r e e () is the critical code regions that must be
protected by mutual exclusion. A pool has the same
fundamental problem. Only one thread can manipulate the
pool’s free list at the same time, else there would be a
potential source for race conditions that could cause a
program to fail. When developing handmade pools, the
programmer often avoids this problem by simply not
sharing a pool between two threads. A pool could of
course be reused, but only when the thread currently using
it has been terminated.

One goal when developing Amplify was to avoid
expensive locking schemes. In particular, we would like
to minimize the situations where a thread has to wait for a
lock that is already occupied. This was done in several
ways. First, having one pool for each class leads to a more
parallel behavior since two threads will only compete
with each other if they both try to allocate an object of the
same type. Secondly, we used known strategies, mainly
from ptmalloc, to spread the threads over a number of
pools to avoid lock contention on a multiprocessor.

Freeing a structure when using handmade pools is
done by calling the member function de s t r oy() of the
root object. This function acts as the destructor for the
object and will in turn call the de s t r oy() function of
its children. When this is completed all objects in the
structure have done their necessary clean up actions
(releasing resources, closing files, etc) and the structure
can be considered dead. The programmer now calls the
f r e e () function of the pool associated with the root.
This will insert the structure into the pool’s free list for
later reuse. It is important to note that the relation
between objects in the structure is kept intact, i.e. no
pointers are deleted or changed.

The Amplify pre-processor is faced with two problems
here. First, when deleting a structure the root object must
be placed in the corresponding pool’s free list. Second, to

be able to reuse the structure later, the object structure
must be preserved. Preserving the structure means that
child objects of the root must not be deleted or placed in
other pools.

These problems are solved by the following two
actions. First, operator de l e t e is overloaded on all
classes associated with a pool. The de l e t e operator will
redirect all deletion requests to the pool of the class. This
is done to avoid letting the memory be passed back to the
heap manager. Instead de l e t e adds the object to the
corresponding pool’s free list. Doing this, we allow the
memory occupied by the object to be reused the next time
such an object is to be created.

The second step is to preserve the object structure, e.g.
avoid deletion of child objects of the root. Traditionally
when an object structure is deleted, references (pointers)
to other objects are deleted as well. Thus, we have to store
information about the structure that outlives a deletion of
its objects. This information must make it possible to
rebuild the same object structure again (preferably with
no or little effort). To solve this we introduce what we call
shadow pointers. Shadow pointers are additional fields in
a class, replicating all pointer fields in a class. These
additional fields are added by the pre-processor, thus they
are completely invisible to the programmer.

class Root {
public:

/ / Me t hods
private:

Chi l d* l e f t ;
Chi l d* r i ght ;
int da t a ;
Chi l d* l e f t Sha dow;
Chi l d* r i ght Sha dow;

};

The shadow pointers are used in the following way.
When a new Root object is allocated on the heap (i.e. the
pool was empty) all shadows are set to 0 (null). In Root ’s
methods where the following code appears

delete l e f t ;

the pre-processor will change it to

if (l e f t) {
l e f t - >~Chi l d() ;
l e f t Sha dow = l e f t ;

}

This is done to avoid deletion of l e f t . Instead the
object’s destructor is called and then the address to the
memory occupied by the object is saved in its shadow
pointer. By doing this we can keep track of the object
structure after it has been deleted. The next time the same
structure is created we can reuse the previous one by just
reading the shadow pointers. Thus, in Root ’s methods

Software Design Conflicts

112 Software Design Conflicts

where the following code appears

l e f t = new Chi l d(. . .) ;

the pre-processor will change it to

l e f t = new(l e f t Sha dow) Chi l d(. . .) ;

By also overloading operator ne w we can add type
checking to ensure that there is enough space for the new
object.

4. Method

As a first step, we developed three synthetic test
programs to evaluate the potential of Amplify. All test
programs used dynamic memory extensively and had a
run-time behavior characterized by temporal locality, i.e.
the program frequently created the same object structures
over and over again. The three programs differed from
each other by how deep object structures they where
creating. The test programs were executed and compared
using three alternative memory management solutions,
ptmalloc [4], Hoard [1], and Amplify.

The test suite used was based on a program with 100%
temporal locality behavior, i.e. creating the same structure
over and over again. This was done by creating a number
of threads, which allocates, initializes and then destroys
and deallocates binary trees. Each node was 20 bytes (28
bytes when “amplified”) in size, holding two pointers to
its children and some “dummy” data.

The program was set up to vary its behavior with
respect to the number of threads created, the number of
binary trees created and destroyed, as well as the depth of
the binary trees. No system calls were made during
execution, thus making it theoretically possible for ideal
scalability.

Three test cases (see Table 1) were chosen based on
the following:

Test case Tree depth Number of objects

1 1 3

2 3 15

3 5 63

Table 1. Size of data structures in test cases.

• Test case one was chosen as a worst case, to see if the
Amplify-approach would cause a large overhead
when data structures are shallow. Since Amplify tries
to reuse data structures it is clearly of interest to see
how well it performs if there are no large structure to
reuse.

• Test case two can be mapped to the Car-paradigm
(see Figure 1) and thus represents something that
could, based on the discussion in sections 1 and 2, be
considered as a normal case for an application.

• Test case three could be thought of as the best case,
where deep structures could be reused.

The tests were executed under Solaris 2.6 on a Sun
Enterprise 4000 equipped with 8 processors. Solaris
default memory manager implementation was used as the
baseline for calculating speedup. In a second step, we
applied Amplify on a real application, Billing Gateway
(BGw). By doing this we identified a number of necessary
adaptations (see Section 5.2).

The Billing Gateway (BGw) is a system for collecting
billing information about calls from mobile phones. The
system is a commercial product and has been developed
by the Ericsson Telecommunication Company. BGw is
written in C++ (approximately 100,000 lines of code)
using object-oriented design, and the parallel execution
has been implemented using Solaris threads. The system
architecture is parallel and Ericsson therefore expected
good speedup when using a multiprocessor. However, the
actual scale-up of BGw was very disappointing.

In the first version of BGw, the sequential imple-
mentation of dynamic memory allocation and false
memory sharing resulted in performance degradation
when using more than one processor. The major reason
was the standard sequential dynamic memory
management combined with a large number of dynamic
memory allocations. The large number of allocations is a
result of how the object-oriented design was used. The
number of heap allocations in BGw was reduced by
introducing object-pools for commonly used object types,
and by replacing heap variables with stack variables. The
reduction of allocations made the application to scale
linear.

However, after a few years of continuous development,
BGw once again encountered scalability problems. The
reason was the same as the last time. New functionality
and program flows had made the object-pools inefficient.
At this time, resources for updating the pools were
lacking. The BGw is thus nowadays depending on a
parallel allocator (Smart Heap for SMP) to scale on
SMP:s.

The problem with dynamic memory is in the BGw
mainly located in a certain component. This component,
approximately 45,000 LOC, was extracted from the rest
of the application source code. A test program design to
behave identical to the original application was
implemented. The test program was executed on a SUN
Enterprise 10000 equipped with 8 processors. The time it
took to process 5,000 CDR:s was measured.

Paper VII

Sofware Design Conflicts 113

5. Results

5.1. Synthetic program results

Figures 4, 5, and 6 show the speedup of each test case
using three different methods: ptmalloc, Hoard and
Amplify. As discussed above, the definition of a speedup
value of 1 is the execution time using one thread and the
standard Solaris heap manager. In all our tests Amplify
outperforms both Hoard and ptmalloc, even when the data
structure is shallow. The drop when using 2 threads
compared to 1 thread in Figure 4 is caused by the fact that
Amplify can operate more efficiently in a non-threaded
environment. This since the pre-processor automatically
removes all unnecessary locks.

