
Impact Analysis
Organisational Views and Support Techniques

Per Jönsson

Blekinge Institute of Technology
Licentiate Series No. 2005:04
ISBN 91-7295-059-5
ISSN 1650-2140

2005-04-21

Department of Systems and Software Engineering
School of Engineering
Blekinge Institute of Technology
Sweden

Blekinge Institute of Technology
Licentiate Series No. 2005:04

ISBN 91-7295-059-5
ISSN 1650-2140

© 2005 Per Jönsson

Cover illustration “Ripple Effects” © 2005 Per Jönsson

Printed in Sweden
Kaserntryckeriet AB, Karlskrona 2005

To Madeleine

This thesis is submitted to the Faculty of Technology at Blekinge Institute of Technology, in
partial fulfillment of the requirements for the degree of Licentiate of Technology in Software
Engineering.

Contact Information
Per Jönsson
Department of Systems and Software Engineering
School of Engineering
Blekinge Institute of Technology
PO Box 520
SE-372 25 Ronneby
SWEDEN

E-mail: per.jonsson@bth.se
Web: http://www.ipd.bth.se/pjn

Abstract

Change is unavoidable in software development. During the entire
lifecycle of a product, from concept to retirement, the environment
changes; the needs of customers or the market change and grow,
and with them the requirements on the system being developed.
Under these conditions, it is crucial to have strong change control
in order to be able to manage change in an orderly fashion. Unman-
aged change may lead to fault-prone software, thereby increasing
test, support and maintenance costs.

Impact analysis is the activity of analysing a change and assessing
the consequences it may have, including necessary modifications to
development artefacts. Thus, it serves as a very important change
control tool. Furthermore, as the consequences may include aspects
of time, resources, market and technology, impact analysis has the
potential to be a valuable product and project management tool.

To this date, impact analysis research has mainly been conducted in
the software maintenance field. However, as impact analysis clearly
has a wide field of application, it is relevant to study it in other con-
texts as well. This thesis looks at impact analysis from a require-
ments engineering perspective, with particular focus on
organisational aspects related to different roles and organisational
levels. The results show that impact analysis indeed has a diverse
nature with respect to these aspects. Furthermore, the thesis
includes the proposal and evaluation of a semi-automatic method
for performing impact analysis. Finally, it provides a thorough eval-
uation of a technique for reconstructing missing data in surveys.
i

ii

Acknowledgements

First and foremost, I am greatly indebted to my main advisor Claes
Wohlin, for endless support and numerous hours of discussion
about all those problems that seemed so simple from the beginning.
I am also grateful to my secondary advisor Michael Mattsson, for
making me consider Ph.D. studies in the first place and for asking
the difficult, philosophical questions.

The research environment at Blekinge Institute of Technology is
both inspiring and challenging. I wish to thank colleagues in the
BESQ project and in the SERL research group for creating this
environment. In particular, I want to thank Patrik Berander for con-
tributing good ideas and reviewing papers (including this thesis).

A special thanks goes to Mikael Lindvall, Fraunhofer USA, for fruit-
ful discussions and the cooperation in writing Chapter 2 of this the-
sis.

I want to thank all the people at Ericsson, my industrial research
partner, who have participated in my studies and thereby contrib-
uted to my research. The cooperation with Ericsson has resulted in
many interesting research ideas and results. I especially appreciate
the help from Anna Eriksson, Lars Angelin, Johan Häggman, Bengt
Romberg and Helena Olá.

Finally, I would like to thank my family for continuous support
through the years. My mother Barbro and my father Jan, for teaching
me to pose questions and to seek answers. My brother Ola, for
always being there for me. Last, Madeleine, for understanding and for
putting up with my odd working hours. You’re the best!

This work was partly funded by the Knowledge Foundation in Swe-
den under a research grant for the project “Blekinge – Engineering
Software Qualities (BESQ)” (http://www.bth.se/besq).
iii

iv

Table of Contents

List of Figures . ix

List of Tables . xi

Chapter 1 . 1
Introduction

1.1 Research Setting . 3
1.2 Impact Analysis. 4

1.2.1 Definitions . 4
1.2.2 Perspective . 5
1.2.3 Organisational vs. Technical . 7
1.2.4 Uses . 8
1.2.5 In Industry . 13

1.3 Thesis Papers . 14
1.3.1 Paper Abstracts . 15
1.3.2 Thesis Outline . 18

1.4 Research Methodology . 19
1.4.1 Research . 19
1.4.2 Empirical Research . 20
1.4.3 Research Taxonomies . 21
1.4.4 Classification of Thesis Studies 24
1.4.5 Research Validity . 26

1.5 Contribution . 29
1.5.1 Thesis . 29
1.5.2 Chapters . 30

1.6 Future Work . 31
1.6.1 Semi-Automatic Impact Analysis 32
1.6.2 Technical Support for Organisational IA 32
1.6.3 Practitioners’ Impact Analysis Ability. 32

1.7 Summary . 33

Chapter 2 . 35
Impact Analysis

2.1 Background . 37
2.1.1 Concepts and Terms . 37
2.1.2 Software Change and Impact Analysis 39
2.1.3 History and Trends . 42

2.2 Strategies for Impact Analysis . 44
v

2.2.1 Automatable Strategies . 45
2.2.2 Manual Strategies . 49

2.3 Non-Functional Requirements . 52
2.4 Impact Analysis Metrics. 53

2.4.1 Metrics for Quantifying Change Impact 54
2.4.2 Metrics for Evaluation of Impact Analysis 55

2.5 Tool Support . 60
2.6 Future of Impact Analysis . 62
2.7 Summary. 63

Chapter 3 . 65
Understanding the Importance of Roles in Architecture-Related Process Improvement
– A Case Study

3.1 Background and Research Setting . 66
3.1.1 Architecture-Related Process Improvement 67

3.2 Related Work . 68
3.3 Design. 69

3.3.1 Questionnaire Design . 69
3.3.2 Sampling and Response Rate . 70
3.3.3 Treatment of Missing Data. 71
3.3.4 Roles . 72
3.3.5 Validity Threats . 73

3.4 Results. 75
3.4.1 Infrastructure Questions. 75
3.4.2 Improvement Question . 77

3.5 Analysis. 78
3.5.1 Infrastructure Questions. 78
3.5.2 Improvement Question . 79

3.6 Discussion . 79
3.7 Conclusions . 81

Chapter 4 . 83
Understanding Impact Analysis: An Empirical Study to Capture Knowledge on Dif-
ferent Organisational Levels

4.1 Related Work . 84
4.2 Method . 85

4.2.1 Research Setting . 85
4.2.2 Organisational Levels . 86
4.2.3 Interview Design . 86
4.2.4 Results Triangulation and Filtering 87
4.2.5 Prioritisation . 87

4.3 Operation . 88
4.3.1 Organisational Levels . 88
vi

4.3.2 Interviews. 89
4.3.3 Prioritisation. 90

4.4 Results . 90
4.4.1 Threats to Validity . 91

4.5 Analysis and Discussion . 92
4.5.1 Qualitative Analysis . 92
4.5.2 Quantitative Analysis . 93
4.5.3 Discussion . 94

4.6 Conclusions. 95

Chapter 5 . 99
Semi-Automatic Impact Analysis through Keyword-Based Relationships – A Feasi-
bility Study

5.1 Usage Scenarios . 101
5.2 Related Work. 103
5.3 Method . 104

5.3.1 Natural vs. Technical Language 104
5.3.2 Fuzzy String Matching. 105
5.3.3 Latent Semantic Indexing . 106
5.3.4 Method Introduction. 108
5.3.5 Method Steps . 109

5.4 Evaluation . 114
5.4.1 Evaluation Context . 114
5.4.2 Tools Used . 115
5.4.3 Step 1: Screen for Relevance . 115
5.4.4 Step 2: Identify Keywords. 115
5.4.5 Step 3: Identify Dependencies Using LSI. 117
5.4.6 Step 4: Examine Results and Estimate Impact. 117

5.5 Analysis . 118
5.6 Discussion and Future Work . 121
5.7 Summary . 123

Chapter 6 . 125
Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data

6.1 Related Work. 127
6.2 Research Data . 129

6.2.1 Evaluation Data . 129
6.2.2 Missing Data . 131

6.3 Imputation Methods. 131
6.3.1 Random Draw Substitution. 132
6.3.2 Random Imputation . 132
6.3.3 Median Imputation . 133
6.3.4 Mode Imputation. 133
vii

6.3.5 k-Nearest Neighbour . 134
6.4 Evaluation Process . 136

6.4.1 Data Removal - Step 1 . 137
6.4.2 Imputation - Step 2 . 139
6.4.3 Evaluation - Step 3 . 140

6.5 Simulation. 141
6.5.1 Parameters . 141
6.5.2 Software. 142
6.5.3 Process Reuse . 143

6.6 Results. 143
6.6.1 Incomplete Data Sets . 144
6.6.2 Comparison of k-Values and Strategies 145
6.6.3 Comparison of Attribute Counts 148
6.6.4 Comparison of Percentages . 150
6.6.5 Benchmarking . 150
6.6.6 Summary and Interpretation of the Results. 152

6.7 Validity and Future Work. 155
6.7.1 Threats to Validity. 155
6.7.2 Future Work . 156

6.8 Conclusions . 157

References . 159
viii

List of Figures

1.1 Change Process at Ericsson . 3
1.2 Importance of Impact Analysis Uses . 9
2.1 Software Lifecycle Objects (SLOs) Affected (right) Due to Requirements Changes
in Different Phases (left) . 37
2.2 Change Management Process Framework . 41
2.3 Three Views of the Relationships Among SLOs. 47
2.4 Measuring Impact Using Metrics . 54
2.5 Tree of Impact Analysis Metrics. 56
3.1 Infrastructure Questions – Answer Distribution (y axis) per Role (x axis). 76
4.1 Box Plots for Issues i4 and i19, Individual Perspective . 95
5.1 Average Query-Document Similarities. 119
6.1 Distribution of Response Options . 130
6.2 Evaluation Process Outline. 137
6.3 Performance at 14.5% and 19.0% Missing Data, CC and IC 145
6.4 9.9% Missing Data, 12 and 18 Attributes, IC . 149
6.5 Ability vs. Amount of Missing Data . 150
ix

x

List of Tables

1.1 Requirements Engineering Search Queries . 6
1.2 Number of RE and SM Articles . 6
1.3 Classification of Thesis Studies . 26
2.1 Impact Factors. 55
2.2 Predicted vs. Actual Changes . 58
3.1 Most Important Improvement – Answer Distribution Among Roles 77
3.2 Kruskal-Wallis (left) and Chi-Square (right) Outcome, All Questions 78
3.3 Significant Role-Purpose Pairs . 79
4.1 Top Five Placements for Issues and Uses . 93
4.2 Top Five vs. Bottom Five Issues. 93
4.3 Kruskal-Wallis for Issues i4 and i19 . 94
4.1 All Issues . 96
4.2 All Uses . 97
5.1 Keyword Classes Used in the Evaluation. 116
5.2 Recall and Precision for the Evaluation . 120
6.1 Example Incomplete Data Set . 135
6.2 Overview of Incomplete Data Sets . 144
6.3 Optimal k-Values with R, Q and MSE for the CC Strategy 147
6.4 Optimal k-Values with R, Q and MSE for the IC Strategy 147
6.5 Optimal k vs. Calculated k . 148
6.6 Results Overview. 153
6.7 Benchmarking Overview . 153
xi

xii

C H A P T E R

1
Introduction

Software development is a complex engineering activity with the
ultimate goal of transforming stated and implied needs into a fin-
ished product. Needs of customers, users or the market are cap-
tured as requirements that subsequently govern development tasks
such as architecture, design, implementation and testing. In an uto-
pian view of software development, requirements are fully known
and perfectly understood prior to analysis and design, and develop-
ment tasks are simply a matter of doing the right things. In the real
world, understanding, insights and general know-how evolve pro-
gressively as development proceeds and the product begins to
shape. The underlying needs behind requirements can be problem-
atic to grasp, time plans may be overly optimistic, and customers
and users may change their minds about what they want. These fac-
tors create an environment in which requirements cannot be
regarded as fixed entities. Instead, they may change unexpectedly at
any time, thereby disturbing normal development work.

The ever-changing environment in which development takes place
calls for strong change control. Uncontrolled changes will inevita-
bly lead to software deterioration; if a change is not well-under-
stood, it may introduce faults in the software and thereby destabilise
the system. Change impact analysis denotes the activity of identifying
and understanding the scope of modifications necessary in
response to a change. Thus, it is an important tool to support
change control and prevent software deterioration.
1

Introduction
In software evolution, when a system is developed over several sub-
sequent releases, new requirements can be placed on a level with
changing requirements, in that they also result in changes being
made to already implemented code. Thus, when a new release of a
system is developed, it is crucial to perform impact analysis for
both requirements changes and new requirements. If follows that
the term “change impact analysis” is too narrow to capture this
duality. Consequently, this thesis uses only “impact analysis” to
reflect the wider application of the activity.

The outcome of impact analysis is typically a set of development
artefacts affected by a proposed change or a new requirement.
Affected artefacts are not only code modules, classes and functions,
but also test cases, design models, user manuals and so on. Knowl-
edge about affected artefacts of different kinds can be used to
update time plans, re-allocate resources, revise product plans, mod-
ify test strategies and so on. Thus, impact analysis has, if used prop-
erly, the potential to be a very powerful project and product
management tool, and deserves as such to be studied in a wide
organisational context.

This thesis supports understanding of impact analysis from a
requirements engineering perspective in an organisational context.
It starts by providing an extensive look at the role of impact analysis
in requirements engineering. It then goes on to present organisa-
tional views of impact analysis, both in software process improve-
ment and with a more direct focus on associated uses and issues.
Next, it describes an initial exploration of a semi-automatic method
for supporting the impact analysis activity. Finally, as an exception
to the main topic, the last chapter presents a study of one solution
to a problem many researchers are faced with – missing data.

The remainder of this chapter is structured as follows. Section 1.1
begins by introducing the main research setting of the thesis studies.
Next, Section 1.2 presents some key aspects of impact analysis as it
is seen in the thesis. Section 1.3 lists the papers that are included in
the thesis and relates them to the research setting. Section 1.4
describes the different research methodologies employed in the the-
sis, and classifies the included papers according to two research tax-
onomies. The contribution of the thesis and of the individual
chapters is presented in Section 1.5. Finally, future work is discussed
in Section 1.6, and a summary is given in Section 1.7.
2

Introduction
1.1 Research Setting

Of the five studies presented in the thesis, all except the one
described in Chapter 2 are directly or indirectly related to Ericsson
AB, Sweden (hereafter referred to only as Ericsson). In the two stud-
ies described in Chapters 3 and 4, developers from Ericsson partici-
pated as study subjects, whereas the two studies described in
Chapters 5 and 6 were performed in a laboratory context, but used
data collected at Ericsson.

Ericsson develops, among other things, solutions for charging and
positioning in mobile phone networks (for example, GSM net-
works). The company operates on a world market, and sells systems
to many of the world’s largest mobile phone operators. Due to the
inherent complexity in the type of systems developed, projects are
both long and large. A typical project length is between 12 and 18
months, and a project normally involves somewhere between 60
and 120 persons.