Figures 7, 8 and 9 show the scaleup for our three test
cases. The scaleup is defined as the speedup where the
speedup value for one thread is normalized to one.
Interesting to note is the fact that Amplify does not scale
very well in test case 1 (see Figure 7). The main focus for
Amplify is to avoid the contention caused by mutual
exclusion during memory allocation. From this point of
view the results from test case 1 are successful. When
monitoring the locks protecting critical code regions
within the pools we noticed a very low number of failed
lock attempts. This result has lead us to believe that the
ptmalloc approach (i.e. choose another heap/pool if a
thread becomes blocked too often) no longer is a
favorable solution. Using several heaps/pools has two
advantages: it reduces lock contention and it improves
cache hit ratio, provided that the threads that share a

Figure 6. Speedup graph for test case 3

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 16 32 64

Number of threads

S
pe

ed
up

Amplify

Hoard

ptmalloc

Figure 7. Scaleup graph for test case 1

0

2

4

6

8

10

1 2 3 4 5 6 7 8 16 32 64

Number of threads

S
ca

le
up

Amplify

Hoard

ptmalloc

Figure 9. Scaleup graph for test case 3

0

2

4

6

8

10

1 2 3 4 5 6 7 8 16 32 64

Number of threads

S
ca

le
up

Amplify

Hoard

ptmalloc

Figure 4. Speedup graph for test case 1

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 16 32 64

Number of threads

S
pe

ed
up

Amplify

Hoard

ptmalloc

Figure 8. Scaleup graph for test case 2

0

2

4

6

8

10

1 2 3 4 5 6 7 8 16 32 64

Number of threads

S
ca

le
up

Amplify

Hoard

ptmalloc

Figure 5. Speedup graph for test case 2

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 16 32 64

Number of threads

S
pe

ed
up

Amplify

Hoard

ptmalloc

Software Design Conflicts

114 Software Design Conflicts

heap/pool run on the same processor. The time to lock,
insert/remove an object into a free list, and then unlock is
very short in Amplify (compared to ptmalloc). Thus,
threads will seldom or never be blocked when trying to
obtain a lock. Since the frequency of failed lock attempts
is the axiom for choosing another pool this can lead to a
situation where there are no failed locks, but undesirable
cache effects, e.g., false memory sharing. Thus, our
conclusion is that the poor scalability in test case 1 is not
caused by a poor locking mechanism, but rather caused by
other factors, such as false memory sharing. The test
programs are constructed in such a way that the memory
consumption is kept low also when using Amplify.
However, the intention in this test was not to stress the
memory consumption. There are two potential sources for
memory consumption overhead in Amplify.

The first, and most obvious, case is when there are a
lot of unused objects structures in the pools. This problem
can be handled by returning memory from the pools to the
operating system on demand, or when the pools exceed a
certain limit.

The second case is when we reuse an unnecessary
large data structure for a smaller structure. The Car in
Figure 1 may for instance, in a later instantiation, chose
not to create an Engine object at all. In this situation the
memory, used for the Engine object in the former Car,
will be unused. However, the memory can be reused in
later Car instantiations. The designer may, chose not to
“amplify” objects that can cause this type of overhead.
Another alternative is to use the same strategy as the one
described for the BGw version of Amplify (see below),
i.e., and not reusing unnecessary large memory blocks.
Consequently, if memory consumption overhead is
critical, one can take precautions by limiting the number
of root objects in the pools and/or by (statically) not
applying the technique on root objects that can cause
serious memory overhead and/or by (dynamically) not
reusing unnecessary large memory blocks. The shadow
pointers also introduce memory overhead. However, each
shadow pointer could be replaced with one bit, which
indicates if the original pointer is logically deleted or not.
If the original pointer is logically deleted it has the role of
the shadow pointer, and if it is not deleted the shadow
pointer has no role. This strategy would, however, make
the pre-processor somewhat more complex, and we have
therefore not implemented it in this prototype.

Figure 10 shows a comparison between ptmalloc,
Hoard, Amplify, and a handmade structure pool when
executing test case 2. Note that Hoard does not scale
when the number of threads is larger then the number of
processors, which is a common case for server
applications (as discussed before, we use 8 processors). A
possible explanation for this can be that when threads
start to migrate from one processor to another Hoard runs
into lock contention. The publicly available

implementation of Hoard uses a modulation based on
thread id to assign threads to heaps. The handmade
version could be seen as the theoretical maximum of what
an optimizing pre-processor could do. As discussed
before, the programmer knows things about the source
code that are not available to the pre-processor. We
believe, however, that it would be possible to improve the
pre-processor even further by making a more
sophisticated source code analysis, causing the speedup to
come closer to the handmade version.

5.2. Result from tests on BGw

When Amplify was applied on BGw we encountered
some (expected) problems. The first problem was that
only half of the allocations in BGw are made from the
application source code. The other half comes from tool
libraries, such as Tools.h++. Since Amplify must be able
to pre-process the code in order to insert the
optimizations, Amplify’s effect on BGw was limited. We
can thus identify this problem to be a major drawback of
our method and conclude that it will still be necessary to
use some kind of parallel allocator, at least as long as we
do not have access to the source code for the libraries.

The second problem encountered was that Amplify
only handles objects. In BGw the large number of
allocations were made for data type arrays, e.g. char[] and
int[]. In order to deal with this problem we extended
Amplify to also include data types. If the parent object is
allocated from the object pool the following code

buf f e r = new c ha r [l e ngt h] ;

is replaced with

buf f e r = r e a l l oc (buf f e r Sha dow, l e ngt h) ;

and

delete buf f e r ;

Figure 10. Speedup graph for test case 2
(including handmade structure pool)

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 16 32 64

Number of threads

S
pe

ed
up

Amplify

Hoard

ptmalloc

Handmade

Paper VII

Sofware Design Conflicts 115

with

buf f e r Sha dow = buf f e r ;

where buffer is an attribute in the parent object.
Amplify works with the standard r e a l l oc () .

However, by overloading the r e a l l oc () function it is
possible to gain performance, and also to better control
the memory consumption. We implemented a
r e a l l oc () of our own in order to avoid unnecessary
locks and it works in the following way:

If the allocated memory is smaller than the shadow
memory but not smaller than half the shadow memory,
then the shadow memory is reused. The function will
guarantee that, if an allocation is made repeatedly, the
maximum memory consumption is twice the normal.

We also introduced a maximum size for shadowed
memory, i.e., if memory that should be shadowed is
larger than the defined maximum, the memory is deleted
(as normal). This function will prevent large single
allocations to waste large memory chunks. We also
introduced a maximum number of objects for each pool.

Consequently, for repeatedly created objects the
memory consumption is limited to twice the amount of
memory. However, there can still be memory overhead
consumption if an object is created one or more times
and after that not re-created. There are a number of
solutions that reduce this problem, e.g. garbage
collection. We have, however, not yet implemented any
of these.

The results from the BGw show that the application is
scaleable with SmartHeap. Amplify alone, i.e. without
help from Smartheap, did not make BGw scalable.
However, when Amplify was used in combination with
SmartHeap, BGw was capable of processing CDR:s 17%
faster (see Figure 11). The same result was measured if
only data type arrays were shadowed or if all objects
were shadowed, i.e., the shadowing of data types
contributed with the major part of the allocations. The
result shows that Amplify speeds up parts of the memory
management where SmartHeap for SMP:s fails.

6. Related work

The allocator designed by Doug Lea [6] is fast and
efficient. However, the original version is neither thread-
safe nor scalable on SMP:s. Wolfram Gloger created a
thread-safe and scalable version called ptmalloc [4]. The
allocator is based on a multiple number of sub-heaps.
When a threads is about to make an allocation it “spins”
over a number of heaps until it finds an unlocked heap.
The thread will use this heap for the allocation and for
allocations to come. If an allocation fails, the thread
“spins” for a new heap. Since the operating system
normally keeps the number of thread migrations low this
implementation works fine for many applications.
However, ptmalloc can when the number of threads is
larger than the number of processors be unpredictable, in
terms of efficiency. We have successfully used this heap
implementation in our studies. For a more detailed
description of ptmalloc see [11].

There is also an SMP version of SmartHeap available
[7]. We have not had the opportunity to evaluate this
implementation on our synthetic programs since the
software is not freely accessible. During our test on
BGw, however, we were given the opportunity to make
some benchmark tests against Amplify.

Hoard [1] is another allocator optimized for SMPs,
which we successfully used in our study. This allocator
focuses on avoiding false memory sharing and blowup in
memory consumption. The allocator is scalable.
However, we have found that Hoard has problems when
threads frequently migrate between processors. The
Hoard allocator has been evaluated in a number of
benchmarks. However, none of the benchmarks have the
characteristics found in object-oriented software. Thus, to
run these benchmarks on Amplify would be pointless.

LKmalloc [5], developed by Larsson and Krishnan, is
yet another parallel memory allocator. (Not investigated
by us). It focuses on being fast and scalable in both
traditional applications and long-running server
applications, which are executed on multiprocessor
hardware.

Before ptmalloc, Hoard, LKmalloc etc., which were
presented relatively recently, there is not much work
available on parallel memory allocators. A survey on
prior work in dynamic memory management can be
found in Larson and Krishan’s paper “Memory
Allocation for Long-Running Server Applications “ [5]
There are also reports on hardware support for dynamic
memory management [2]. The temporal locality
characteristics exploited by Amplify are not specific to
applications written in C++, but rather the behavior of
object-oriented applications using frameworks and design
patterns. Thus, using Amplify together with other object-
oriented languages than C++ would most likely be
beneficial. We are currently evaluating Amplify for Java.

Figure 11. Speedup graph for BGw

1

2

3

4

1 2 4 8

Number of CPUs

S
pe

ed
up

Amplify+S martHeap

S martHeap

Amplify

Software Design Conflicts

116 Software Design Conflicts

7. Conclusion

The traditional solution to performance problems
caused by heavy use of dynamic memory is to optimize
the C library memory allocation routines. However,
attacking these problems on source code level (i.e.
modify the application code) makes it possible to achieve
more efficient, application specific, memory
management.

Optimizing the application by integrating customized
structure pools into the source code has shown to be very
beneficial in terms of performance. It is, however, a
manual procedure and thus carries maintainability
drawbacks, which makes it less attractive. By automating
the procedure of adding these structure pools, most of
these drawbacks are eliminated, making it possible to
combine maintainability and performance. We have
implemented a pre-processor based method, named
Amplify, which in a completely automated procedure
integrates structure pools into applications written in
C++. By exploiting temporal locality, often
characterizing applications developed using object-
oriented techniques, Amplify can make very efficient
optimizations resulting in low overhead. Amplify has
shown to be up to six times more efficient in speeding up
synthetic applications, compared to the available, state-
of-the-art, C library allocators we have tested. It is also
interesting to note that Amplify increases the
performance of sequential as well as parallel programs.

Our tests on BGw verify the existents of temporal
locality in a real commercial application. However,
Amplify’s possibility to make optimizations was reduced
by the limited access to application source code.
Nevertheless, a modified version of Amplify improved
the performance of BGw with 17%. It was interesting to
note that the relative performance increase due to
Amplify was (more or less) the same with and without a
parallel heap manager, i.e., the performance
improvements of Amplify seem to be orthogonal to the
performance improvements of parallel heap managers.

Neither the BGw nor the synthetic test programs
suffered from the increased memory consumption.
Amplify can, however, in some situations suffer from
this problem. We have therefor discussed a number of
techniques to limit the memory consumption overhead of
Amplify.

Sine all source code may not be available, the Amplify
method may have to be complemented with parallel heap
managers to be useful in a realistic situation. However,
the results show that Amplify has high potential and that
it was useful on a commercial product.

8. References

[1] E. Berger K. McKinley, R. Blumofe, and P. Wilson,
“Hoard: A Scalable Memory Allocator for Multithreaded
Applications”, in Proc. of the Ninth International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-IX),
Cambridge, MA, November 2000.

[2] J.M. Chang, W. Srisa-an, C.D. Lo, and E.F. Gehringer,
“Hardware support for dynamic memory management”, in
Proc. of the Workshop for Solving the Memory-Wall
Problem, at the 27th International Symposium on
Computer Architecture, Vancouver, BC, June 2000.

[3] D. Detlefs, A. Dosser, and B. Zorn, “Memory allocation
costs in large C and C++ programs”, Software – Practice
and Experience, pp. 527-542, June 1994.

[4] W. Gloger, “Dynamic memory allocator implementations
in Linux”, http://www.dent.med. uni-
muenchen.de/~wmglo/malloc-slides.html (site visited
January 2001).

[5] P. Larson and M. Krishan, “Memory Allocation for Long-
Running Server Applications”, in Proc. of the
International Symposium on Memory Management, ISMM
’98, Vancouver, British Columbia, Canada, October, 1998.

[6] D. Lea, “A memory allocator”, http://g.oswego.edu
/dl/html/malloc.html (site visited January 2001).

[7] MicroQuill Software Puplishing, Inc., “SmartHeap for
SMP”, http://www.microquill.com/smp, (site visited
January 2001).

[8] MicroQuill Software Publishing, Inc., “SmartHeap –
Programmer’s Guide”, March 1999.

[9] D. Häggander, PO. Bengtsson, J. Bosch, and L. Lundberg,
“Maintainability Myth Causes Performance Problems in
Parallel Applications”, in Proc. of the 3rd International
Conf. on Software Engineering and Applications,
Scottsdale, USA, pp. 288-294, October 1999.

[10] D. Häggander and L. Lundberg, ”Attacking the Dynamic
Memory Problem for SMPs”, in Proc. of the 13th

International Conf. on Parallel and Distributed
Computing Systems, Las Vegas, Nevada, USA, August 8-
10 2000.

[11] D. Häggander and L. Lundberg, ”Optimizing Dynamic
Memory Management in a Multithreaded Application
Executing on a Multiprocessor”, in Proc. of the 27th

International Conf. on Parallel Processing, Minneapolis,
USA, August 1998.

[12] B. Stroustrup, “The C++ Programming Language”,
Addison-Wesley, 1997.

Paper VIII

Sofware Design Conflicts 117

Paper VIII

Recovery Schemes for High Availability and
High Performance Cluster Computing

Lars Lundberg and Daniel Häggander
Research report 2001:06

ISBN:1103-1581

XVIII

Software Design Conflicts

118 Sofware Design Conflicts

Paper VIII

Sofware Design Conflicts 119

Recovery Schemes for High Availability
 and High Performance Cluster Computing

Lars Lundberg and Daniel Häggander

Department of Software Engineering and Computer Science, Blekinge Institute of Technology,
S-372 25 Ronneby, Sweden

lars.lundberg@bth.se, daniel.haggander@bth.se

Abstract. Clusters and distributed systems offer two important advantages, viz. fault tol-
erance and high performance through load sharing. When all computers are up and run-
ning, we would like the load to be evenly distributed among the computers. When one or
more computers break down the load on these computers must be redistributed to other
computers in the cluster. The redistribution is determined by the recovery scheme. The
recovery scheme should keep the load as evenly distributed as possible even when the
most unfavorable combinations of computers break down, i.e. we want to optimize the
worst-case behavior. In this paper we define recovery schemes, which are optimal for a
number of important cases.