Ericsson is very responsive when it comes to customers’ demands,
which manifests in a well-defined change process. A simplified view
of the change process is shown in Figure 1.1 (the numbers in the
figure show the flow described next). A change request is submitted
from an internal source (such as a developer) or an external source
(such as a customer forum). To alleviate the pressure in the Change
Control Board (CCB), the change request is first screened in a pre-
CCB, where a first technical analysis takes place. If the change
request is unclear, it is communicated back to its source for clarifi-
cation. The CCB subsequently decides who will analyse the change
request and sets a suitable time frame. The change request is next
subjected to a number of analyses, concerning everything from sys-

Figure 1.1 Change Process at Ericsson
Research Setting 3

Introduction
tem impact to necessary adjustments of time plans and re-allocation
of resources. Finally, the CCB considers all analyses and determines
whether the change request should be accepted or rejected.

1.2 Impact Analysis

This section provides an introduction to impact analysis. Chapter 2
outlines the state-of-the-art of impact analysis within the require-
ments engineering field, while the character of this section is more
of a general discourse of the various aspects of the subject. Never-
theless, there is a certain overlap between this section and Chapter
2.

1.2.1 Definitions
There are many definitions of impact analysis. In order to be clear
about the context in which impact analysis is seen in this thesis,
some definitions are presented and commented on below. The defi-
nitions are listed in chronological order.

Turver and Munro define impact analysis as “the assessment of a
change, to the source code of a module, on the other modules of
the system. It determines the scope of a change and provides a
measure of its complexity.” [117] A problem with this definition is
that it has a very narrow scope; it is only concerned with changes to
and effects on the source code. Consequently, it does not fit well in
a requirements engineering context, where changes affect many dif-
ferent kinds of artefacts, not only source code. Even in a software
maintenance context, there are typically other artefacts, such as
designs and object models, that may be affected by a change.

Bohner and Arnold define impact analysis as “the activity of identi-
fying the potential consequences, including side effects and ripple
effects, of a change, or estimating what needs to be modified to
accomplish a change before it has been made.” [14] This definition
is not geared towards any particular type of development artefact,
and is as such appropriate to use in a requirements engineering con-
text. The definitions of and distinction between ripple effect and
side effect are clarified in Chapter 2.

Lindvall has an outspoken focus on impact analysis from a require-
ments perspective. He defines requirements-driven impact analysis
as “the identification of the set of software entities that need to be
4 Impact Analysis

Introduction
changed to implement a new requirement in an existing system.”
[73] This definition is particularly interesting, as it concerns new
requirements rather than changes to current requirements. As
hinted in the definition, this type of impact analysis is useful when a
system is developed incrementally over several releases.

Pfleeger defines impact analysis as “the evaluation of the many risks
associated with the change, including estimates of effects on
resources, effort and schedule.” [89] This definition is also generic,
but indicates, by explicitly mentioning risk and project control, a
broad view of what is meant by “impact” and a strong focus on
non-technical aspects of impact analysis.

Throughout this thesis, the definitions by Bohner and Arnold and
Lindvall are used. This reflects the fact that both changing require-
ments and new requirements are seen as important causes for soft-
ware change. Definitions of common terms associated with impact
analysis can be found in Chapter 2.

1.2.2 Perspective
Impact analysis research typically belongs to the software mainte-
nance field rather than the requirements engineering field. To illus-
trate this, a search was undertaken with the goal of counting the
number of impact analysis articles in the respective field.

To find impact analysis articles, the phrase “impact analysis” was
specified as a general search phrase to make it match against all pos-
sible article data (typically article title, abstract and keywords, but
also full text if available).

To restrict the results to articles in the requirements engineering
field, the phrase “requirements engineering” was specified as part
of the publication title (i.e., journal, conference or equivalent). Simi-
larly, to restrict results to articles in the software maintenance field,
the phrase “software maintenance” was used. Of course, the title of
the publication need not reflect the exact focus of an included arti-
cle, but it should nevertheless reflect to some extent what the
authors originally wished to communicate about the article.

Three databases were selected and used in the search: ACM Guide
(a superset of the ACM Digital Library) [2], IEEE Xplore [57] and
the combined Compendex & Inspec [39]. Table 1.1 shows the
search queries for finding publications in the requirements engi-
Impact Analysis 5

Introduction
neering field for each database. In addition to specifying the queries,
results were requested only from 1993 and forward, since 1993 was
the year of the first International Symposium on Requirements
Engineering; it would be an unfair comparison to consider earlier
results (the first Conference on Software Maintenance, for example,
was held already in 1985).

Table 1.2 shows the results of the search. The figures in the table do
not represent the raw search matches, but rather the article counts
after some irrelevant matches, such as entire conference proceed-
ings, were discarded. It should be noted that the removed articles
belonged only to the software maintenance field.

There is a large overlap among the three databases for both fields;
the two requirements engineering articles (coming from one publi-
cation) are the same in all three databases, and the union of all soft-
ware maintenance articles (coming from three publications)
contains 44 articles. The large difference in article count between
the fields indicates that software maintenance so far has been the
predominant target field for impact analysis research. Given the ini-
tial argumentation for the relationship between impact analysis,
software change and changing requirements (see also Chapter 2), it
seems reasonable that impact analysis should be more visible in
requirements engineering publications. There is a need both for
exploring challenges for impact analysis in the requirements engi-
neering field, and for investigating how current impact analysis
methods and tools work in a requirements engineering context.

Table 1.1 Requirements Engineering Search Queries

Database Search query

ACM Guide +“impact analysis” +publication:“requirements engineering”

IEEE Xplore “impact analysis” <and> (“requirements engineering” <in> jn)

Compendex & Inspec {impact analysis} wn ALL AND {requirements engineering} wn CF

Table 1.2 Number of RE and SM Articles

Database RE SM

ACM Guide 2 36

IEEE Xplore 2 30

Compendex & Inspec 2 33

UNION 2 44
6 Impact Analysis

Introduction
This emphasises the importance of the survey of impact analysis in
requirements engineering presented in Chapter 2.

Note that the intention with this search was not to provide a com-
plete overview of impact analysis articles within software mainte-
nance and requirements engineering, nor was it to extract a
statistically representative sample of said articles. As stated, it was
merely to show that there to this date is a large imbalance between
requirements engineering and software maintenance regarding
impact analysis research.

It should also be mentioned that the search intentionally did not
include variants of “impact analysis”, such as “analysis of impact”
and “analyse change impact” (or, as used by Bratthall et al., “predict
change impact“ [17]). It was argued that the choice of phrasing in
an article would indicate whether the authors had a true impact
analysis focus, or just mentioned it in passing.

1.2.3 Organisational vs. Technical
It is possible to look at impact analysis from two different perspec-
tives: organisational and technical. The technical perspective, which by
far is the most common one in current research (see, for example,
[14]), concerns methods and tools for assessing the impact of
changes on the system level. The organisational perspective, on the
other hand, concerns studies with the goal of, for example, creating
an understanding of how impact analysis is viewed and used by
software practitioners.

A drawback with the purely technical perspective is that such
research often assumes the presence of a detailed, structured and
connected infrastructure of development artefacts (see, for exam-
ple, [18] and [126]). However, this rules out impact analysis in early
stages of development, for example when only a coarse architecture
model exists. Furthermore, it is in contradiction with a problem
commonly seen in industry: models, documentation and dependen-
cies are not always created and updated unless there are mecha-
nisms for doing it in simple and efficient ways (see also [25]).

The organisational perspective adds anchoring of impact analysis in
the context where it ultimately has its place – software development
organisations (consider, for example, Pfleeger’s definition with its
clear organisational focus). Some reflections on what is necessary to
pursue with respect to the organisational perspective are:
Impact Analysis 7

Introduction
• A focus on understanding why, what and when about impact anal-
ysis in software development organisations. For example, what
kind of impact analysis is performed? For what reasons are
impact analysis performed? When is impact analysis performed?
Early (project-wise) impact analysis is different from late impact
analysis, as the available foundations (e.g., architecture, design
models and source code) differ in both availability and maturity.

• The development of methods and tools that do not require a
completely updated and accurate infrastructure of development
artefacts. An excellent example is Egyed’s method that
addresses the problem of missing traceability by deducing cer-
tain dependencies automatically [36]. Also, Wiegers provides
checklists for straightforward, although manual, impact analysis
[120].

• The development of methods and tools that can be integrated
with mainstream software development tools typically used in
organisations. For example, von Knethen and Grund propose a
traceability model and an associated tool environment that
includes a requirements management tool and a CASE tool [61].

• A focus on performing empirical research in general (see also
Section 1.2.5). This is important to better tie industry and
academia in order to obtain a healthy exchange of problems and
solutions.

1.2.4 Uses
As stated initially, impact analysis can potentially be a powerful
project and product management tool. This section discusses a
number of possible uses of impact analysis. These uses were ranked
as the most important from an organisational perspective in the
study about uses and issues associated with impact analysis, pre-
sented in Chapter 4 (see Table 4.1). The view provided here can be
seen as a complement, as it provides some details that were not part
of the original paper on which Chapter 4 is based. The study distin-
guished between three organisational levels as follows:

• Decisions made on the strategic level typically have large scope,
large impact and long-term perspective.

• Decisions made on the tactical level concern planning of time
and resources to reach strategic goals, and are often made by
middle management.
8 Impact Analysis

Introduction
• Decisions made on the operative level are made when realising
the project according to the plan, and are often of technical
nature.

The discussions below take these organisational levels into consid-
eration, by commenting on the importance of each use on the dif-
ferent levels. Figure 1.2 shows the average relative importance of
the uses for each organisational level. For example, on the strategic
level, use u1 was considered to account for 14% of the total impor-
tance of all uses, while the corresponding figures for the tactical and
operative levels were around 11% and 8%, respectively.

Only uses that were among the top five ranked for at least one of
the levels are discussed. It should also be noted that, in the study,
impact analysis was seen in the light of proposed changes to
requirements, not new requirements. The identifiers of the uses cor-
respond to the ones used in Chapter 4.

Planning the project with respect to time and cost (u1)

This use is straightforward; the scope and technical complexity of a
change directly feed into project planning. For example, if a change
is extensive, it is likely that ordinary project activities will be delayed,
which in turn will affect deadlines and deliveries. A technically com-
plex change may require requesting additional expertise into the
project, which naturally will increase project costs.

As can be seen in Figure 1.2, this use was regarded as more impor-
tant on the strategic level than on the tactical level. This was unex-

Figure 1.2 Importance of Impact Analysis Uses
Impact Analysis 9

Introduction
pected, as the tactical level per definition is where decisions about
planning and resources should take place.

Determining cost versus benefit (u2)

This use requires the analysis to include both an assessment of the
cost of a change and the assessment of the perceived benefit for
customers, for the market or even internally. Cost/benefit ratios can
be used to, for example, prioritise between several concurrent
changes. Furthermore, high-cost, high-benefit changes could indi-
cate several interesting things, for example:

• The original requirements collection was not entirely successful.
Thus, the system was designed based on partly incorrect
assumptions.

• There is a large discrepancy between what the system currently
is capable of doing and what it is expected to do. This is mostly
an issue in a multi-release context, where changes are part of the
incremental evolution of the system.

• The architecture (i.e., the basic structure) of the system is not
very well designed in relation to expectations from customers
(or the market).

This use was among the top five on both the operative level and the
strategic level, but not on the tactical level. An explanation for this
may be that people at the tactical level are not as close to neither
customers (or the market) nor internal development as are the other
two levels.

Deciding whether to accept or reject the change (u3)

This use could be seen as the ultimate goal of impact analysis of a
proposed change, and is hierarchically related to other uses, such as
determining cost versus benefit. The importance of this use is
reflected by the fact that it was the top use on both the operative
and the tactical level, and the second highest ranked use on the stra-
tegic level.

Understanding technical and market consequences of
including or not including the change (u6)

This use is related to a number of other uses, and is an important
precursor to deciding whether to accept or reject a change. Clearly,
there is also a relation to using impact analysis to determine cost
versus benefit. However, this use intuitively conveys a long-term
10 Impact Analysis

Introduction
perspective, including, for example, how the change will affect the
system in comparison to competitors’ systems. Similarly, technical
consequences of a change include architectural issues of changeabil-
ity, maintainability, interoperability and so on.

Figure 1.2 shows that this use was more important on the strategic
level than on the other levels (although not very much). It was,
however, not among the top five uses on the operative level. This
was somewhat unexpected, as technical consequences should be
important to consider on the operative level (given that decisions
on this level typically are of technical nature).

Understanding the proposed change (u8)

An important aspect of impact analysis is to create and spread an
understanding of the change. This is particularly important for
changes that are technically complex or have large scope, as there
otherwise is a risk that such changes are not implemented correctly,
thereby potentially destabilising the system. However, there is also
an aspect of education; it is crucial that all stakeholders are aware of
changes made to the system and the actual functionality of the sys-
tem, in particular when changes are frequent.

This use was ranked as the second most important on both the
operative level and the tactical level, but was not among the top five
uses on the strategic level. This may be because the tactical and
operative levels are more concerned with the implementation of a
change (from planning and technical points of view, respectively)
than the strategic level.

Assessing system impact (u13)

This is a fundamental use, and traditionally one of the most promi-
nent uses for impact analysis. For example, much effort has been
put into devising and testing methods for determining impact based
on dependencies in source code or between design entities (see, for
example, [18], [66] and [68]). The definition of “system” can of
course be discussed. For example, source code and design models
can be said to be parts of the system, but does the same hold for
requirements? One argument is that requirements constitute one
view of the system, and should thus be considered as parts of it.
Another argument is that requirements reflect the basic needs that
the system is designed to satisfy, and are thus separate entities
against which the system should be verified. Nevertheless, there are
Impact Analysis 11

Introduction
important differences between this use and other uses (such as
planning the project with respect to time and cost).

This use was among the top five on the operative level, while it was
not among the top five on the other levels. This confirms that the
assessment of system impact is more important from a technical
point of view, since it is typically technicians who are responsible
for implementing changes in the system. Consequently, they are
also the ones that have to correct faults introduced along with the
changes.

Obtaining a new or changed requirements baseline (u14)

Leffingwell and Widrig define baseline to be “the itemised set of fea-
tures, or requirements, intended to be delivered in a specific version
of the application.” [70] Of course, it is also possible to envision
multiple baselines within one single project, for example due to
internal milestones or deliveries. This use of impact analysis empha-
sises the importance of making sure that requirements are up-to-
date and form a baseline for future changes. If the requirements
baseline is out-of-date, it is not possible to accurately verify that the
system functions as required at a delivery or milestone.

This use was among the top five only on the strategic level, which
indicates that the focus on requirements is much higher there than
on the other levels. This may be caused by a closer connection to
customers (or the market), and consequently a need to make sure
that the requirements at all times work as development drivers.

Revealing synergies and conflicts between change proposals
(u20)

This is a particularly important use of impact analysis, as it poten-
tially can alleviate the change effort through an understanding of
how concurrent changes interact. Without such understanding,
there is a risk that change activities become suboptimal (with
respect to planning and resources), and that faults are introduced as
a results of changes not working together.

This use was among the top five on the tactical level, which, given
its potential, was not surprising. However, it was unexpected that it
was not among the top five on the operative level, since people on
this level should experience clear drawbacks from conflicting
changes, for example.
12 Impact Analysis

Introduction
The different uses presented above clearly show that there is more
to impact analysis than technical details. Impact analysis is an activ-
ity that provides input to many different decision processes, and
can thus be seen as a versatile requirements engineering and change
management tool. Furthermore, the differences between the organ-
isational levels demonstrate that the manifold nature of impact
analysis is important to explore further.

1.2.5 In Industry
Empirical research about impact analysis exists, but is to date not
very common, in particular not when it comes to research per-
formed in cooperation with industry. One exception is the work by
Lindvall and Sandahl, who have studied impact analysis from a
requirements engineering perspective at Ericsson AB in Linköping,
Sweden [73, 74]. Another is the work by Bratthall et al., who have
studied the effect of using a design rationale when assessing impact,
with senior industrial designers as some of the study participants
[17].

In a study1 about how well software practitioners estimate the
impact of new requirements on an existing system, Lindvall and
Sandahl found that the impact was underestimated by a factor of 3
[74]. This is one indication that industry needs better support for
performing impact analysis. While the research community has con-
structed several tools (e.g., [21], [41], [61], [68] and [96]), and
devised methods and techniques (e.g., [18], [26], [36] and [66]),
impact analysis support must be built into existing tool sets and
processes for industry to fully adopt it. An informal survey of a
number of requirements management tools (see Chapter 2)
revealed that only a third of the tools provided the ability to create
relationships among all types of software development artefacts.
This means in practise that many requirements management tools
do not support even straightforward traceability-based impact anal-
ysis other than in a limited way.

The industrial study described in Chapter 4 provided some qualita-
tive data, not mentioned in the chapter due to restrictive space con-
straints for the original paper. These data showed, among other
things, that some of the major foundations for performing impact
analysis were experience, knowledge and gut feeling. While these should

1. Some details and results from the study can be found in Chapter 2.
Impact Analysis 13

Introduction
not be underestimated, they come with certain risks, as they put
more focus on the subjective element of impact analysis than on the
objective element. As can be seen in Chapter 4, some of the top
issues associated with impact analysis were that impact is underesti-
mated or missed, that affected parties are overlooked, and that the
wrong persons perform the analyses. These three issues all confirm
that the subjective element of impact analysis can be problematic.

Pour et al. discuss the gap between industry and academia for soft-
ware engineering [91]. They argue that software engineering is still
an immature field that needs to develop more. The remedy for
bridging the gap between current practise and best practise in the
field is to work closer between industry and academia. This clearly
suggests that empirical research is one of the cornerstones of the
success of the software engineering field. Thus, the same argument
holds for impact analysis; more empirical research in the area is
required in order to understand how it can be successfully adopted
by industry and used to its full potential.

1.3 Thesis Papers

This section aims at introducing the reader to the papers included
in the thesis, as well as discussing how they fit into the main thesis
topic. A more detailed view of the research methodologies
employed in the papers is given in Section 1.4, while the contribu-
tions of the papers and of the thesis in its entirety are outlined in
Section 1.5.

The following papers are included in the thesis:

Chapter 2 Jönsson, P. and Lindvall, M. (2005). Impact Analysis. In A. Aurum
and C. Wohlin (Eds.), Engineering and Managing Software Requirements.
Springer-Verlag.

Chapter 3 Jönsson, P. and Wohlin, C. (2005). Understanding the Importance
of Roles in Architecture-Related Process Improvement – A Case
Study. In Proceedings of the International Conference on Product Focused Soft-
ware Process Improvement, June 13-15, Oulu, Finland.

Chapter 4 Jönsson, P. and Wohlin, C. (2005). Understanding Impact Analysis:
An Empirical Study to Capture Knowledge on Different Organisa-
tional Levels. Submitted to International Conference on Software Engineer-
14 Thesis Papers

Introduction
ing and Knowledge Engineering, July 14-16, Taipei, Taiwan, Republic of
China.

Chapter 5 Jönsson, P. and Wohlin, C. (n.d.). Semi-Automatic Impact Analysis
through Keyword-Based Relationships – A Feasibility Study. To be
submitted.

Chapter 6 Jönsson, P. and Wohlin, C. (2005). Benchmarking k-Nearest Neigh-
bour Imputation with Homogeneous Likert Data. Submitted to Jour-
nal of Empirical Software Engineering.

The last paper was originally published at the 2004 International
Metrics Symposium with the title “Evaluating k-Nearest Neighbour
Imputation Using Likert Data”. The thesis version is an extended
version written and submitted in response to an invitation to a spe-
cial issue of the Journal of Empirical Software Engineering.

The following paper is not included in the thesis, as it is not related
to the thesis work:

Mårtensson, F., Jönsson, P., Bengtsson, PO., Grahn, H. and Matts-
son, M. (2003). A Case Against Continuous Simulation for Software
Architecture Evaluation. In Proceedings of IASTED International Con-
ference on Applied Simulation and Modelling, September 3-5, Marbella,
Spain, pp. 97-105.

1.3.1 Paper Abstracts
As an introduction to the chapters in the thesis, the abstracts of the
original papers are given below.

Chapter 2 Impact Analysis

“Software changes are necessary and inevitable in software develop-
ment, but may lead to software deterioration if not properly con-
trolled. Impact analysis is the activity of identifying what needs to
be modified in order to make a change, or to determine the conse-
quences on the system if the change is implemented. Most research
on impact analysis is presented and discussed in literature related to
software maintenance. In this chapter, we take a different approach
and discuss impact analysis from a requirements engineering per-
spective. We relate software change to impact analysis, outline the
history of impact analysis and present common strategies for per-
forming impact analysis. We also mention the application of impact
Thesis Papers 15

Introduction
analysis to non-functional requirements and discuss tool support
for impact analysis. Finally, we outline what we see as the future of
this essential change management tool.”

Chapter 3 Understanding the Importance of Roles in Architecture-
Related Process Improvement – A Case Study

“In response to the increasingly challenging task of developing soft-
ware, many companies turn to software process improvement
(SPI). One of many factors that SPI depends on is user (staff)
involvement, which is complicated by the fact that process users
may differ in viewpoints and priorities. In this paper, we present a
case study in which we performed a pre-SPI examination of process
users’ viewpoints and priorities with respect to their roles. The
study was conducted by the means of a questionnaire sent out to
the process users. The analysis reveals differences among roles
regarding priorities, in particular for product managers and design-
ers, but not regarding viewpoints. This indicates that further
research should investigate in which situations roles are likely to dif-
fer and in which they are likely to be similar. Moreover, since we ini-
tially expected both viewpoints and priorities to differ, it indicates
that it is important to cover these aspects in SPI, and not only rely
on expectations.”

Chapter 4 Understanding Impact Analysis: An Empirical Study to Cap-
ture Knowledge on Different Organisational Levels

“Change impact analysis is a crucial change management activity
that previously has been studied much from a technical perspective.
In this paper, we present a systematic interview-based study of a
non-technical aspect of impact analysis. In the study, we have inves-
tigated how potential issues and uses of impact analysis are viewed
by industrial experts at three organisational levels, based on
Anthony’s decision-making model: operative, tactical and strategic.
The results from our analyses show that on the whole, agreement
on both issues and uses was large. There were, however, some dif-
ferences among the levels in terms of issues. Thus, we conclude that
it is both relevant and important to study impact analysis on differ-
ent organisational levels.”

Chapter 5 Semi-Automatic Impact Analysis through Keyword-Based
Relationships – A Feasibility Study

“Impact analysis plays an important role in requirements engineer-
ing as a tool to determine the changes necessary in order to imple-
16 Thesis Papers

Introduction
ment a new requirement in an existing system. A common way of
performing impact analysis is to examine dependencies among
development artefacts, which is only possible if the dependencies
are properly documented. This paper presents a feasibility study of
a method for performing semi-automatic impact analysis based on
lexicographic relationships between requirements and architecture
component descriptions. Thus, it does not require explicitly docu-
mented dependencies. The method combines fuzzy string matching
and Latent Semantic Indexing for identifying dependencies, but
relies on manual expertise to estimate impact. An evaluation on an
industrial software system with documented dependencies shows
that the performance of the method is not as high as expected.
However, the evaluation may have been misleading as the docu-
mented dependencies were very coarse. Thus, further evaluations
will be performed to better assess the performance of the method.”

Chapter 6 Benchmarking k-Nearest Neighbour Imputation With Homo-
geneous Likert Data

“Missing data are common in surveys regardless of research field,
undermining statistical analyses and biasing results. One solution is
to use an imputation method, which recovers missing data by esti-
mating replacement values. Previously, we have evaluated the hot-
deck k-Nearest Neighbour (k-NN) method with Likert data in a
software engineering context. In this paper, we extend the evalua-
tion by benchmarking the method against four other imputation
methods: Random Draw Substitution, Random Imputation,
Median Imputation and Mode Imputation. By simulating both non-
response and imputation, we obtain comparable performance
measures for all methods. We discuss the performance of k-NN in
the light of the other methods, but also for different values of k, dif-
ferent amounts of missing data, different neighbour selection strat-
egies and different numbers of data attributes. Our results show
that the k-NN method performs well, even when much data are
missing, but has strong competition from both Median Imputation
and Mode Imputation for our particular data. However, unlike
these methods, k-NN has better performance with more data
attributes. We suggest that a suitable value of k is approximately the
square root of the number of complete cases, and that letting cer-
tain incomplete cases qualify as neighbours boosts the imputation
ability of the method.”
Thesis Papers 17

Introduction
1.3.2 Thesis Outline
This section presents the thesis chapters from the point of view of
how they relate to each other and to the thesis as a whole. The
chapters have been organised to reflect an important aspect of the
work behind the thesis – to gain an understanding of impact analy-
sis, both as a topic and as a tool in various contexts.

Chapter 2 serves as an introduction to impact analysis in addition to
the one given in Section 1.2. It looks at the subject from a require-
ments engineering perspective, as opposed to the more common
software maintenance perspective. Thus, it provides an understand-
ing of how impact analysis works and can be used in the context of
changing requirements. This chapter forms a foundation for the
subsequent chapters.

Chapter 3 focuses on differences among roles in software process
improvement, and thus does not relate directly to impact analysis.
Instead, impact analysis stands out as an important improvement of
software architecture documentation for most of the roles. This
indicates the importance of understanding how impact analysis is
seen from an organisational perspective, which is crucial when
exploring further aspects of the topic. It was based on the study
described in this chapter that impact analysis was selected as the tar-
get for subsequent research.

In Chapter 4, a study of issues and uses of impact analysis is pre-
sented. The intention of the chapter is to communicate an under-
standing of the views of impact analysis on different organisational
levels. Compared to the previous chapter, the scope is more narrow,
as the focus is shifted from software process improvement to
organisational aspects of impact analysis. This chapter fills a gap in
current impact analysis research, which mainly focuses on technical
aspects (see Section 1.2), and is a natural continuation of the organ-
isational track started in Chapter 3.

Next, Chapter 5 presents a method for semi-automatic impact anal-
ysis based on keyword-based lexicographic relationships between
requirements and architecture component descriptions (i.e., existing
written artefacts). The study described in Chapter 4 provided a
number of important insights not discussed in the chapter, one of
which was that impact analysis is often based on knowledge, experi-
ence and gut feeling (as opposed to models and documentation),
which naturally entails certain risks. At the same time, however,
18 Thesis Papers

Introduction
knowledge, experience and gut feeling are essential components in
any decision-making process (which impact analysis can be seen as).
Thus, it is important to understand how the impact analysis activity
can be supported in ways that help people make use of their exper-
tise.

Finally, Chapter 6 explores a common problem of surveys encoun-
tered in the study presented in Chapter 3 – missing data. Missing
data is a serious threat to research studies, in particular when it
comes to statistical analyses, but can be circumvented through the
use of imputation. In the Chapter 3 study, the k-Nearest Neighbour
imputation method was used, based on recommendation, to recon-
struct missing questionnaire responses. This prompted an evalua-
tion of the method with Likert data, the kind of data used in the
study. Thus, Chapter 6 is a sidetrack from the thesis topic, but pro-
vides a deeper understanding of how missing data in the Chapter 3
study were treated, and the various implications of this.

1.4 Research Methodology

The purpose of this section is to describe the various research
methodologies used in the thesis chapters, and from that character-
ise the thesis as a whole. In order to accomplish this task, the thesis
studies are positioned according to two taxonomies of software
engineering research. First, though, a general discussion of the type
of research that colours the thesis is given.

1.4.1 Research
Russ-Eft has recently (2004) surveyed a number of definitions of
research, in order to be able to give an answer to the question: What
is research anyway? [100] She identifies two main features, each of
which has two contrasting dimensions. The first feature has to do
with knowledge:

• Research extends present scientific knowledge and adds new
insights, including constraints and limitations.

• Research confirms current knowledge, through replication of
previous studies or by making current practises visible.

Clearly, research that presents new knowledge and introduces new
concepts or methods is more “exciting” than research that tries to
replicate earlier research to confirm (or reject) its findings. Never-
Research Methodology 19

Introduction
theless, the lack of replication within software engineering research
poses a serious threat to the validity of research that bases assump-
tions on results from non-replicated studies. For example, Lindvall
and Sandahl performed a study that is commonly cited in impact
analysis papers as a proof that practitioners generally underestimate
the impact of software changes [74]. However, without replication,
this study provides only one data point, which not necessarily has
the wide generalisability it so far has been attributed.

The second feature identified by Russ-Eft has to do with systemat-
icness:

• Research is performed in a systematic and orderly fashion using
disciplined processes.

• Research depends on the ability to recognise a solution to a
problem even if it manifests haphazardly.

In the first of the two bullets above, research is depicted as some-
thing structured, whereas in the second bullet, there is an element
of chance. Actually, many significant historical discoveries have
been made by chance, the discovery of penicillin being an excellent
example [19].

Russ-Eft concludes, in the light of the multidimensional features of
research, that research by necessity must be clearly described and
fully transparent for replications to be made and follow-up studies
to be performed. This neatly reflects a basic intention with this the-
sis: to present the performed research in a clear and transparent way
(although, for reasons of confidentiality, it is not possible to reveal
all the raw data used in the studies).

1.4.2 Empirical Research
The main character of the research presented in this thesis is empir-
icism. Merriam-Webster Online defines empirical to be:

“(1) originating in or based on observation or experience; (2) relying
on experience or observation alone often without due regard for
system and theory; (3) capable of being verified or disproved by
observation or experiment.” [77]

In other words, relevant keywords for empirical research appear to
be observation and experience, a view shared by others as well [98, 122].
Of the five studies presented in the thesis chapters, all can be seen
20 Research Methodology

Introduction
as empirical. The study in Chapter 2 is much of a survey of relevant
and current impact analysis literature, but is largely based on the
experience of the authors and rests heavily on a number of empiri-
cal research publications. The studies in Chapters 3 to 5 are clearly
empirical, as they are about identifying and observing phenomena
in industry. Finally, the study in Chapter 6 can be seen as empirical
as it is based on a simulation, which is one of the experimental
research approaches listed by Zelkowitz and Wallace [125]. Further-
more, the data used in the simulation comes from the empirical
study described in Chapter 3.

1.4.3 Research Taxonomies
To further establish the position of this thesis in relation to other
software engineering research, the thesis studies are classified
according to two different taxonomies:

• Zelkowitz and Wallace present a taxonomy for software engi-
neering validation that contains 12 experimental approaches
[125]. They argue that the taxonomy help create an understand-
ing of experimentation within software engineering.