1 Introduction

One way of obtaining high availability and fault tolerance is to distribute an application on a cluster or
distributed system. If a computer breaks down, the functions performed by that computer will be han-
dled by some other computer in the cluster. A lot of cluster vendors support this kind of fault recovery,
e.g. Sun Cluster [9], MC/ServiceGuard (HP) [5], TruCluster (DEC) [10], HACMP (IBM) [1], and
MSCS (Microsoft) [6,11].

Consider a cluster with two computers. A common way to obtain high availability is to have one ac-
tive (primary) computer that executes the application under normal conditions and one secondary com-
puter that executes the application when the primary computer breaks down. This approach can be
extended to systems with more than two computers. In that case there may be a third computer that
executes the application when the primary and secondary computers are both down, and so on. The
order in which the computers are used is referred to as the recovery order.

An advantage of using clusters, besides fault tolerance, is load sharing between the computers. When
all computers are up and running, we would like the load to be evenly distributed. The load on some
computers will, however, increase when one or more computers are down, but even under these condi-
tions we would still like to distribute the load as evenly as possible.

Consequently, clusters offer two important advantages: fault tolerance and high performance
through load sharing.

The distribution of the load in case of a fault, i.e. a computer going down, is decided by the recovery
orders of the processes running on the faulty computer. The set of all recovery orders is referred to as

Software Design Conflicts

120 Software Design Conflicts

the recovery scheme, i.e. the load distribution in case of one or more faults is determined by the recov-
ery scheme.

We have previously defined recovery schemes that are optimal for some cases [4]. In this paper we
define new recovery schemes which are better in the sense that they are optimal for a larger number of
cases.

2 Problem Definition

We consider applications that are executed on a cluster consisting of n identical computers. There is
one process running on each computer, e.g. n identical copies of the same application (in Section 5 we
extend our results to cases when there are more than one process on each computer). The work is
evenly split between these n processes.

There is a recovery order list associated with each process. This list determines where the process
should be restarted if the current computer breaks down. Fig. 1 shows an example of such a system for
n = 4. We assume that processes are immediately moved back as soon as a computer comes back up
again. In most cluster systems this can be configured by the user [5,9,10], i.e. in some cases one may
not want immediate and automatic relocation of processes when a faulty computer comes back up
again.

The left side of the figure shows the system under normal conditions. In this case, there is one proc-
ess executing on each computer. The recovery order lists are also shown; one list for each process. The
set of all these recovery order lists is referred to as the recovery scheme.

The right side of Fig. 1 shows the scenario when computer zero breaks down. The recovery order list
for process zero, which executes on computer zero, shows that process zero should be restarted on
computer one when computer zero breaks down. Consequently, there will be two processes executing
on computer one, i.e. processes one and zero.

If computer one also breaks down, process zero will be restarted on computer two, which is the sec-
ond computer in the recovery order list. The first computer in the recovery order list of process one is
computer zero. However, since computer zero is down, process one will be restarted on computer three.
Consequently, if computers zero and one are down, there are two processes on computer two (processes
zero and two) and two processes on computer three (processes one and three).

If computers zero and one break down the maximum load on each of the remaining computers is
twice the load compared to normal conditions. This is a good result, since the load is as evenly distrib-
uted as it can be. However, if computers zero and two break down, there will be three processes on
computer one (processes zero, one and two), and only one process on computer three. In this case the
maximum load on the most heavily loaded computer is three times the normal load. This means that,
for the recovery scheme in Fig. 1, the combination of computers zero and two being down is more
unfavorable than the combination of computers zero and one being down.

Paper VIII

Sofware Design Conflicts 121

Fig. 1: An application executing on a cluster with four computers. The left side of the figure shows the
system under normal conditions, and the right side shows the system when computer zero is down.

 Our results are also valid when there are n external systems feeding data into the cluster, e.g. one
telecommunication switching center feeding data into each of the n computers in the cluster (see Fig.
2). If a computer breaks down, the switching center must send its data to some other computer in the
cluster, i.e. there has to be a “recovery order list” associated with each switching center. The fail-over
order can alternatively be handled at the communication protocol level, e.g. IP takeover [8]. In that
case, redirecting the communication to another computer is transparent to the switching center.

Many cluster vendors offer not only the user defined recovery order lists considered here, but also
dynamic load balancing schemes in case of a node going down. The unpredictable worst-case behavior
and relatively long switch-over delays of such dynamic schemes may, however, be unattractive in many
real-time applications; it is often easier to control the worst-case behavior by using static recovery
schemes. Also, external systems cannot use dynamic load balancing schemes when they need to select
a new node when the primary destination for their output is not responding (see Fig. 2). Consequently,
the results presented here are very relevant for systems where each node has its own network address.
This is the case in distributed systems and it can also be the case in cluster systems (depending on how
you define the word “cluster” [8]).

In Section 5 we discuss the case when there are a number of processes on each computer, and these
processes can be redistributed independently of each other. However, until then we assume that the
work performed by each of the n computers must be moved as one atomic unit. Examples of this are
systems where all the work performed by a computer is generated from one external system (see Fig. 2)
or when all the work is performed by one process (see Fig. 1).

Proc 0

Computer 0

Input/Output
to process 0

Recovery
order
Comp. 1
Comp. 2
Comp. 3

Proc 1

Computer 1

Input/Output
to process 1

Recovery
order
Comp. 0
Comp. 3
Comp. 2

Proc 3

Computer 3

Input/Output
to process 3

Recovery
order
Comp. 0
Comp. 1
Comp. 2

Proc 2

Computer 2

Input/Output
to process 2

Recovery
order
Comp. 1
Comp. 0
Comp. 3

Input/Output
to process 0

Input/Output
to process 3

Input/Output
to process 2

Proc 1

Computer 0

Proc 0

Computer 1

Proc 3

Computer 3

Proc 2

Computer 2

Input/Output
to process 1

Software Design Conflicts

122 Software Design Conflicts

Cluster with four computers

Switching
center 0

Switching
center 1

Switching
center 2

Switching
center 3

Fig. 2: Load redistribution in a telecommunication system when one computer in the cluster crashes.

We now introduce some notations. Consider a cluster with n computers. Let L(n,x,{c0,…,cx-1},RS) (n >
x) denote the load on the most heavily loaded computer when computers c0,…,cx-1 are down and when
using a recovery scheme RS. L(4,2,{0,1},RS) = 2 for the example in Fig. 1, whereas L(4,2,{0,2},RS) =
3. However, if we change the recovery order for process two to (Comp. 3, Comp. 0, Comp. 1) and the
recovery order of process three to (Comp. 2, Comp. 1, Comp. 0), we obtain a new recovery scheme RS’
such that L(4,2,{0,2},RS’) = 2.

Let L(n,x,RS) = max L(n,x,{c0,…,cx-1},RS) for all vectors {c0,…,cx-1}, i.e. for all possible combina-
tions of x computers being down. Consequently, L(n,x,RS) defines the worst-case behavior when using
recovery scheme RS. Worst-case behavior is particularly important in real-time systems. For the recov-
ery scheme in Fig. 1, L(4,2,RS) = 3.