• Glass et al. present a taxonomy developed for the investigation
of topics, research approaches, research methods, reference dis-
ciplines and levels of analysis of a great number of software
engineering publications [48]. For brevity, the thesis studies are
only classified with respect to research approach and research
method.

The 12 experimental approaches in Zelkowitz and Wallace’s taxon-
omy are divided into three main categories: observational, historical
and controlled. In observational approaches, data is collected during
the course of a project. There are four such approaches in the tax-
onomy:

• In project monitoring, existing data is collected in a non-intrusive
way, exerting little or no pressure on the project.

• A case study is more intrusive, in that the researcher actively seeks
data related to a certain goal. Additional work performed by the
project members may affect their reactions towards the study.

• Assertions are experiments purposely designed to show the supe-
riority of one technology, rather than investigating the differ-
ences between two technologies.
Research Methodology 21

Introduction
• Finally, field studies are like case studies, but less intrusive and
with wider scope. In a field study, several projects are studied in
parallel, which provides multiple comparable data points.

Historical approaches study historical data, for example from
projects that are already completed. The taxonomy contains four
historical approaches:

• In literature search, published work is passively analysed in order
to, for example, confirm hypotheses or find related data.

• In legacy data approaches, existing quantitative data from a com-
pleted project is analysed in order to learn about trends or struc-
tures.

• Lessons learned approaches summarise qualitative findings from
projects in order to communicate improvement potential and
wisdom to future projects.

• Finally, static analysis is concerned with analysing the structure of
a developed product. The difference between static analysis and
studying legacy data is that the former focuses on the product,
whereas the latter focuses on the process.

The third category, controlled approaches, contains approaches that
allow multiple instances of an observations to be made. Also in this
category, there are four approaches:

• In a replicated experiment, several projects undertake the same
task, albeit with certain different parameters, for example pro-
gramming language or test approach. Several data points allow
the researchers to reach statistical validity.

• In synthetic environment experiments, researchers can study phenom-
ena in artificial approximations of real environments. A prob-
lem with this kind of experiments is that the approximate nature
of the environments restrict generalisation to real environments.

• Dynamic analysis is concerned with examining the characteristics
approximate dynamic analysis.

• Last, simulation is a way to test a technology in a model of a real
environment. A model allows certain variables to be disre-
garded, which is a clear advantage over dealing with a real envi-
ronment.

The taxonomy developed by Glass et al. has the character of a
framework for assessing software engineering research. They clas-
sify 369 journal papers according to the taxonomy in order to
22 Research Methodology

Introduction
answer a number of question about software engineering research
[48]. Because of the wide scope of the taxonomy, only two of its
aspects are presented here: research approaches (overall approaches)
and research methods (more detailed techniques).

Research approaches are divided into three main categories: descrip-
tive, evaluative and formulative. The taxonomy contains three descrip-
tive approaches:

• Descriptive system, capturing studies that focus on describing a
system.

• Descriptive other, capturing studies that focus on describing some-
thing else than a system.

• Review of literature, capturing studies that mainly focus on review-
ing literature.

Furthermore, the taxonomy contains four evaluative approaches2:

• Evaluative-deductive, capturing studies that focus on testing theo-
ries in order to increase predictive understanding. Such studies
are typically of formal or quantitative nature, and often involve
hypothesis testing and generalise findings from a sample to a
population.

• Evaluative-interpretive, capturing studies that focus on under-
standing phenomena in their natural context and in a non-inva-
sive way, from the perspective of the participants.

• Evaluative-critical, capturing studies that focus on critiquing well-
established beliefs and assumptions that are taken for granted.

• Evaluative-other, capturing studies of evaluative character that do
not fit into the previous three categories.

Last, the taxonomy contains six formulative approaches to cover
studies that formulate entities of various kinds. The approaches are
formulative-framework, formulative-guidelines/standards, formulative-model,
formulative-process/method/algorithm, formulative-classification/taxonomy
and formulative-concept.

The taxonomy contains 22 research methods in total, coded at the
lowest possible level (i.e., not organised in a hierarchy). Many of the

2. These (apart from evaluative-other) are based on Orlikowski and
Baroudi’s classification of studies as positivist, interpretive and critical,
respectively [87].
Research Methodology 23

Introduction
methods are very far from the actual methods used in the thesis
studies, which is why the complete list is omitted here. The meth-
ods discussed below are: case study, literature review/analysis, laboratory
experiment (software) and simulation.

1.4.4 Classification of Thesis Studies
Next, descriptions of the research methodologies of the thesis stud-
ies are given. Each study is classified according to the two taxono-
mies presented above.

Chapter 2 This chapter presents the state-of-the-art of impact analysis in
requirements engineering. It gives a historical view of the subject
and discusses current research with respect to methods, approaches,
tools and metrics associated with impact analysis. Therefore, it must
be categorised as a historical study according to the taxonomy by
Zelkowitz and Wallace. More specifically, it can be said to be a liter-
ature search. Similarly, according to the taxonomy by Glass et al., the
research approach employed is review of literature, and the research
method used is literature review/analysis.

Chapter 3 This chapter describes a quantitative study of how viewpoints and
priorities differ among software practitioners with different roles.
The study was performed by means of a quantitative questionnaire
sent to software practitioners systematically sampled from all
employees at the studied company. In the chapter, both a rigorous
statistical analysis of the results and a discussion of the practical
implications of the results are presented.

The study fits nicely into the taxonomy by Zelkowitz and Wallace,
according to which it could be classified as an observational study,
more specifically a case study. The research approach of the study,
according to the taxonomy by Glass et al., is evaluative-deductive, as
it is concerned with the observation of the real world and inferential
knowledge. With regard to research method, the study can be classi-
fied as a case study.

Chapter 4 This chapter describes a study that resembles the one in the previous
chapter, but focuses on uses and issues associated with impact anal-
ysis on three organisational levels. Interviews containing both quali-
tative and quantitative questions were performed with a number of
practitioners with different organisational roles. In a subsequent
post-test, the interviewed persons were asked to prioritise both uses
24 Research Methodology

Introduction
and issues mentioned during the interviews from different perspec-
tives.

The title suggests that the chapter describes an “empirical study”,
but in terms of the taxonomies presented, the study can be classi-
fied as a case study (Zelkowitz and Wallace) and an evaluative-
deductive case study (Glass et al.).

It should be noted that this chapter demonstrates a highly system-
atic approach for capturing knowledge on different organisational
levels. Hence, it would be possible to consider it having a formula-
tive-process/method/algorithm research approach. However, the
systematic approach is not the main contribution of the chapter,
and it is more an example of systematicness than a method.

Chapter 5 This chapter describes a feasibility study of a method for automatic
impact analysis based on implicit lexicographic relationships
between requirements and architecture component descriptions
(and thus components). The proposed method makes use of Latent
Semantic Indexing, a technique for information retrieval. The study
includes an evaluation of the method using actual project data
(including impact predictions made by developers) gathered from a
historical project at Ericsson.

As opposed to the two previous chapters, this chapter does not
present an observational study. Given the source of the data used
for validation, the study could be classified as a historical study of
legacy data, according to the taxonomy by Zelkowitz and Wallace.
However, as the validation of the proposed method took place in a
laboratory context, it would also be appropriate to classify the study
as a synthetic environment experiment.

Looking at the taxonomy by Glass et al., the research approach of
the study can be said to be formulative-process/method/algorithm,
while the research method can be said to be laboratory experiment
(software).

Chapter 6 The last chapter describes an evaluation of the k-Nearest Neighbour
imputation method, a method for reconstructing missing data. The
method is also benchmarked against a number of other imputation
methods. Incomplete data sets artificially created based on a com-
plete data set were fed to various imputation methods in a set of sim-
ulations. Evaluation data were subsequently collected from the
simulations and analysed.
Research Methodology 25

Introduction
According to the taxonomy by Zelkowitz and Wallace, the study can
be classified as a controlled experiment, more specifically a simula-
tion, where a technology (the imputation method) is evaluated in a
model of a real environment. With respect to the taxonomy by
Glass et al., the research approach of the study can be classified as
evaluative-deductive, while the research method can be classified as
simulation.

The classification of the thesis studies is summarised in Table 1.3.

1.4.5 Research Validity
Kitchenham et al. bring up a discouraging observation about empir-
ical software engineering – that the quality of its research generally
is low [59]. In particular, they point out that statistical analysis often
is incorrectly used within the software engineering field, mostly due
to the fact that many researchers in the field lack enough statistical
knowledge and experience. This problem has also been acknowl-
edged by Miller, who provides an in-depth presentation of the many
statistical traps that even experienced software engineering
researchers fall into [80]. He states that a fundamental problem is
that the software engineering field is widely different from the sci-
ences for which statistical significance testing was originally
intended.

Since two of the thesis chapters (Chapters 3 and 4) contain statisti-
cal analyses, it is relevant to comment on these analyses based on
some of the guidelines provided by Kitchenham et al. They give the
following important guidelines related to statistical analysis (see [59]
for the complete list):

Table 1.3 Classification of Thesis Studies

Chapter Zelkowitz and
Wallace [125]

Glass et al. (approach – method)
[48]

2 literature search review of literature – literature
review/analysis

3 case study evaluative-deductive – case study

4 case study evaluative-deductive – case study

5

legacy data, pos-
sibly synthetic
environment
experiment

formulative-process/method/algo-
rithm – laboratory experiment (soft-
ware)

6 simulation evaluative-deductive – simulation
26 Research Methodology

Introduction
• Ensure that the data do not violate the assumptions of the
tests used on them – In both studies, non-parametric tests
were used in the data analysis. In the Chapter 3 study, the reason
was that the data were ordinal and nominal. Thus, non-paramet-
ric Kruskal-Wallis and Chi-Square tests (see, for example, [106])
were used. In the Chapter 4 study, the data were first tested for
departure from normality, and a Kruskal-Wallis test was used
accordingly.

• Present the raw data whenever possible. Otherwise, con-
firm that they are available for confidential review by the
reviewers and independent auditors – For confidentiality
reasons, only screened data were possible to disclose.

• Provide appropriate descriptive statistics – This type of sta-
tistics can be found to some extent in both chapters. Chapter 3,
for example, shows the distribution of answers on all questions
posed in the study. Also, Chapter 4 shows box plots for the sta-
tistically significant issues found in the study.

• Differentiate between statistical significance and practical
importance – This is a strong point that applies to both of the
studies. As can be seen in the chapters, the practical implications
of the results are discussed in addition to the statistical results.
This is especially important in the light of Miller’s assertion on
the use of statistics in fields other than the intended ones (see
above).

• Specify limitations of the study – Both chapters contain sec-
tions that discuss threats to the validity of the results, and how
these threats were sought to be eliminated. Some further gen-
eral points on validity are given below.

The guidelines above are mostly related to conclusion validity,
which is concerned with the statistical relationship between the
treatment and the outcome [122]. Three other types of validity are
discussed below.

Construct Validity. Construct validity is concerned with the
design of the main study instrument and that it measures what it is
intended to measure [98]. This type of validity is relevant for all
studies except the literature study in Chapter 2. The studies in
Chapters 3 and 4 are questionnaire-based and interview-based,
respectively. In order to ensure construct validity, the instruments
used in both studies were constructed in close cooperation with
Ericsson. Furthermore, the interview in the Chapter 4 study was
Research Methodology 27

Introduction
piloted before the real interviews, in order further validate the cor-
rectness of the interview instrument.

In the study in Chapter 5, two tools were used. One was a custom
tool developed specifically for the study, while the other was an
existing tool publicly available. The correctness of the custom tool
was ensured through rigorous testing, while the correctness of the
already-developed tool was assumed based on its origins (see [11]
and [99]).

In the study in Chapter 6, a custom tool was developed specifically
for the study. The correctness of this tool was ensured through
manual checking of the validity of its output for constructed test
input.

External Validity. External validity is concerned with the gener-
alisability of the results [122]. It is therefore tightly connected to
how study respondents are sampled. The most appropriate sam-
pling technique is random sampling, as it gives each person in the pop-
ulation an equal chance of being selected for the sample [98].

In the study in Chapter 3, the questionnaire recipients were sampled
using systematic sampling, since every second person in an employee
directory was selected. However, only one third of the persons in
the sample responded to the questionnaire. To confirm that the
respondents did represent the population, it was verified that the
departmental distributions were similar.

In the study in Chapter 4, the interviewees were sampled based on
recommendations from persons in the organisation. This approach
is often referred to as convenience sampling [98]. However, as the sam-
pling was based on recommendations, the selected interviewees
should be relevant representatives for their respective organisa-
tional levels.

It is important to be aware of how far the generalisability of the
results from the two studies mentioned above extends. Since both
studies were performed at Ericsson, it can be argued that the results
in both cases are generalisable to employees at Ericsson. However,
when presenting research results, it is desirable to assert a wider
generalisability. Given the brief presentation in Section 1.1, it is
apparent that the company is one of the major players in its
domain, and that it develops large-scale software products. Further-
more, Ericsson is an international company with development tak-
28 Research Methodology

Introduction
ing place in many different countries. Also, it has a rather generic
change management process (see, for example, [70]). Thus, it is rea-
sonable to believe that some of the observations made at Ericsson
are generalisable also to other companies with similar characteris-
tics.

Internal Validity. Internal validity is concerned with the rela-
tionship between the treatment and the outcome [122]. The impu-
tation of data in the study in Chapter 3 has been justified by the
evaluation of the imputation method used, presented in Chapter 6.
In Chapter 4, the assignment of study participants to organisational
levels was performed in several different ways in order to ensure
that it was correct.

1.5 Contribution

This section presents the contribution of the thesis in its entirety,
but also the more detailed contribution of each individual chapter.

1.5.1 Thesis
The most prominent contribution of the thesis as a whole is its
clear focus on the organisational aspects of impact analysis. These
are essential to understand in order to maximise the gain from
impact analysis as a requirements engineering and change manage-
ment tool. The organisational aspects are particularly brought for-
ward in Chapters 4 and 5, but also in Chapter 3.

The second important contribution is the emphasis on impact anal-
ysis as a requirements engineering activity. Given the prevalent view
of impact analysis as a software maintenance task, it is important to
further explore and understand the requirements engineering
aspects. The requirements engineering focus is especially reflected
in Chapter 2, but is also inherent in Chapter 4.

Finally, the thesis is an example of empirical research about impact
analysis, which is necessary to strengthen the connection between
impact analysis research and impact analysis in industry (see Section
1.2.5).
Contribution 29

Introduction
1.5.2 Chapters
The contribution of Chapter 2 is a view of the state-of-the-art of
impact analysis in the requirements engineering field. As articles
about impact analysis mainly occur in software maintenance con-
texts, there is a clear need for complementing current research with
a stronger focus on requirements engineering. This is further sup-
ported by the fact that impact analysis is a crucial activity in any
change management process. As implied in the chapter, the chal-
lenges of impact analysis are not very different in requirements
engineering than in software maintenance. The main difference is
that in software maintenance, impact analysis is used to control
changes made to an already released system for adaptive, corrective
or perfective purposes [89], while in requirements engineering,
impact analysis is concerned with the impact of new or changed
requirements, possibly before the implementation has started. Fur-
thermore, requirements engineering is more decision-oriented than
software maintenance (for example, regarding inclusion or exclu-
sion of new requirements).