The recovery scheme should distribute the load as evenly as possible for any number of failing com-
puters x. Small values of x are (hopefully) more common than large values of x. We introduce the nota-
tion V(L(n,RS)) = {L(n,1,RS),…,L(n,n-1,RS)} (N.B. V(…) is a vector of length n-1), and say that
V(L(n,RS)) is smaller than V(L(n,RS’)) if and only if L(n,y,RS) < L(n,y,RS’) for some y < n, and
L(n,z,RS) = L(n,z,RS’) for all z < y (if y = 1, it is enough that L(n,y,RS) < L(n,y,RS’)).

Let VL = min V(L(n,RS)) for all recovery schemes RS (VL is a vector of length n-1).
We have previously defined a lower bound B on VL, i.e. B ≤ VL (B is a vector of length n-1), and for

n ≤ 11, we defined a recovery scheme RS such that V(L(n,RS)) = B [4]. We refer to such recovery
schemes as optimal recovery schemes. We have also defined recovery schemes that are optimal when at
most  2log n computers break down. In order to make this paper self-contained, the previous results are
summarized in Section 3. In Section 4 we improve the previous results by defining recovery schemes
that are optimal also when a significantly larger number of computers break down.

Paper VIII

Sofware Design Conflicts 123

3 The Bound B

In order to obtain B we start by defining bound vectors: A bound vector of length l = 2+3+4+…+k has
the following structure: {2,2,3,3,3,4,4,4,4,5,5,5,5,5,…,k,k,…,k} (the vector ends with k entries with
value k). For instance, a bound vector of length 2 + 3 + 4 + 5 + 6 = 20 looks like this:
{2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6}. We now extend the definition of bound vectors to include
vectors of any length by taking any arbitrary bound vector and truncating it to the designated length,
e.g. a bound vector of length 18 looks like this: {2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6}.

Theorem 1: VL cannot be smaller than a bound vector of length n-1 (the meaning of VL being
“smaller than” than some other vector was defined in the previous section).

Proof: We will use proof by contradiction.
Assume that VL is smaller than a bound vector of length n–1. In that case there is a value y such that

the first y-1 values in the bound vector are the same as the first y-1 values in VL and that VL(y) is
smaller than entry y in the bound vector.

Obviously, VL(y-1) ≤ VL(y). Moreover, the bound vector only increases at entries xk = 2+3+4+…+k-
(k-1), for k=2, 3, 4,…, i.e. x2 = 2-(2-1) = 1, x3 = 2+3-(3-1) = 3, x4 = 2+3+4-(4-1) = 6, …. Consequently,
the difference between VL and the bound vector must occur at an entry xk, i.e. y = xk This means that,
VL(xk) < k for some xk.

If k = 2 (xk = 1), one computer is down, and VL(1) is obviously equal to 2, i.e. VL(1) is equal to entry
one in the bound vector.

Since VL(2) = 2 (remember that we assume that VL is smaller than a bound vector of length n-1), we
know that no two recovery order lists starts with the same computer. (If two lists corresponding to
processes c1 and c2 start with the same computer c3, there will be three processes on computer c3 if
computers c1 and c2 break down.)

If k = 3 (xk = 3), three computers are down. Since all recovery order lists start with different comput-
ers, there must be at least one pair of recovery order lists l1 (corresponding to process c1) and l2 (corre-
sponding to process c2) such that computer c3 is first l1 and c3 is the second alternative in l2. (Since VL(2)
= 2 we know that c1 is not the first alternative in l2.) If computers c1, c2 and the first alternative in l2

break down, there will be three processes on c3. Consequently, VL(3) = 3.
Since VL(5) = 3, we know that no two recovery order lists have the same computer as the second

alternative. If two lists corresponding to c1 and c2 have the same computer c3 as the second alternative,
then there will be four processes on computer c3 if computers c1, c2, the first alternative in l1 and l2 and
the computer with c3 as the first alternative break down.

If k = 4 (xk = 6), six computers are down. Since all recovery order lists start with different computers
and have different computers as the second alternative, there must be at least one triplet of recovery
order lists l1, l2 and such that computer c4 is first l1 and the second alternative in l2 and the third alterna-
tive in l3. If computers c1, c2, c3, the first alternative in l2, the first and the second alternative in l3 break
down, there will be four processes on c4. Consequently, VL(6) = 4.

Since B(9) = 4, we know that no two recovery order lists have the same computer as the third alter-
native. If two lists corresponding to c1 and c2 have the same computer c3 as the third alternative, there
will be four processes on computer c3 if computers c1, c2, the first alternative in l1 and l2 and the com-
puter with c3 as the first alternative break down.

This procedure can be repeated for all k. From this we can conclude that there is no k such that,
VL(xk) < k for some xk, where xk = 2+3+4+…+k-(k-1). Consequently, VL cannot be smaller than a bound
vector of length n-1. •

Software Design Conflicts

124 Software Design Conflicts

Theorem 2: VL(i) ≥  n/(n-i) .
Proof: If i computers are down, there are i processes which must be allocated to the remaining n-i

computers. The best one can hope for is obviously to obtain a load of  n/(n-i) processes on the most
heavily loaded computer. •

Based on Theorems 1 and 2, we define B(i) = max(entry i in the bound vector,  n/(n-i)).
By using exhaustive testing, we have previously defined a recovery scheme RS such that V(L(n,RS))

= VL = B for n ≤ 11, i.e. we have defined an optimal scheme, and thus also showed that B is an optimal
bound when n ≤ 11. The exponential complexity of the problem makes it infeasible to calculate optimal
recovery schemes for a larger set of computers. For arbitrary n we have, however, previously defined
recovery schemes that are optimal when at most  2log n computers break down. In the next section we
improve these results by defining recovery schemes that are optimal also when a significantly larger
number of computers break down.

4 Optimal Recovery Schemes

The first recovery scheme that comes to mind is Ri = {(i+1) mod n, (i+2) mod n, (i+3) mod n,…,
(i+n-1) mod n}, where Ri denotes the recovery order list for process i. If n = 4 we would get the fol-
lowing four lists: R0 = {1,2,3}, R1 = {2,3,0}, R2= {3,0,1}, and R3 = {0,1,2} (R0 denotes the recovery
order list for process zero and R1 denotes the recovery order list for process one etc.).

The problem with this scheme is that the maximum number of processes may exceed the bound B.
Consequently, the intuitive scheme Ri = {(i+1) mod n, (i+2) mod n, (i+3) mod n,…, (i+n-1) mod n} is
not optimal for n = 4 (in that case B(2) = 2 but there are three processes on computer two if computers
zero and one are down). For n = 8 we will obtain six processes on computer five if computers zero to
four are down. However, when n = 8 we know that B(5) = 3. Consequently, the worst-case behavior of
the intuitive scheme is twice as bad as an optimal scheme for clusters with eight computers. The differ-
ence between the intuitive scheme and an optimal scheme can be arbitrarily large for large values of n.

As discussed above, the combinatorial complexity explosion of the problem makes it very difficult,
or even impossible, to find optimal recover schemes for large n. We have, however, previously shown

that recovery lists (for process zero) that start with: R0 = {1, 2, 4, 8,…,  nlog2

2 ,…} are optimal as long
as at most  2log n computers break down. The recovery list for process i is obtained from R0 by using
the following relation: Ri(x) = (R0(x) + i) mod n, where Ri(x) denotes element number x in list Ri.