The contribution of Chapter 3 is threefold:

• The results show that it is relevant to look at the role perspec-
tive when preparing software process improvement (SPI). To
obtain as much support as possible among process users, and to
maximise the understanding of issues to address, the ultimate
approach would be to investigate viewpoints and priorities of
every single process user. As this is clearly not feasible, it is nec-
essary to approach process users in larger clusters. The results
presented in the chapter indicate that clustering based on roles
is sensible.

• Furthermore, the chapter provides an example of how roles can
differ when it comes to priorities. While the exact differences
are most likely specific for Ericsson, some plausible and possi-
bly generalisable explanations for the differences are given (for
example, that product managers have more market focus than
other roles and therefore differ).

• Finally, the chapter highlights impact analysis in an organisa-
tional context (i.e., a non-technical context). Impact analysis was
seen as an important improvement of architecture documenta-
tion by most of the participating roles.

The contribution of Chapter 4 is twofold:
30 Contribution

Introduction
• First and foremost, the chapter presents views of impact analy-
sis on different organisational levels, thereby, like Chapter 3,
departing from the common technical perspective or impact
analysis. Uses and issues associated with impact analysis are
examined, which increases the understanding of challenges in
working with impact analysis.

• Second, the chapter has strong focus on the systematic inter-
view-based method that was used to capture knowledge about
uses and issues associated with impact analysis. The method
serves as an explicit example of empirical research.

The contribution of Chapter 5 is the proposal and exploration of a
method for performing semi-automatic impact analysis of new and
changing requirements based on lexicographic relationships
between requirements and architecture component descriptions. As
discussed in Section 1.2.3, current impact analysis methods often
fall short due to incomplete traceability among development arte-
facts. Thus, it is necessary to research methods and tools that work
despite imperfect circumstances. Moreover, a certain degree of
automation facilitates the impact analysis activity and is therefore an
important step towards more structured impact analysis in industry.
While the study only is a feasibility study, it serves as an initial step
towards the intended goal.

Finally, the contribution of Chapter 6 is the evaluation of k-Nearest
Neighbour imputation on software engineering Likert data, and the
benchmarking against other imputation methods. Imputation meth-
ods can be expected to perform differently depending on the type
of data being imputed, and it has been suggested that the effects of
different types of data are more important to study than how vari-
ous test statistics (such as mean and variance) are affected [93].

1.6 Future Work

The main character of this thesis has been the organisational per-
spective of impact analysis. Future work will continue in this area, in
cooperation with Ericsson, but will focus more on support tech-
niques than investigations of organisational views. The following
sections show some directions of future work.
Future Work 31

Introduction
1.6.1 Semi-Automatic Impact Analysis
Future work will continue exploring the method proposed in Chap-
ter 5. As stated, the method has two benefits: it works without a
full-scale infrastructure of software development artefacts, and it
provides a degree of automation that should be well-received in
industry, where manual work is costly.

While the initial evaluation presented in Chapter 5 shows somewhat
discouraging results, there are incentives for continued work. First
and foremost, further evaluations will be performed to better deter-
mine the performance of the method, given that the initial evalua-
tion may have been too coarse-grained to provide accurate results.
Second, there are a number of parameters of the method that need
to be investigated in greater detail. The effects of these parameters
may be significant.

1.6.2 Technical Support for Organisational IA
Bearing on previous discussions, future work will focus on technical
support for impact analysis in an organisational context. This
includes methods and tools that can facilitate the impact analysis
effort in different stages of software development, while being non-
invasive with respect to changes to current ways of working. In
practise, this means to make use of current tools, current develop-
ment artefacts and existing expertise and knowledge.

The results from the study in Chapter 4 serve as an indication of
the various aspects of impact analysis that should be pursued. The
most important uses represent organisational activities that possibly
can be supported further. Also, the most important issues reflect an
improvement potential that can be explored.

1.6.3 Practitioners’ Impact Analysis Ability
As stated in Section 1.4.1, the paper by Lindvall and Sandahl [74]
about how well software practitioners can estimate change impact is
well-cited, but represents after all only one data point. A replication
of this study at Ericsson (however at a different office) is planned
for two main reasons:

• It would make developers at Ericsson aware of their own ability
of estimating the impact of new requirements (as well as
changes to requirements). Furthermore, it would provide addi-
tional insight into organisational needs pertaining to impact
32 Future Work

Introduction
analysis, and possibly identify further openings for support
techniques.

• It would provide a second data point, and thus contribute fur-
ther to the impact analysis field with knowledge about the actual
state of impact analysis in the software development industry.

1.7 Summary

The aims of this chapter have been to briefly introduce some
important aspects of the impact analysis field, to present the outline
of the thesis, and to discuss the research methodologies used in the
thesis studies.

Impact analysis research is commonly found in the software main-
tenance field, whereas it is an essential part of software change
management, and thus requirements engineering. Chapter 2 pro-
vides an overview of the state-of-the-art of impact analysis in
requirements engineering, and serves therefore as one step towards
complementing current impact analysis research with a stronger
requirements engineering focus.

Furthermore, impact analysis methods and tools are commonly of
technical nature, and are not seldom based on the somewhat inap-
propriate assumption that software development organisations have
full traceability among development artefacts and use structured
and updated models and documentation. Thus, there is a need to
investigate more organisational aspects of the area, such as how
impact analysis is viewed and used by software practitioners. In this
thesis, three chapters communicate the organisational perspective.
Chapter 3 presents a study of organisational nature, where impact
analysis surfaces as an important improvement of architecture doc-
umentation. Chapter 4 presents a study of uses and issues of impact
analysis on different organisational levels, in order to create an
understanding of how the levels differ in viewing the activity.
Finally, Chapter 5 presents a feasibility study of a method for per-
forming semi-automatic impact analysis based on existing written
development artefacts. The method can potentially serve as a non-
invasive support technique for impact analysis in different develop-
ment stages.

Missing data is a problem that researchers in most research fields
are faced with. Imputation, i.e. the reconstruction of missing data,
Summary 33

Introduction
was used in Chapter 3 to obtain a complete data set for the analysis.
Chapter 6 provides a thorough evaluation and benchmarking of the
imputation method used, and supports its use in the Chapter 3
study.
34 Summary

C H A P T E R

2
Impact Analysis

In Engineering and Managing Software Requirements, Springer-Verlag, 2005

Per Jönsson and Mikael Lindvall

It is widely recognised that change is an inescapable property of any
software, for a number of reasons. However, software changes can
and will, if not properly controlled, lead to software deterioration.
For example, when Mozilla’s 2 000 000 Source Lines of Code
(SLOC) were analysed, there were strong indications that the soft-
ware had deteriorated significantly due to uncontrolled change,
making the software very hard to maintain [50].

Software deterioration occurs in many cases because changes to
software seldom have the small impact they are believed to have
[120]. In 1983, some of the world’s most expensive programming
errors each involved the change of a single digit in a previously cor-
rect program [118], indicating that a seemingly trivial change may
have immense impact. A study in the late 90s showed that software
practitioners conducting impact analysis and estimating change in
an industrial project underestimated the amount of change by a fac-
tor of 3 [74]. In addition, as software systems grow increasingly
complex, the problems associated with software change increase
accordingly. For example, when the source code across several ver-
sions of a 100 000 000 SLOC, fifteen-year-old telecom software
system was analysed, it was noticed that the system had decayed due
35

Impact Analysis
to frequent change. The programmers estimating the change effort
drew the conclusion that the code was harder to change than it
should be [37].

Impact analysis is a tool for controlling change, and thus for avoid-
ing deterioration. Bohner and Arnold define impact analysis as “the
activity of identifying the potential consequences, including side
effects and ripple effects, of a change, or estimating what needs to
be modified to accomplish a change before it has been made.” [14]
Consequently, the output from impact analysis can be used as a
basis for estimating the cost associated with a change. The cost of
the change can be used to decide whether or not to implement it
depending on its cost/benefit ratio.

Impact analysis is an important part of requirements engineering
since changes to software often are initiated by changes to the
requirements. In requirements engineering textbooks, impact analy-
sis is recognised as an essential activity in change management, but
details about how to perform it often left out, or limited to reason-
ing about the impact of the change on the requirements specifica-
tion (see, for example, [63], [70], [75], [97] and [111]). An exception
is [120], where Wiegers provides checklists to be used by a knowl-
edgeable developer to assess the impact of a change proposal.

Despite its natural place in requirements engineering, research
about impact analysis is more commonly found in literature related
to software maintenance. In this chapter, we present impact analysis
from a requirements engineering perspective. In our experience,
impact analysis is an integral part of every phase in software devel-
opment. During requirements development, design and code do
not yet exist, so new and changing requirements affect only the
existing requirements. During design, code does not yet exist, so
new and changing requirements affect only existing requirements
and design. Finally, during implementation, new and changing
requirements affect existing requirements as well as design and
code. This is captured in Figure 2.1. Note that in less idealistic
development processes, the situation still holds; requirements
changes affect all existing system representations.

The chapter is organised as follows. In Section 2.1, we define con-
cepts, discuss software change and outline the history of impact
analysis. In Section 2.2, we present common strategies for impact
analysis. Section 2.3 discusses impact analysis in the context of non-
functional requirements. We explore a number of metrics for
36

Impact Analysis
impact analysis and give an example of an application of such met-
rics in Section 2.4. In Section 2.5, we look at tool support for
impact analysis and discuss impact analysis in requirements man-
agement tools. Finally we outline the future of impact analysis in
Section 2.6 and provide a summary of the chapter in Section 2.7.

2.1 Background

This purpose of this section is to provide a background for the
remaining chapter. We begin by defining concepts related to impact
analysis. Then, we discuss how impact analysis fits into software
change. Finally, we outline a short impact analysis history.

2.1.1 Concepts and Terms
Throughout this chapter, we use several terms and concepts that
are relevant in the field of impact analysis. In this section, we briefly
visit these terms and concepts, and explain how each relates to
impact analysis and to other terms and concepts.

Software lifecycle objects (SLOs – also called software products, or
working products) are central to impact analysis. An SLO is an arti-
fact produced during a project, such as a requirement, an architec-
tural component, a class and so on. SLOs are connected to each
other through a web of relationships. Relationships can be both
between SLOs of the same type, and between SLOs of different
types. For example, two requirements can be interconnected to sig-
nify that they are related to each other. A requirement can also be
connected to an architectural component, for example, to signify
that the component implements the requirement.

Impact analysis is often carried out by analysing the relationships
between various entities in the system. We distinguish between two

Figure 2.1 Software Lifecycle Objects (SLOs) Affected (right) Due to
Requirements Changes in Different Phases (left)
Background 37

Impact Analysis
types of analysis: dependency analysis and traceability analysis [14]. In
dependency analysis, detailed relationships among program entities,
for example variables or functions, are extracted from source code.
Traceability analysis, on the other hand, is the analysis of relation-
ships that have been identified during development among all types
of SLOs. Traceability analysis is thus suitable for analysing relation-
ships among requirements, architectural components, documenta-
tion and so on. It is evident that traceability analysis has a broader
application within requirements engineering than dependency anal-
ysis; it can be used in earlier development phases and can identify
more diverse impact in terms of different SLO types.

It is common to deal with sets of impact in impact analysis. The fol-
lowing sets have been defined by Arnold and Bohner [14]:

• The System Set represents the set of all SLOs in the system – all
the other sets are subsets of this set.

• The Starting Impact Set (SIS) represents the set of objects that are
initially thought to be changed. The SIS typically serves as input
to impact analysis approaches that are used for finding the Esti-
mated Impact Set.

• The Estimated Impact Set (EIS) always includes the SIS and can
therefore be seen as an expansion of the SIS. The expansion
results from the application of change propagation rules to the
internal object model repeatedly until all objects that may be
affected are discovered. Ideally, the SIS and EIS should be the
same, meaning that the impact is restricted to what was initially
thought to be changed.

• The Actual Impact Set (AIS), finally, contains those SLOs that
have been affected once the change has been implemented. In
the best-case scenario, the AIS and EIS are the same, meaning
that the impact estimation was perfect.

In addition to the impact sets, two forms of information are neces-
sary in order to determine the impact of a change: information
about the dependencies between objects, and knowledge about how
changes propagate from object to object via dependencies and tracea-
bility links. Dependencies between objects are often captured in
terms of references between them. Knowledge about how change
propagates from one object to another is often expressed in terms
of rules or algorithms.
38 Background

Impact Analysis
It is common to distinguish between primary and secondary change.
Primary change, also referred to as direct impact, corresponds to the
SLOs that are identified by analysing how the effects of a proposed
change affect the system. This analysis is typically difficult to auto-
mate because it is mainly based on human expertise. Consequently,
little can be found in the literature about how to identify primary
changes. It is more common to find discussions on how primary
changes cause secondary changes, also referred to as indirect impact.

The indirect impact can take two forms. Side effects are unintended
behaviours resulting from the modifications needed to implement
the change. Side effects affect both the stability and function of the
system and must be avoided. Ripple effects, on the other hand, are
effects on some parts of the system caused by making changes to
other parts. Ripple effects cannot be avoided, since they are the
consequence of the system’s structure and implementation. They
must, however, be identified and accounted for when the change is
implemented.

We have previously mentioned architectural components as an
example of SLOs. The software architecture of a system is its basic
structure, consisting of interconnected components. There are
many definitions of software architecture, but a recent one is “the
structure or structures of the system, which comprise software ele-
ments, the externally visible properties of those elements, and the
relationships among them.” [8] Several other definitions exist as
well (see [109]), but most echo the one given here. Software archi-
tecture is typically designed early in the project, hiding low-level
design and implementation details, and then iteratively refined as
the knowledge about the system grows [27]. This makes architec-
ture models interesting from a requirements engineering and impact
analysis point-of-view, because they can be used for early, albeit ini-
tially coarse, impact analysis of changing requirements.

2.1.2 Software Change and Impact Analysis
Software change occurs for several reasons, for example, in order to
fix faults, to add new features or to restructure the software to
accommodate future changes [78]. Changing requirements is one of
the most significant motivations for software change. Requirements
change from the point in time when they are elicited until the sys-
tem has been rendered obsolete. Changes to requirements reflect
how the system must change in order to stay useful for its users and
remain competitive on the market. At the same time, such changes
Background 39

Impact Analysis
pose a great risk as they may cause software deterioration. Thus,
changes to requirements must be captured, managed and controlled
carefully to ensure the survival of the system from a technical point
of view. Factors that can inflict changes to requirements during
both initial development as well as in software evolution are,
according to Leffingwell and Widrig [70]:

• The problem that the system is supposed to solve changes, for
example for economic, political or technological reasons.

• The users change their minds about what they want the system
to do, as they understand their needs better. This can happen
because the users initially were uncertain about what they
wanted, or because new users enter the picture.

• The environment in which the system resides changes. For
example, increases in speed and capacity of computers can
affect the expectations of the system.

• The new system is developed and released leading users to dis-
cover new requirements.

The last factor is both real and common. When the new system is
released, users realise that they want additional features, that they
need data presented in other ways, that there are emerging needs to
integrate the system with other systems, and so on. Thus, new
requirements are generated by the use of the system itself. Accord-
ing to the “laws of software evolution”, a system must be continu-
ally adapted, or it will be progressively less satisfactory in its
environment [71].

Problems arise if requirements and changes to requirements are not
managed properly by the development organisation [70]. For exam-
ple, failure to ask the right questions to the right people at the right
time during requirements development will most likely lead to a
great number of requirements changes during subsequent phases.
Furthermore, failure to create a practical change management proc-
ess may mean that changes cannot be timely handled, or that
changes are implemented without proper control.

Maciaszek points out: “Change is not a kick in the teeth, unman-
aged change is.” [75] In other words, an organisation that develops
software requires a proper change management process in order to
mitigate the risks of constantly changing requirements and their
impact on the system. Leffingwell and Widrig discuss five necessary
parts of a process for managing change [70]. These parts, depicted
40 Background

Impact Analysis
in Figure 2.2, form a framework for a change management process
allowing the project team to manage changes in a controlled way.

Plan for change involves recognising the fact that changes occur, and
that they are a necessary part of the system’s development. This
preparation is essential for changes to be received and handled
effectively.

Baseline requirements means to create a snapshot of the current set of
requirements. The point of this step is to allow subsequent changes
in the requirements to be compared with a stable, known set of
requirements.

A single channel is necessary to ensure that no change is implemented
in the system before it has been scrutinised by a person, or several
persons, who keep the system, the project and the budget in mind.
In larger organisations, the single channel is often a change control
board (CCB).

A change control system allows the CCB (or equivalent) to gather, track
and assess the impact of changes. According to Leffingwell and
Widrig, a change must be assessed in terms of impact on cost and
functionality, impact on external stakeholders (for example, cus-
tomers) and potential to destabilise the system. If the latter is over-
looked, the system (as pointed out earlier) is likely to deteriorate.

To manage hierarchically defeats a perhaps too common line of action
– a change is introduced in the code by an ambitious programmer,
who forgets, or overlooks, the potential effect the change has on
test cases, design, architecture, requirements and so on. Changes
should be introduced top-down, starting with the requirements. If
the requirements are decomposed and linked to other SLOs, it is
possible to propagate the change in a controlled way.

This framework for the change process leaves open the determina-
tion of an actual change process. Requirements engineering text-
books propose change management processes with varying levels

Figure 2.2 Change Management Process Framework
Background 41

Impact Analysis
of detail and explicitness [75, 97, 111]. The process proposed by
Kotonya and Sommerville is, however, detailed and consists of the
following steps [63]:

1. Problem analysis and change specification
2. Change analysis and costing, which in turn consists of:

a. Check change request validity
b. Find directly affected requirements
c. Find dependent requirements
d. Propose requirements changes
e. Assess costs of change
f. Assess cost acceptability

3. Change implementation

Impact analysis is performed in steps 2b, 2c and 2e, by identifying
requirements and system components affected by the proposed
change. The analysis should be expressed in terms of required
effort, time, money and available resources. Kotonya and Sommer-
ville suggest the use of traceability tables to identify and manage
dependencies among requirements, and between requirements and
design elements. We discuss traceability as a strategy for performing
impact analysis in Section 2.2.1.

2.1.3 History and Trends
In some sense, impact analysis has been performed for a very long
time, albeit not necessarily using that term and not necessarily
resolving the problem of accurately determining the effect of a pro-
posed change. The need for software practitioners to determine
what to change in order to implement requirement changes has
always been present. Strategies for performing impact analysis were
introduced and discussed early in the literature. For example,
Haney’s paper from 1972 on a technique for module connection
analysis is often referred to as the first paper on impact analysis
[52]. The technique builds on the idea that every module pair of a
system has a probability that a change in one module in the pair
necessitates a change in the other module. The technique can be
used to model change propagation between any system compo-
nents including requirements. Program slicing, which is a technique
for focusing on a particular problem by retrieving executable slices
containing only the code that a specific variable depends on, was
introduced already in 1979 by Weiser [119]. Slicing, which is
42 Background

Impact Analysis
explained in Section 2.2.1, can be used to determine dependencies
in code and can be used to minimise side effects. Slicing can also be
used to determine dependencies between sections in documents,
including requirements, which is described below. Requirements
traceability was defined in ANSI/IEEE Std 830-1984 in 1984 [3].
Traceability describes how SLOs are related to each other and can
be used to determine how change in one type of artifact causes
change in another type of artifact. The notion of ripple effect was
introduced by Yau and Collofello in 1980 [123]. Their models can
be used to determine how change in one area of the source code
propagates and causes change in other areas.

Impact analysis relies on techniques and strategies that date back a
long time. It is however possible to identify a trend in impact analy-
sis research over the years. Early impact analysis work focused on
source code analysis, including program slicing and ripple effects
for code. The maturation of software engineering among software
organisations has led to a need to understand how changes affect
other SLOs than source code.

For example, Turver and Munro point out that source code is not
the only product that has to be changed in order to develop a new
release of the software product [117]. In a document-driven devel-
opment approach, many documents are also affected by new and
changed requirements. The user manual is an example of a docu-
ment that has to be updated when new user functionalities have
been provided. Turver and Munro focus on the problem of ripple
effects in documentation using a thematic slicing technique. They
note that this kind of analysis has not been widely discussed before.
The same approach can be applied to the requirements document
itself in order to determine how a new or changed requirement
impacts the requirements specification.

In 1996, Arnold and Bohner published a collection of research arti-
cles called Software Change Impact Analysis [14]. The purpose of
the collection was to present the current, somewhat scattered,
material that was available on impact analysis at the time. Reading
the collection today, nearly ten years later, it becomes apparent that
it still is very relevant. Papers published after 1996 seem to work
with the same ideas and techniques. We do not mean to depreciate
the work that has been done, but it indicates that the field is not in a
state of flux. Rather, the focus remains on adapting existing tech-
niques and strategies to new concepts and in new contexts. Impact
analysis on the architectural level is an example of this.
Background 43

Impact Analysis
When the year 2000 approached, the Y2K problem made it obvious
that extensive impact analysis efforts were needed in order to iden-
tify software and parts of software that had to be changed to sur-
vive the century shift. This served as a revelation for many
organisations, in which the software process previously had not
included explicit impact analysis [13].

Today, software systems are much more complex than they were 25
years ago, and it has become very difficult to grasp the combined
implications of the requirements and their relationships to architec-
ture, design, and source code. Thus, a need for impact analysis strat-
egies that employ requirements and their relationships to other
SLOs has developed. Still, dependency webs for large software sys-
tems can be so complex that it is necessary to visualise them in
novel ways. Bohner and Gracanin present research that combines
impact analysis and 3D visualisation in order to display dependency
information in a richer format than is possible with 2D visualisation
[15]. Bohner also stresses the need to extend impact analysis to
middleware, COTS software and web applications. The use of these
types of software is becoming more common, moving the complex-
ity away from internal data and control dependencies to interopera-
bility dependencies. Current impact analysis strategies are not very
well suited for this type of dependencies [13].

2.2 Strategies for Impact Analysis

There are various strategies for performing impact analysis, some of
which are more germane to the requirements engineering process
than others. Common strategies are:

• Analysing traceability or dependency information.
• Utilising slicing techniques.
• Consulting design specifications and other documentation.
• Interviewing knowledgeable developers.

We divide these impact analysis strategies into two categories: autom-
atable and manual. With automatable strategies, we mean those that
are in some sense algorithmic in their nature. These have the ability
to provide very fine-grained impact estimation in an automated
fashion, but require on the other hand the presence of a detailed
infrastructure and result at times in too many false positives [86].
With manual strategies, we mean those that are best performed by
44 Strategies for Impact Analysis

Impact Analysis
human beings (as opposed to tools). These require less infrastruc-
ture, but may be coarser in their impact estimation than the autom-
atable ones. We recognise that the two categories are not entirely
orthogonal, but they do make an important distinction; the manual
strategies are potentially easier to adopt and work with because they
require less structured input and no new forms of SLOs need to be
developed.

A previous study indicated that developers’ impact analyses often
result in optimistic predictions [74], meaning that the predicted set
of changes represents the least possible amount of work. Thus, the
work cannot be easier, only more difficult. The study also identified
the need for conservative predictions and establishing a “worst
level” prediction. The real amount of work will lie between the opti-
mistic and the conservative level. An improvement goal would be to
decrease variation as the impact analysis process stabilises and
becomes more mature.

The cost associated with producing a conservative prediction
depends on its expected accuracy. Since conservative predictions
identify such a large part of the system, developers often cannot
believe they are realistic. The benefit of having a conservative pre-
diction is the ability to determine a most probable prediction some-
where between the optimistic and the conservative prediction. An
ideal impact analysis approach would always provide an optimistic
and a conservative estimate. By collecting and analysing empirical
data from the predictions as well as the actual changes, it can be
established where in that span the correct answer lies.

2.2.1 Automatable Strategies
Automatable impact analysis strategies often employ algorithmic
methods in order to identify change propagation and indirect
impact. For example, relationship graphs for requirements and
other SLOs can be used with graph algorithms to identify the
impact a proposed change would have on the system. The prerequi-
site for automatable strategies is a structured specification of the
system. By structured, we mean that the specification is consistent
and complete, and includes some semantic information (for exam-
ple, type of relationship). Once in place, such a specification can be
used by tools in order to perform automatic impact analysis.
Requirements dependency webs and object models are examples of
structured specifications.
Strategies for Impact Analysis 45

Impact Analysis
The strategies presented here, traceability and dependency analysis
and slicing, are typically used to assess the Estimated Impact Set by
identifying secondary changes made necessary because of primary
changes to the system. They are not well suited for identifying
direct impact.

Traceability/Dependency Analysis. Traceability analysis
and dependency analysis both involve examining relationships
among entities in the software. They differ in scope and detail level;
traceability analysis is the analysis of relationships among all types
of SLOs, while dependency analysis is the analysis of low-level
dependencies extracted from source code [14].

By extracting dependencies from source code, it is possible to
obtain call graphs, control structures, data graphs and so on. Since
source code is the most exact representation of the system, any
analysis based on it can very precisely predict the impact of a
change. Dependency analysis is also the most mature strategy for
impact analysis available [14]. The drawback of using source code is
that it is not available until late in the project, which makes depend-
ency analysis narrow in its field of application. When requirements
traceability exists down to the source, it can, however, be very effi-
cient to use source code dependencies in order to determine the
impact of requirements changes. A drawback is that very large sys-
tems have massive amounts of source code dependencies, which
make the dependency web difficult to both use and to get an over-
view of [15].

Traceability analysis also requires the presence of relationship links
between the SLOs that are analysed. Typically, these relationships
are captured and specified progressively during development
(known as pre-recorded traceability). The success of traceability
analysis depends heavily on the completeness and consistency of
the identified relationships. However, if traceability information is
properly recorded from the beginning of development, the analysis
can be very powerful.

A common approach for recording traceability links is to use a
traceability matrix (see, for example, [63], [70] and [120]). A tracea-
bility matrix is a matrix where each row, and each column, corre-
sponds to one particular SLO, for example a requirement. The
relationship between two SLOs is expressed by putting a mark
where the row of the first SLO and the column of the second SLO
intersect. It is also possible to add semantic information to the rela-
46 Strategies for Impact Analysis

Impact Analysis
tionship between SLOs. For example, the relationship between a
requirement and an architectural component can be expanded to
include information about whether the component implements the
requirement entirely, or only partially.

Ramesh and Jarke report that current requirement practices do not
fully embrace the use of semantic information to increase the use-
fulness of relationships between SLOs [95]. A relationship stating
that two SLOs affect each other but not how, will be open to inter-
pretation by all stakeholders. According to Ramesh and Jarke, dif-
ferent stakeholders interpret relationships without semantic
information in different ways. For example, a user may read a rela-
tionship as “implemented-by”, while a developer may read the same
relationship as “puts-constraints-on”.

To further illustrate the need for semantics in traceability links, we
have created an example with six interconnected SLOs. Figure 2.3
shows the SLOs in a connectivity graph (left), where an arrow
means that the source SLO affects the destination SLO. For exam-
ple, SLO 2 affects, or has an impact on, SLO 1 and SLO 4.

The connectivity graph corresponds exactly to a traceability matrix,
shown next in the figure. An arrow in the traceability matrix indi-
cates that the row SLO affects the column SLO. Both the connec-
tivity graph and the traceability matrix show direct impact, or
primary change needed, whereas indirect impact, or secondary
change needed, can only be deduced by traversing the traceability
links. For systems with many SLOs, the amount of indirect impact
quickly becomes immense and hard to deduce from a connectivity
graph or a traceability matrix. In order to better visualise indirect
impact, the traceability matrix can be converted into a reachability
matrix, using a transitive closure algorithm1. The reachability matrix
for our example is also in Figure 2.3, showing that all SLOs eventu-

Figure 2.3 Three Views of the Relationships Among SLOs
Strategies for Impact Analysis 47

Impact Analysis
ally have impact on every other SLO. Consequently, the reachability
matrix for this example is of limited use for assessing indirect
impact. Bohner points out that this problem is common in software
contexts, unless some action is taken to limit the range of indirect
impact [13].

One way of limiting the range of indirect impact is to add distances
to the reachability matrix. By doing so, it becomes possible to disre-
gard indirect impacts with distances above a predefined threshold.
This is a simple addition to the normal creation of reachability
matrices, but it fails to address the fact that different types of trace-
ability relationships may affect the range of indirect impact differ-
ently. Another solution is to equip the traceability matrix with
traceability semantics and adjust the transitive closure algorithm to
take such information into account. The algorithm should consider
two SLOs reachable from each other only if the traceability rela-
tionships that form the path between them are of such types that
are expected to propagate change.

Traceability analysis is useful in requirements engineering, which we
view as an activity performed throughout the entire software lifecy-
cle. Initially, traceability links can only be formed between require-
ments, but as design and implementation grow, links can be created
from requirements to other SLOs as well.

Slicing Techniques. Slicing attempts to understand dependen-
cies using independent slices of the program [45]. The program is
sliced into a decomposition slice, which contains the place of the
change, and the rest of the program, a complement slice. Slicing is
based on data and control dependencies in the program. Changes
made to the decomposition slice around the variable that the slice is
based on are guaranteed not to affect the complement slice. Slicing
limits the scope for propagation of change and makes that scope
explicit. The technique is, for example, used by Turver and Munro
for slicing of documents in order to account for ripple effects as a
part of impact analysis [117]. Shahmehri et al. apply the technique
to debugging and testing [105]. Pointer-based languages like C++
are supported through the work of Tip et al. and their slicing tech-
niques for C++ [115]. Slicing tools are often based on character-
based presentation techniques, which can make it more difficult to

1. The transitive closure of a graph is a graph where an edge is added
between nodes A and B if it is possible to reach B from A in the origi-
nal graph.
48 Strategies for Impact Analysis

Impact Analysis
analyse dependencies, but visual presentation of slices can be
applied to impact analysis as shown by Gallagher [44].

Architectural slicing was introduced by Zhao, and is similar to pro-
gram slicing in that it identifies one slice of the architecture that is
subject to the proposed change, and one that is not [126]. As
opposed to conventional program slicing, architectural slicing oper-
ates on the software architecture of a system. As such, it can be
employed in early development, before the code has been written.
The technique uses a graph of information flows in order to trace
those components that may be affected by the component being
changed. In addition, those components that may affect the com-
ponent being changed are also identified. This means that there
must be a specification of the architecture that exposes all the infor-
mation flows that it contains.