 We will now define a recovery scheme called the improved single-process recovery scheme. We
call it single-process because we consider the case where there is only one process on each computer
when all computers are up and running, and we call it improved because we can now guarantee optimal
behavior also when more than  2log n computers break down. The improved single-process recovery
scheme is defined for any arbitrary value of n. We will show that this recovery scheme is optimal for a
number of important cases. In order to define the improved single-process recovery scheme, we start by
defining R0, i.e. the recovery list for process zero:

Paper VIII

Sofware Design Conflicts 125

N = {1,2,3,…}, f(i,k,{r(1),…,r(x)}) =∑ −

−=

1
)(

k

ikl
lr .

r(x) = min{j ∈ N}, such that {f(i,k,{r(1),…, r(x-1)}) : i = 1,…,x-1; k = i+1,…,x} ∩
{f(i,k,{r(1),…, r(x)}) : i = 1,…,x; k = x+1 } = ∅ .

If ∑
=

x

l

lr
1

)(< n, then R0(x) = ∑
=

x

l

lr
1

)(, else R0(x) = min{j ∈ N – {R0(1),…, R0(x-1)}}

Again, we obtain all other recovery lists from R0, by using Ri(x) = (R0(x) + i) mod n.

From the definition above we see that for large values of n (i.e. n > 289) first 16 elements in R0 for the
improved single-process recovery scheme are: 1, 3, 7, 12, 20, 30, 44, 65, 80, 96, 122, 147, 181, 203,
251, 289. For n = 16, R0= {1, 3, 7, 12, 2, 4, 5, 6, 8, 9, 10, 11, 13,14, 15}.

In the definition of R0 we use the step length vector r, where r(x) (i.e. element number x in this vector)

denotes the difference between R0(x-1) and R0(x) when ∑
=

x

l

lr
1

)(< n (we define R0(0) = 0).

Consider a system with n ≥ 8. In that case r(1) = 1, r(2) = 2 and r(3) = 4. Fig. 3 illustrates this example
by showing what happens if:
(a) All computers are up and running.
(b) Computer zero first breaks down, i.e., in this case process zero ends up on computer one (r(1)

= 1).
(c) Computer one then breaks down, i.e., in this case process zero ends up on computer two (r(2)

= 2) and process one end up on computer one (r(1) = 1).
(d) Computer two then breaks down, i.e., in this case process zero ends up on computer seven

(r(3) = 4) and process two ends up on computer three (r(1) = 1).

In general, process x (0 ≤ x ≤ n) will in the x:th step end up on computer (x + ∑
=

x

i

ir
1

)() mod n.

Table 1 below shows the first 10 entries in the step length vector and in the recovery list for process
zero, assuming that n > 96.

Entry no. 1 2 3 4 5 6 7 8 9 10
Step length r 1 2 4 5 8 10 14 21 15 16
R0 1 3 7 12 20 30 44 65 80 96

Table 1: The relation between the step length and the recovery order lists.

Software Design Conflicts

126 Software Design Conflicts

(a)

(c)

(d)

(b)

...

...

...

...

r(1) = 1

r(1) = 1

r(2) = 2

r(1) = 1

r(3) = 4

Fig. 3: An example showing the start of the step length vector for the improved single-process recovery
scheme, and n ≥ 8.

We now define a new vector of length x. This vector is called the reduced step length vector and it
consists of the first x entries in the step length vector r, where x = max(i), such that R0(i) < n. Let r’
denote the reduced step length vector. From the definition of the improved single-process recovery
scheme we know that all sums of sub-sequences in r´ are unique. Table 2 illustrates this for n = 97,
resulting in a reduced step length vector of length 10 (10 = x = max(i), such that R0(i) < n = 97).

Entry no. (i) 1 2 3 4 5 6 7 8 9 10
R0 1 3 7 12 20 30 44 65 80 96
Reduced step length vector r´ 1 2 4 5 8 10 14 21 15 16
Note that there are only unique values in the trian-
gular matrix below.
Sum of subsequences of length 1 starting in position i. 1 2 4 5 8 10 14 21 15 16
Sum of subsequences of length 2 starting in position i. 3 6 9 13 18 24 35 36 31
Sum of subsequences of length 3 starting in position i. 7 11 17 23 32 45 50 52
Sum of subsequences of length 4 starting in position i. 12 19 27 37 53 60 66
Sum of subsequences of length 5 starting in position i. 20 29 41 58 68 76
Sum of subsequences of length 6 starting in position i. 30 43 62 73 84
Sum of subsequences of length 7 starting in position i. 44 64 77 89
Sum of subsequences of length 8 starting in position i. 65 79 93
Sum of subsequences of length 9 starting in position i. 80 95
Sum of subsequences of length 10 starting in position i. 96

Table 2: All sums of subsequences of the reduced step length vector for n = 97.

Paper VIII

Sofware Design Conflicts 127

Theorem 3: The improved single-process recovery scheme is optimal as long as x computers or less
have crashed, where x = max(i), such that R0(i) < n.

Proof: Let y (0 ≤ y ≤ n) be the heaviest loaded computer when x computers have crashed, where x =
max(i), such that R0(i) < n. The lists below show the x possible sequences of computers that need to be
down in order for an extra process to end up on computer y, i.e. if computer (y-r(1)+n) mod n is down
one extra process will end up on computer y, if computers (y-r(1)-r(2)+n) mod n and (y-r(2)+n) mod n
are down another extra process will end up on computer y, and so on.

1. (y-∑ =

1

1
)(’

i
ir +n) mod n

2. (y-∑ =

2

1
)(’

i
ir +n) mod n, (y-∑ =

2

2
)(’

i
ir +n) mod n

3. (y-∑ =

3

1
)(’

i
ir +n) mod n, (y-∑ =

3

2
)(’

i
ir +n) mod n, (y-∑ =

3

3
)(’

i
ir +n) mod n

…

x. (y-∑ =

x

i
ir

1
)(’ +n) mod n, (y-∑ =

x

i
ir

2
)(’ +n) mod n,…,(y-∑ =

x

xi
ir)(’ +n) mod n

From the previous discussion we see that no computer is included into more than one of the lists one
to x. By looking at the proof of Theorem 1 we see that the scheme is optimal as long as no computer is
included in two such lists. The theorem follows. •

As discussed above, we have previously defined a recovery scheme (the single-process recovery
scheme) which is optimal as long as at most  2log n computers break down. In Fig. 4 we compare the
performance of the improved single-process recovery scheme with the performance of the (old) single-
process recovery scheme as a function of the number of computers. The performance is defined as the
number of crashes that we can handle while still guaranteeing an optimal load distribution. Fig. 4 shows
that the behavior of the improved single-process recovery scheme is significantly better for large values
of n, e.g., for n = 100 the improved scheme guarantees optimal behavior even if 10 computers break
down while the old version can only guarantee optimal behavior as long as at most 6 computers break
down. Fig. 4 shows that for n = 1000 we can guarantee optimal behavior for up to 26 crashed comput-
ers using the improved single-process recovery scheme, whereas the (old) single-process recovery
scheme only guarantees optimal behavior up to 9 crashed computers.

Software Design Conflicts

128 Software Design Conflicts

0

5

10

15

20

25

30

0 200 400 600 800 1000

N
um

be
r

of
 c

ra
sh

ed
 c

om
pu

te
rs

 fo
r

w
hi

ch
 w

e
ca

n
gu

ar
an

te
e

op
tim

al
ity

Number of computers (n)

’org.dat’
’greed.dat’

Fig. 4: The “performance” difference between the improved version of the single-process recovery
scheme (‘greed.dat’) and the old version of the single-process recovery scheme (‘org.dat’).