Slicing techniques can be useful in requirements engineering to iso-
late the impact of a requirements change to a specific part of the
system. In order to provide a starting point for the slicing tech-
nique, the direct impact of the change must first be assessed.

2.2.2 Manual Strategies
Manual impact analysis strategies do not depend as heavily on
structured specifications as their automatable counterparts do. Con-
sequently, there is a risk that they are less precise in their predictions
of impact. On the other hand, they may be easier to introduce in a
change management process and are, in our experience, commonly
employed in industry without regard to their precision.

The strategies presented here, using design documentation and
interviewing, are primarily used for assessing the Starting Impact
Set by identifying direct impact. The identification of indirect
impact is possible, but is better handled by automatable strategies.
Note that manual strategies, like the ones described here, can be
used to capture traceability links between SLOs, to be used in trace-
ability analysis.

Design Documentation. Design documentation comes in
many different forms, for example as architecture sketches, view-
based architecture models, object-oriented UML diagrams, textual
descriptions of software components and so on. The quality of
design documentation depends on the purpose for which it was
written, the frequency with which it is updated, and the information
Strategies for Impact Analysis 49

Impact Analysis
it contains. It is far too common in industry that design documenta-
tion is written early in a project only to become shelfware, or that
the documentation is written after the project, just for the sake of
writing it. To perform impact analysis and determine how a new or
changed requirement affect the system based on design documenta-
tion requires the documentation to be up-to-date and consistent
with any implementation made so far. In addition, a prerequisite for
using design documentation to assess direct impact is the possibility
of relating requirements to design SLOs found in the documenta-
tion. The success and precision of this activity depends on a
number of factors:

• The knowledge and skills of the persons performing the analy-
sis. Persons with little insight into the system will most likely
have problems pinpointing the impact of changed requirements
in the system.

• The availability of the documentation. Documentation that is
“hidden” in personal computers or stored in anonymous bind-
ers may be overlooked in the analysis.

• The amount of information conveyed in the documentation.
Simple design sketches are common, but fail to express the
semantics in connections between classes or architectural com-
ponents. Ill-chosen naming schemes or inconsistent notation
makes the analysis task arduous.

• Clear and consistent documentation. Ambiguous documenta-
tion is open for interpretation, meaning, for example, that the
impact of a proposed change is coupled with great uncertainty,
simply because another interpretation would have yielded dif-
ferent impact.

If the factors above have been taken into account, impact analysis
of a requirements change can be performed by identifying the
design SLOs that implement or in any other way depend on the
requirements affected by the change. Additional measures that can
be taken in order to alleviate the impact analysis effort are:

• Keep a design rationale. A design rationale is documentation
describing why decisions are made the way they are. Bratthall et
al. have performed an experiment on the effect of a design
rationale when performing impact analysis [17]. The results
from the experiment suggest that a design rationale in some
cases can shorten the time required for impact analysis, and
increase the quality of the analysis.
50 Strategies for Impact Analysis

Impact Analysis
• Estimate impact of requirements as soon as the requirements
are developed. The estimated impact is necessarily coarse to
begin with, but can be improved incrementally as knowledge
about the system increases.

Of course, structured design documentation can also be used with
traceability analysis (see Section 2.2.1) to identify indirect impact.
For example, Briand et al. propose a method for performing impact
analysis in UML models, where they use a transitive closure algo-
rithm to find indirect impacts in the models [18]. They do point
out, however, the essential criterion that the UML models are
updated as the system undergoes changes.

Interviews. Interviewing knowledgeable developers is probably
the most common way to acquire information about likely effects
of new or changed requirements according to a study on impact
analysis [73]. The study found that developers perceive it as highly
cost-effective to ask a knowledgeable person instead of searching in
documents or other forms of information sources. Extensive com-
munication between developers was also mentioned by developers
as a success factor for software development projects. Analysis of
source code was the second most common way of acquiring infor-
mation about the likely impact of new or changed requirements.
While all developers said they interviewed other developers and
consulted source code, about half of the developers answered that
they also consulted information, such as use-case models and object
models, stored in the CASE tool in use. When asked why informa-
tion in object models was not used more extensively, the developers
answered that the information in object models was not detailed
enough for impact analysis. In addition, they did not believe that the
information in the models was up-to-date. “Source code, on the
other hand, is always up-to-date.” Among some developers, espe-
cially newcomers, the attitude towards using object models as the
basis for determining change as an effect of new or changed
requirements was less than positive. Object models (and the partic-
ular CASE tool that was used) were, however, mentioned as a good
tool for documenting impact analysis and for answering questions
about the relation between requirements and design objects using
the support for traceability links.
Strategies for Impact Analysis 51

Impact Analysis
2.3 Non-Functional Requirements

Requirements are often divided into functional and non-functional
requirements. Non-functional requirements, or quality require-
ments, are those requirements “which are not specifically con-
cerned with the functionality of the system” [63]. Non-functional
requirements are often harder to deal with than functional ones,
because their impact is generally not localised to one part of the sys-
tem, but cuts across the whole system.

A non-functional requirement that, for example, relates to and calls
for high security, often requires fundamental support in the soft-
ware architecture, as it may constrain data access, file management,
database views, available functionality and so on. Changes to func-
tional requirements may also affect non-functional requirements.
For example, if a change involves replacing a data transfer protocol
to one that is more data intensive, overall system performance may
be degraded.

One approach for dealing with non-functional requirements is to
convert them into one or more functional requirements [16]. For
example, a requirement stating that “no unauthorised person
should be allowed access to the data” may be broken down into the
more tangible requirements “a user must log into the system using a
password” and “the user’s identity must be verified against the login
subsystem upon data access.” Not all non-functional requirements
can be converted in this way, however, which means that changes to
them still have system-wide impact. Unfortunately, most impact
analysis techniques deal exclusively with changes that can be initially
pinpointed to a specific component, class or the like.

Lam and Shankararaman stress the distinction between functional
impact analysis and quality impact analysis, i.e. impact analysis for
functional and quality requirements, respectively [64]. They suggest
the use of Quality Function Deployment (QFD) for dealing with
changes to both functional and non-functional requirements. In
QFD, a matrix connecting customer requirements with design fea-
tures is constructed. A change to a requirement can be mapped to
design features through the QFD matrix.

Cleland-Huang et al. accomplish performance-related impact analy-
sis through event-based traceability [26]. In their approach, require-
ments are interconnected as event publishers to subscribing
performance models. Whenever a change to a requirement is pro-
52 Non-Functional Requirements

Impact Analysis
posed, the relevant performance models are re-calculated. The
resulting impact analysis is subsequently compared to constraints in
the requirements specification. If several requirements are linked to
the same performance model, they will all be verified against the
impact analysis.

The impact of non-functional requirements is commonly dealt with
in software architecture evaluation. Bosch has created a software
architecture design method with a strong focus on non-functional
requirements [16]. In the method, an initially functional architecture
is progressively transformed until it is capable of meeting all non-
functional requirements posed on the system. Parts of the method
lend themselves well to impact analysis, since they deal with the
challenge of assessing the often system-wide impact that non-func-
tional requirements have. For most operational non-functional
attributes (for example performance and reliability), a profile con-
sisting of usage scenarios, describing typical uses of the system-to-
be is created. The scenarios within the profile are assigned relative
weights, in accordance with their frequency or probable occurrence.
In scenario-based assessment, an impact analysis is performed by
assessing the architectural impact of each scenario in the profile.
For performance, the impact may be expressed as execution time,
for example. Based on the impact and the relative weights of the
scenarios, it is possible to calculate overall values (for example,
throughput and execution time) for the quality attribute being eval-
uated. These values can be compared to the non-functional require-
ments corresponding to the quality attribute, in order to see
whether they are met or not. Furthermore, they serve as constraints
on the extent to which non-functional requirements can change
before an architectural reorganisation is necessary. Also, should a
functional requirement change, it is possible to incorporate the
change in a speculative architecture, re-calculate the impact of the
scenarios in the scenario profile, and see whether the non-func-
tional requirements are still met or not.

2.4 Impact Analysis Metrics

Metrics are useful in impact analysis for various reasons. They can,
for example, be used to measure and quantify change caused by a
new or changed requirement at the point of the impact analysis
activity. Metrics can also be used to evaluate the impact analysis
process itself once the changes have been implemented. This is
illustrated in Figure 2.4, in which two measure points are depicted;
Impact Analysis Metrics 53

Impact Analysis
one after the requirements phase has ended and design is about to
start, and one when testing has been completed. Using these meas-
ure points, one can capture the predicted impact (the first point)
and compare it to the actual impact (the second point). This kind of
measurement is crucial for being able to do an analysis and learn
from experiences in order to continuously improve the impact anal-
ysis capability. The figure is simplified and illustrates a learning cycle
based on a waterfall-like model. As discussed earlier, impact analysis
can be used throughout the life cycle in order to analyse new
requirements and the measure points can be applied accordingly:
whenever a prediction has been conducted and whenever an imple-
mentation has been completed.

2.4.1 Metrics for Quantifying Change Impact
Metrics for quantifying change impact are based on the SLOs that
are predicted to be changed as an effect of new or changed require-
ments. In addition, indicators of how severe the change is can be
used. Such measures of the predicted impact can be used to esti-
mate the cost of a proposed change or a new requirement. The
more requirements and other SLOs that are affected, the more
widespread they are and the more complex the proposed change is,
the more expensive the new or changed requirement will be.
Requirements that are costly in this sense but provide little value
can, for example, be filtered out for the benefit of requirements that
provide more value but to a smaller cost.

Change impact can be measured based on the set of requirements
that is affected by the change. For example, the number of require-
ments affected by a change can be counted based on this set. The
affected requirements’ complexity often determines how severe the
change is and can be measured in various ways. Examples are the

Figure 2.4 Measuring Impact Using Metrics
54 Impact Analysis Metrics

Impact Analysis
size of each requirement in terms of function points and the
dependencies of each requirement on other requirements. For other
SLOs, the metrics are similar. For architecture and design, measures
of impact include the number of affected components, the number
of affected classes or modules, and number of affected methods or
functions. For source code, low-level items such as affected lines of
code can be measured and the level of complexity for components,
classes, and methods can be measured using standard metrics such
as cyclomatic complexity and regular object-oriented metrics.

In determining how severe or costly a change is, it is useful to
define the impact factor. Lindvall defined the impact factors in
Table 2.1 to measure the impact of a suggested change [73]. The
impact factor is based on empirical findings in which it was deter-
mined that changes to different types of SLOs can be used as an
indicator of the extent of the change. The higher the impact factor,
the more severe the change. For example, changes that do not
affect any other type of SLO but the design object model are rela-
tively limited in scope. Changes that affect the use-case model are
instead likely to require changes that are related to the fundamentals
of the system and are therefore larger in scope. In addition, changes
to the use-case model most likely also involve changes of all other
SLOs making this kind of changes even more severe.

2.4.2 Metrics for Evaluation of Impact Analysis
Bohner and Arnold proposed a number of metrics with their intro-
duction of impact sets [14]. These metrics are relations between the

Table 2.1 Impact Factors

Factor Impact Description

M1 Change of the design
object model.

These changes regard the real or physical description of the
system and may generate change in the software architecture
about the size of the change in the model.

M2 Change of the analy-
sis object model.

These changes regard the ideal or logical description of the
system. A small change here may generate change in the soft-
ware architecture larger than the change in this model.

M3 Change the domain
object model.

These changes regard the vocabulary needed in the system. A
small change here may generate large change in the software
architecture.

M4 Change the use-case
model.

These changes require additions and deletions to the use-case
model. Small changes here may require large change in the
software architecture.
Impact Analysis Metrics 55

Impact Analysis
cardinalities of the impact sets, and can be seen as indicators of the
effectiveness of the impact analysis approach employed (# denotes
the cardinality of the set):

1. #SIS / #EIS, i.e. the number of SLOs initially thought to be
affected over the number of SLOs estimated to be affected (pri-
mary change and secondary change). A ratio close to 1 is
desired, as it indicates that the impact is restricted to the SLOs
in SIS. A ratio much less than 1 indicates that many SLOs are
targeted for indirect impact, which means that it will be time-
consuming to check them.

2. #EIS / #System, i.e. the number of SLOs estimated to be
affected over the number of SLOs in the system. The desired
ratio is much less than 1, as it indicates that the changes are
restricted to a small part of the system. A ratio close to 1 would
indicate either a faulty impact analysis approach or a system
with extreme ripple effects.

3. #EIS / #AIS, i.e. the number of SLOs estimated to be affected
over the number of SLOs actually affected. The desired ratio is
1, as it indicates that the impact was perfectly estimated. In real-
ity, it is likely that the ratio is smaller than 1, indicating that the
approach failed to estimate all impacts. Two special cases are if
AIS and EIS only partly overlap or do not overlap at all, which
also would indicate a failure of the impact analysis approach.

Fasolino and Visaggio also define metrics based on the cardinalities
of the impact sets [41]. They tie the metrics to properties and char-
acteristics of the impact analysis approach, as per the tree in Figure
2.5.

Adequacy is the ability of the impact analysis approach to estimate
the impact set. It is measured by means of the binary metric Inclu-

Figure 2.5 Tree of Impact Analysis Metrics
56 Impact Analysis Metrics

Impact Analysis
siveness, which is strictly defined to 1 if all SLOs in AIS also are in
EIS and 0 otherwise. Effectiveness is the ability of the approach to
provide beneficial results. It is refined into Ripple-sensitivity (the abil-
ity to identify ripple effects), Sharpness (the ability not to overesti-
mate the impact) and Adherence (the ability to estimate the correct
impact).

Ripple-sensitivity is measured by Amplification, which is defined as
(#EIS - #SIS) / #SIS, i.e. the ratio between the number of indi-
rectly impacted SLOs and the number of directly impacted SLOs.
This ratio should preferably not be much larger than 1, which
would indicate much more indirect impact than direct impact.
Sharpness is measured by ChangeRate, which is defined as #EIS /
#System. This is the same metric as the second of Arnold and
Bohner’s metrics presented previously. Adherence is measured by S-
Ratio, which is defined as #AIS / #EIS. S-Ratio is the converse of
the third of Arnold and Bohner’s metrics presented previously.

Lam and Shankararaman propose metrics that are not related to the
impact sets. These metrics are more loosely defined and lack conse-
quently recommended values [64]:

• Quality deviation, i.e. the difference in some quality attribute (for
example, performance) before and after the changes have been
implemented, or between actual and simulated values. A larger
than expected difference could indicate that the impact analysis
approach failed to identify all impact.

• Defect count, i.e. the number of defects that arise after the changes
have been implemented. A large number of defects could indi-
cate that some impact was overlooked by the impact analysis
approach.

• Dependency count, i.e. the number of requirements that depend on
a particular requirement. Requirements with high dependency
count should be carefully examined when being subjected to
change.

Lindvall defined and used metrics in a study at Ericsson in order to
answer a number of questions related to the result (prediction) of
impact analysis as conducted in a commercial software project and
performed by the project developers as part of the regular project
work [73]. The study was based on impact analysis conducted in the
requirements phase, as Figure 2.4 indicates, and the term require-
ments-driven impact analysis was coined to capture this fact. The results
from the impact analysis was used by the Ericsson project to esti-
Impact Analysis Metrics 57

Impact Analysis
mate implementation cost and to select requirements for imple-
mentation based on the estimated cost versus perceived benefit.
The study first looked at the collected set of requirements’ pre-
dicted and actual impact by answering the following questions:
“How good was the prediction of the change caused by new and
changed requirements in terms of predicting the number of C++
classes to be changed?” and “How good was this prediction in
terms of predicting which classes to be changed?” The last question
was broken down into the two sub questions: “Were changed
classes predicted?” and “Were the predicted classes changed?”