To recapitulate our problem formulation: Given a certain number of computers (n) we want to find a
recovery scheme that can guarantee optimal worst-case load distribution when at most x computers are
down, and we are interested in the schemes that have as large x as possible.

By looking at the proof of Theorem 3, we see that the problem can be reformulated as: Given a
number of computers (n) we want to find the longest sequence of positive integers such that the sum of
the sequence is smaller than or equal to n and such that all sums of subsequences (including subse-
quences of length one) are unique.

The sequence of positive integers is the reduced step length vector. The improved single-process re-
covery scheme is a greedy way of generating the reduced step length vector (hence the name
‘greed,dat’ in Fig 4). By greedy we mean that we generate the numbers in the sequence one by one and
select the smallest possible number in each step. It turns out that this greedy approach is not the best
strategy for all values of n. Fig. 5 compares the improved single-process recovery scheme (‘greed.dat’)
with a greedy approach where we exclude the value one (which is the first element in the reduced step
length vector). The reduced step length vector when we exclude value one is (n = 107):
2, 3, 4, 6, 8, 11, 16, 12, 24, 20. Consequently, excluding value one affects the entire sequence. Fig. 5
shows that for some values of n, the improved single-process recovery scheme is better than the se-
quences obtained when we exclude the value one (‘greed-1.dat’), whereas the sequence where one is
excluded is better for other n, and for some n it does not matter.

Fig. 6 shows a similar comparison, where ‘greed-5.dat’ denotes the sequence obtained when ex-
cluding all values smaller than or equal to five. The reduced step length vector when we exclude all
values smaller than or equal to five is (n = 122): 6, 7, 8, 9, 10, 12, 11, 14, 18, 26. Fig. 6 shows that

Paper VIII

Sofware Design Conflicts 129

‘greed-5.dat’ is (as one might expect) not as good as the improved single-process recovery scheme for
small values of n. However, for larger n the difference is marginal and in one interval ‘greed-5.dat’
actually outperforms ‘greed.dat’.

Our conclusion from this is that it seems to be NP-hard to find the optimal sequence, i.e., the longest
sequence, given a certain n. As for other NP-hard problems, one can use heuristic search methods in
order to find good solutions. The limited experiments that we have done this far (see Fig. 5 and Fig. 6)
indicates that the performance difference between different greedy approaches seems to be rather
small.

0

5

10

15

20

25

30

0 200 400 600 800 1000

N
um

be
r

of
 c

ra
sh

ed
 c

om
pu

te
rs

 fo
r

w
hi

ch
 w

e
ca

n
gu

ar
an

te
e

op
tim

al
ity

Number of computers (n)

’greed-1.dat’
’greed.dat’

Fig. 5: The “performance” difference between the improved version of the single-process recovery
scheme (‘greed.dat’) and a version where we have we have excluded the value 1 as a valid step length
(‘greed-1.dat’).

Software Design Conflicts

130 Software Design Conflicts

0

5

10

15

20

25

30

0 200 400 600 800 1000

N
um

be
r

of
 c

ra
sh

ed
 c

om
pu

te
rs

 fo
r

w
hi

ch
 w

e
ca

n
gu

ar
an

te
e

op
tim

al
ity

Number of computers (n)

’greed-5.dat’
’greed.dat’

Fig. 6: The “performance” difference between the improved version of the single-process recovery
scheme (‘greed.dat’) and a version where we have we have excluded all values smaller than or equal to
five as valid step lengths (‘greed-5.dat’).

5 Non-Atomic Loads

Hitherto, we have considered the case when all work performed by a computer must be moved as one
atomic unit. Obviously, there could be more than one process on each computer and these processes
may in some cases be redistributed independently of each other, and in that case there is one recovery
order list for each process.

Previous studies show that, if there is a large number of processes on each computer, the problem of
finding optimal recovery schemes becomes less important [4]. The reason for this is that the intuitive
solutions become better. Consequently, the importance of obtaining optimal recovery schemes is largest
when p is small compared to n. In the previous sections we have obtained results for p = 1. The tech-
niques used for obtaining those results are also useful when we consider p > 1.

We now define Bound vectors of type p. The Bound vectors discussed in Section 3 were of type one,
i.e. p = 1. A bound vector of type p is obtained in the following way (the first entry in the Bound vector
is entry 1):

Paper VIII

Sofware Design Conflicts 131

1. t = p; i = 1; j = 1; r = 1; v = 1
2. If r = 1 then t = t+1; r = j; v = v+1 else r = r-1
3. Let entry i in the Bound vector of type p have the value t/p
4. i = i+1
5. If v = p and r = 1 then j = j+1; v = 0
6. Go to 2 until the bound vector has the desired length.

A Bound vector of type two looks like this (note that the load on each computer is normalized to one
when all computers are up and running):

{3/2, 4/2, 4/2, 5/2, 5/2, 6/2, 6/2, 6/2, 7/2, 7/2, 7/2, 8/2,…
A Bound vector of type three looks like this:
{4/3, 5/3, 6/3, 6/3, 7/3, 7/3, 8/3, 8/3, 9/3, 9/3, 9/3, 10/3, 10/3,…
We now extend the definition of VL to cover not only the case when p = 1, but also the case when p

> 1. Consequently, VL(x) (1 ≤ x < n) denotes the maximum number of processes divided with p (in
order to normalize the original load to one) on the most heavily loaded computer when using an optimal
recovery scheme and when x computers are down, not only when p = 1 but also when p > 1.

Theorem 4: VL cannot be smaller than a bound vector of type p of length n-1 (the meaning of VL
being “smaller than” than some other vector was defined in Section 2).

Proof: By using the same proof technique as for Theorem 1 we see that there must be at least p pro-
cesses that has the same computer first in their recovery order list. This is the reason why the first p
entries in a Bound vector of type p increase with one. We also see that there must be at least p proc-
esses with the same computer as the second alternative in their recovery lists. This is the reason why a
Bound vector of type p increases with one for every second entry from entry p to 3p. There must also
be at least p processes that have the same computer as the third alternative in their recovery lists. This
is the reason why a Bound vector of type p increases with one every third entry from entry 3p to 6p,
and so on. •

Based on p and n we now define B in the following way: B(i) = max(entry i in the bound vector of
type p,  pn/(n-i) /p). When p = 2 and n = 12 we get: B = {3/2, 4/2, 4/2, 5/2, 5/2, 6/2, 6/2, 6/2, 7/2, 12/2,
24/2}.

For p ≤ n, we have previously defined a recovery scheme - the p-process recovery scheme - that is
optimal as long as at most  2log  n/p computers break down. We call it p-process because we consider
the case where there are p processes on each computer when all computers are up and running.

We now define the improved p-process recovery scheme. The scheme is defined when p ≤ n (re-
member that optimal recovery schemes are most important when p is small compared to n). We will
show that this recovery scheme is optimal also when significantly more than  2log  n/p computers
break down. In fact, the results presented in Section 4 correspond to the case when p = 1.

Let Ri,j denotes the recovery order list for process j (0 ≤ j < p) on computer i (0 ≤ i < n). We will now
define Ri,j based on R0, i.e. the recovery scheme for process zero in the single-process recovery scheme
defined in the previous section.

If R0(k) + j n/p < n, then Ri,j(k) = (R0(k) + i + j n/p) mod n, else Ri,j(k) = (R0(k) + i + j n/p + 1) mod
n, where Ri,j(k) denotes integer number k in the lists for process j on computer i. The table below shows
the recovery lists when n = 5 and p = 2.

Software Design Conflicts

132 Software Design Conflicts

R0,0 1,3,2,4
R0,1 3,1,4,2
R1,0 2,4,3,0
R1,1 4,2,0,3
R2,0 3,0,4,1
R2,1 0,3,1,4
R3,0 4,1,0,2
R3,1 1,4,2,0
R4,0 0,2,1,3
R4,1 2,0,3,1

Theorem 5: Let RSn denote the improved p-process recovery scheme for n computers with p processes
on each computer, and let B be a Bound vector of type p. In that case the first entry in V(L(n,RSn)) is
equal to B(1), the second entry in V(L(n,RSn)) is equal to B(2), the third entry in V(L(n,RSn)) is equal to
B(3), …, the x:th entry in V(L(n,RSn)) is equal to B(x), where x = max(i), such that R0(i) <  n/p .

Proof: The proof is similar to the proof of Theorem 3.
Let y (0 ≤ y ≤ n) be the heaviest loaded computer when x computers have crashed, where x = max(i),

such that R0(i) <  n/p . The lists below show the xp possible sequences of computers that need to be
down in order for an extra process to end up on computer y.

1.1 (y-∑ =

1

1
)(’

i
ir + n) mod n

1.2 (y-∑ =

2

1
)(’

i
ir + n) mod n, (y-∑ =

2

2
)(’

i
ir + n) mod n

…

1.x (y-∑ =

x

i
ir

1
)(’ + n) mod n, (y-∑ =

x

i
ir

2
)(’ + n) mod n,…,(y-∑ =

x

xi
ir)(’ + n) mod n

2.1 (y-∑ =

1

1
)(’

i
ir -  n/p + n) mod n

2.2 (y-∑ =

2

1
)(’

i
ir -  n/p + n) mod n, (y-∑ =

2

2
)(’

i
ir -  n/p + n) mod n

…

2.x (y-∑ =

x

i
ir

1
)(’ -  n/p + n) mod n, (y-∑ =

x

i
ir

2
)(’ -  n/p + n) mod n,…,

(y-∑ =

x

xi
ir)(’ -  n/p + n) mod n

…

p.1 (y-∑ =

1

1
)(’

i
ir - (p-1) n/p + n) mod n

p.2 (y-∑ =

2

1
)(’

i
ir - (p-1) n/p + n) mod n, (y-∑ =

2

2
)(’

i
ir - (p-1) n/p + n) mod n

…

p.x (y-∑ =

x

i
ir

1
)(’ - (p-1) n/p + n) mod n, (y-∑ =

x

i
ir

2
)(’ - (p-1) n/p + n) mod n,…,

(y-∑ =

x

xi
ir)(’ - (p-1) n/p + n) mod n

Paper VIII

Sofware Design Conflicts 133

Since x = max(i), such that R0(i) <  n/p , we see that no computer is included into more than one of
the lists one to x. By looking at the proof of Theorem 4 we see that the bound is optimal as long as no
computer is included in two such lists. The theorem follows. •

6 Conclusion

In many cluster and distributed systems, the designer must provide a recovery scheme. Such
schemes define how the workload should be redistributed when one or more computers break down.
The goal is to keep the load as evenly distributed as possible, even when the most unfavorable combi-
nations of computers break down, i.e. we want to optimize the worst-case behavior which is particu-
larly important in real-time systems.

We consider n identical computers, which under normal conditions execute the same number of pro-
cesses (p) each. All processes perform the same amount of work. Recovery schemes that guarantee
optimal worst-case load distribution when x computers have crashed are referred to as optimal recovery
schemes for the values n and x. We have previously obtained recovery schemes that are optimal when
at most  2log  n/p computers are down (i.e. when x ≤  2log  n/p) [4]. The main contribution in this
paper is that we have defined an improved recovery scheme that is optimal also when a significantly
larger number of computers are down. For large n and small p the difference in terms of the number of
crashed computers for which we can guarantee optimality can be significant. For instance, for n = 1000
and p = 1 the improved scheme guarantees optimality for almost three times as many crashed comput-
ers compared to the previous scheme (i.e. 9 crashed computers vs. 26 crashed computers, see Fig. 4).

We have shown that the problem of finding optimal recovery schemes for a system with n comput-
ers, with p processes on each computer, corresponds to the mathematical problem of finding the longest
sequence of positive integers such that the sum is smaller than or equal to  n/p and the sums of all
subsequences are unique. Some initial experiments indicate that this problem is NP-hard. The technique
we use for generating such sequences is based on a greedy approach, but it turns out that our greedy
approach will not result in the longest possible sequence in all cases. As discussed above, the sequence
that we generate with the greedy approach is, however, significantly better than the previous result (e.g.
almost three times better for n = 1000 and p = 1).

Our recovery schemes can be immediately used in commercial cluster systems, e.g. when defining
the list in Sun Cluster using the scconf command. The results can also be used when a number of exter-
nal systems, e.g. telecommunication switching centers, send data to different nodes in a distributed
system (or a cluster where the nodes have individual network addresses). In that case, the recovery lists
are either implemented as alternative destinations in the external systems or at the communication pro-
tocol level, e.g. IP takeover [8].

The difference between the schemes that we suggest and an intuitive scheme can be arbitrarily large.

References

1. G. Ahrens, A. Chandra, M. Kanthanathan, and D. Cox, Evaluating HACMP/6000: A Clustering
Solution for High Availability Distributed Systems, in Proceedings of the 1995 Fault-Tolerant Par-
allel and Distributed Systems Symposium, 1995, pp. 2-9.

Software Design Conflicts

134 Software Design Conflicts

2. D. Häggander and L. Lundberg, Memory Allocation Prevented Server to be Parallelized for Better
Database Utilization, in Proceedings of the 6th Australasian Conference on Parallel and Real-Time
Systems, Melbourne, Nov/Dec, 1999, pp. 258-271.

3. L. Lundberg and D. Haggander, Multiprocessor Performance Evaluation of Billing Gateway Sys-
tems for Telecommunication Applications, in Proceedings of the ISCA 9th International Conference
on Computer Applications in Industry and Engineering, Orlando, December, 1996.

4. L. Lundberg and C. Svahnberg, Optimal Recovery Schemes for Fault Tolerant Distributed Com-
puting, in Proceedings of the 6th Annual Australasian Conference on Parallel and Real-Time Sys-
tems, Melbourne, November 1999 (Springer-Verlag), pp. 153-167. An updated version of the arti-
cle will also be published in Journal of Parallel and Distributed Computing, November/December
2001 (special issue on cluster computing).

5. Managing MC/ServiceGuard for HP-UX 11.0, http://docs.hp.com/hpux/ha/index.html
6. Comparing MSCS to other products,

http://www.microsoft.com/ntserver/ntserverenterprise/exec/compares/CompareMSCS.asp
7. S Mullender, Distributed Systems (Second Edition), Addison-Wesley, 1993.
8. G.F. Pfister, In Search of Clusters, Prentice-Hall, 1998.
9. Sun Cluster 2.1 System Administration Guide, Sun Microsystems, 1998.
10. TruCluster, Systems Administration Guide, Digital Equipment Corporation,

http://www.unix.digital.com/faqs/publications/cluster_doc
11. W. Vogels, D. Dumitriu, A. Agrawal, T. Chia, and K, Guo, Scalability of the Microsoft Cluster

Service, Department of Computer Science, Cornell University,
http://www.cs.cornell.edu/rdc/mscs/nt98.

Paper VIII

Sofware Design Conflicts 135

Software Design Conflicts

136 Software Design Conflicts