There were a total of 136 C++ classes in the software system. 30 of
these were predicted to be changed. The analysis of the source code
edits showed that 94 classes were actually changed. Thus, only
31.0% (30 / 94) of the number of changed classes were predicted to
be changed.

In order to analyse the data further, the classes were divided into
the two groups Predictive group and Actual group. In addition, each
group was divided into two subgroups: Unchanged and Changed. The
136 classes were distributed among these four groups as shown in
Table 2.2.

Cell A represents the 42 classes that were not predicted to change
and that also remained unchanged. The prediction was correct as
these classes were predicted to remain unchanged, which also
turned out to be true. The prediction was implicit as these classes
were indirectly identified – they resulted as a side effect as comple-
ment of predicting changed classes.

Cell B represents the zero classes that were predicted to change, but
actually remained unchanged. A large number here would indicate a
large deviation from the prediction.

Table 2.2 Predicted vs. Actual Changes

Predictive group

Unchanged Changed

Actual
group

Unchanged
A: 42
(30.9%)

B: 0
(0.0%)

A+B: 42
(30.9%)

Changed
C: 64
(47.1%)

D: 30
(22.1%)

C+D: 94
(69.1%)

A+C: 106
(77.9%)

B+D: 30
(22.1%)

N: 136
(100.0%)
58 Impact Analysis Metrics

Impact Analysis
Cell C represents the 64 classes that were not predicted to change,
but turned out to be changed after all. As with cell B, a large
number in this cell indicates a large deviation from the prediction.

Cell D, finally, represents the 30 classes that were predicted to be
changed and were, in fact, changed. This is a correct prediction. A
large number in this cell indicates a good prediction.

There are several ways to analyse the goodness of the prediction.
One way is to calculate the percentage of correct predictions, which
was (42 + 30) / 136 = 52.9%. Thus, the prediction was correct in
about half of the cases. Another way is to use Cohen’s Kappa value,
which measures the agreement between two groups ranging from
-1.0 to 1.0. The -1.0 figure means total discompliance between the
two groups, 1.0 means total compliance and 0.0 means that the
result is no better than pure chance [28]. The kappa value in this
case is 0.22, which indicates a fair prediction. We refer to [74] for
full details on the Kappa calculations for the example. A third way
to evaluate the prediction is to compare the number of classes pre-
dicted to be changed with the number of classes actually changed.
The number of classes predicted to be changed in this case turned
out to be largely underpredicted by a factor of 3. Thus, only about
one third of the set of changed classes was identified. It is, however,
worth noticing that all of the classes that were predicted to be
changed were in fact changed.

The study then analysed the predicted and actual impact of each
requirement by answering similar questions for each requirement.
The requirements and the classes that were affected by these
requirements were organised in the following manner: For each
requirement, the set of classes predicted to be changed, the set of
changed classes and the intersection of the two sets, i.e. classes that
were both predicted and changed. In addition, the sets of classes
that were predicted but not changed and the set of classes that were
changed but not predicted were identified.

The analysis showed that in almost all cases, there was an underpre-
diction in terms of number of classes. In summary, the analysis
showed that the number of changed classes divided by the number
of predicted classes ranged from 1.0 to 7.0. Thus, up to 7 times
more classes than predicted were actually changed.

Estimating cost in requirements selection is often based on the pre-
diction like it was in the Ericsson case, which means that require-
Impact Analysis Metrics 59

Impact Analysis
ments predicted to cause change in only a few entities are regarded
as less expensive, while requirements predicted to cause change in
many entities are regarded as more expensive. This makes the rank-
order of requirements selection equal to a requirements list sorted
by the number of items predicted. By comparing the relative order
based on the number of predicted classes with the relative order
based on the number of actually changed classes, it was possible to
judge the goodness of the prediction from yet another point of
view. In summary, the analysis on the requirements level showed
that a majority of the requirements were underpredicted. It was also
clear that it is relatively common that some classes predicted for
one requirement are not changed because of this particular require-
ment, but because of some other requirement. This is probably
because the developers were not required to implement the
changed requirements exactly as was specified in the implementa-
tion proposal resulting from the impact analysis. The analysis of the
order of requirements based on number of predicted classes
showed that the order was not kept entirely intact; some require-
ments that were predicted to be small proved to have a large change
impact, and vice versa.

In order to try to understand the requirements-driven impact analy-
sis process and how to improve it, an analysis of the various charac-
teristics of changed and unchanged classes was undertaken. One
such characteristic was size, and the questions were: “Were large
classes changed?”, “Were large classes predicted?” and “Were large
classes predicted compared to changed classes?”

The analysis indicated that large classes were changed, while small
classes remained unchanged. The analysis also indicated that large
classes were predicted to change, which leads to the conclusion that
class size may be one of the ingredients used by developers, maybe
unconsciously, when searching for candidates for a new or changed
requirement.

2.5 Tool Support

The complexity of the change management process makes it neces-
sary to use some sort of tool support [75, 111]. A change manage-
ment tool can be used to manage requirements and other SLOs,
manage change requests, link change requests to requirements and
other SLOs, and monitor the impact analysis progress. A simple
database or spreadsheet tool may be used as basic change manage-
60 Tool Support

Impact Analysis
ment support, but still requires a considerable amount of manual
work, which eventually may lead to inconsistencies in the change
management data. If the tool support is not an integral part of the
change management process, there is always a risk that it will not be
used properly. A change management system that is not used to its
full extent cannot provide proper support to the process.

A problem with many change management tools is that they are
restricted to working with change and impact analysis on the
requirements level. Ideally, a change management tool would sup-
port impact analysis on requirements, design, source code, test
cases and so on. However, that would require the integration of
requirement management tools, design tools and development envi-
ronments into one tool or tool set. In a requirements catalogue for
requirements management tools, Hoffmann et al. list both traceabil-
ity and tool integration as high-priority requirements, and analysis
functions as a mid-priority requirement, confirming the importance
of these features [53].

In a survey of the features of 29 requirements management tools
supporting traceability, we could only find nine tools for which it
was explicitly stated on their web sites that they supported traceabil-
ity between requirements and other SLOs, such as design elements,
test cases and code. Depending on the verbosity and quality of the
available information, this may not be an exact figure. However, it
indicates that in many cases it is necessary to use several different
tools to manage traceability and perform impact analysis, which can
be problematic depending on the degree of integration between the
tools.

There are tools that extract dependency information from existing
system representations, for example source code and object models,
but the task of such tools is nonetheless difficult and often requires
manual work [36]. Higher-level representations may be too coarse,
and source code may have hidden dependencies, for instance due to
late binding. Egyed, for example, proposes an approach for extract-
ing dependencies primarily for source code [36]. Input to the
approach is a set of test scenarios and some hypothesised traces
that link SLOs to scenarios. The approach then calculates the foot-
prints of the scenarios, i.e. the source code lines they cover, and
based on footprints and hypothesised traces generates the remain-
ing traces. The approach can also be used when no source code
exists, for example by simulating the system or hypothesising
around the footprints of the scenarios.
Tool Support 61

Impact Analysis
Tools that deal with source code are mostly used in software main-
tenance contexts, and are obviously of limited use within the devel-
opment project. Natt och Dag et al. have studied automatic
similarity analysis as a means to find duplicate requirements in mar-
ket-driven development [82]. In addition to the original field of
application, they suggest that their technique can be used to identify
dependency relationships between requirements, for example that
two requirements have an “or” relation, or that several require-
ments deal with similar functionality.

Tools that aid in performing impact analysis can be synonymous
with the underlying methods. Methods that rely on traceability anal-
ysis are well suited for inclusion in tools that try to predict indirect
impact. For example, Fasolino and Visaggio present ANALYST, a
tool that assesses impact in dependency-based models [41]. Lee et
al. present another tool, ChAT, that calculates ripple effects caused
by a change to the system [68]. Many such tools are commonly
proof-of-concept tools, constructed to show or support a particular
algorithm or methodology. What is lacking is the integration into
mainstream change management tools.

2.6 Future of Impact Analysis

Most strategies for impact analysis work under the assumption that
changes only affect functionality. It is thus more difficult to assess
the impact of changes to non-functional requirements, or changes
where non-functional requirements are indirectly affected. Some
work on this topic exists (see [26] and [64]), but a stronger focus on
impact analysis for non-functional requirements is needed.

As we have pointed out, impact analysis is mostly referred to in
software maintenance contexts. We have argued that impact analysis
is an essential activity also in requirements engineering contexts,
and that standard impact analysis strategies apply in most cases (for
example, traceability approaches are commonly exercised for
requirements). There is still, however, a need for more research
focusing on the requirements engineering aspects of impact analy-
sis, for example how to relate requirements to other SLOs and how
to perform change propagation in this context.

Most automatable strategies for impact analysis assume complete
models and full traceability information. Since it is common in
industry to encounter models that are not updated and traceability
62 Future of Impact Analysis

Impact Analysis
information that is only partial, there is a need for more robust
impact analysis strategies that can work with partial information.
Egyed has proposed one such approach [36].

Existing tools for impact analysis are often proof-of-concept tools,
or work only with limited impact analysis problems, such as the
extraction of dependencies from system representations. Some
mainstream requirements management tools incorporate impact
analysis of not only requirements, but also design, code and test, but
far from all. Full-scale impact analysis must be an integral part of
requirement management tools in order for change to be dealt with
properly.

Impact analysis needs to be adapted to the types of systems that
become increasingly common today, such as web applications and
COTS software. Web applications, for example, often consist of
standalone components that connect to a central repository, such as
a database. Thus, there are few control dependencies between com-
ponents, and instead rich webs of data dependencies towards and
within the central repository. The fact that such repositories can be
shared among several distinct systems introduces interoperability
dependencies that impact analysis strategies especially tailored for
these technologies must address in order to be effective.

2.7 Summary

Impact analysis is an important part of requirements engineering
since changes to software often are initiated by changes to the
requirements. As the development process becomes less and less
waterfall-like and more of new and changed requirements can be
expected throughout the development process, impact analysis
becomes an integral part of every phase in software development.
In some sense, impact analysis has been performed for a very long
time, albeit not necessarily using that term and not necessarily fully
resolving the problem of accurately determining the effect of a pro-
posed change. The need for software practitioners to determine
what to change in order to implement requirement changes has
always been present. Classical methods and strategies to conduct
impact analysis are dependency analysis, traceability analysis and
slicing. Early impact analysis work focused on applying such meth-
ods and strategies onto source code in order to conduct program
slicing and determine ripple effects for code changes. The matura-
tion of software engineering among software organisations has,
Summary 63

Impact Analysis
however, led to a need to understand how change requests affect
other SLOs than source code, including requirements, and the same
methods and strategies have been applied. Typical methods and
strategies of today are based on analysing traceability or dependency
information, utilising slicing techniques, consulting design specifica-
tions and other documentation, and interviewing knowledgeable
developers. Interviewing knowledgeable developers is probably the
most common way to acquire information about likely effects of
new or changed requirements. Metrics are useful and important in
impact analysis for various reasons. Metrics can, for example, be
used to measure and quantify change caused by a new or changed
requirement at the point of the impact analysis activity. Metrics can
also be used to evaluate the impact analysis process itself once the
changes have been implemented. In determining how severe or
costly a change is, it is useful to determine the impact factor as it
indicates the likely extent of a change to a certain type of SLO. To
summarise: Impact analysis is a crucial activity supporting require-
ments engineering. The results from impact analysis feed into many
activities including estimation of requirements’ cost and prioritisa-
tion of requirements. These activities feed directly into project plan-
ning, making impact analysis a central activity in a successful
project.
64 Summary

C H A P T E R

3
Understanding the Importance of
Roles in Architecture-Related
Process Improvement – A Case
Study

Intl. Conference on Product Focused Software Process Improvement, 2005

Per Jönsson and Claes Wohlin

Constraining factors such as time and budget make software devel-
opment a challenging task for many organisations – a challenge that
is leveraged by the fact that software plays an increasingly large role
in society. In order to handle the challenge and to turn the software
industry into an engineering discipline, it is necessary to put the
processes in focus [124]. The goal of Software Process Improve-
ment (SPI) is to create an infrastructure that enables effective meth-
ods and practices to be incorporated into the business [1].

The success of SPI depends on a number of factors, one of which is
user (staff) involvement [94]. It has been reported that process
users’ attitudes often are disregarded in quality initiatives, and that
putting them in the spotlight when designing SPI is an important
step towards success [1, 51]. To involve process users and to regard
65

Understanding the Importance of Roles in Architecture-Related Process Improvement – A Case Study
their attitudes can be far from trivial, because process users do nei-
ther necessarily have the same viewpoints, nor the same priorities.
This chapter presents a case study in which we examined the view-
points and priorities of process users at Ericsson, to pinpoint differ-
ences and similarities among roles. We selected the role perspective
since a number of publications report that role can be a discriminat-
ing factor when it comes to views in SPI [5, 10, 27, 29, 51, 58, 114]

Generic SPI frameworks, such as SEI’s IDEALSM [79], Quality
Improvement Paradigm (QIP) [7], and PROFES [92], all contain
two important ingredients: a characterisation (or assessment, or
appraisal) of the current process, and an improvement plan (or road-
map, or actions). The viewpoints of the process users are crucial in
the characterisation phase, because the more diverse they are, the
harder it becomes to form a baseline. Similarly, the priorities of the
process users are crucial in the planning phase, because the more
diverse they are, the harder it becomes to create a plan that satisfies
everyone.

The chapter is structured as follows. Section 3.1 outlines the
research setting and discusses architecture-related process improve-
ment. Section 3.2 addresses related work, while Section 3.3 explains
the design of the study as well as how the study was carried out.
The results are presented in Section 3.4, followed by a statistical
analysis in Section 3.5, a general discussion in Section 3.6 and finally
conclusions in Section 3.7.

3.1 Background and Research Setting

As stated in Chapter 1, Ericsson is one of the largest suppliers of
mobile systems in the world, and has as customers some of the
world’s largest mobile operators. The study was conducted at one of
Ericsson’s offices (hereafter referred to as the company), which at the
time had about 400 employees.

The objective of the study was to prepare improvement of the
architecture documentation process at the company by examining
process users’ viewpoints and priorities with respect to their roles.
By doing so, we were able to create an awareness of the need for
and scope of SPI. With “architecture documentation process”, we
refer to the process of documenting the software architecture and
keeping the documentation up-to-date. This is not necessarily an
explicitly defined process of its own, but could, for example, be part
66 Background and Research Setting

Understanding the Importance of Roles in Architecture-Related Process Improvement – A Case Study
of the development process. Our tool for examining viewpoints
and priorities was a questionnaire with quantitative questions about
architecture documentation.

In advance, we expected to see both diverse viewpoints and diverse
priorities among process users regarding the architecture documen-
tation process. The reason for this was mainly that architecture doc-
umentation typically has different stakeholders, such as project
managers, product managers, designers and testers, most of whom
have different needs and knowledge. Both needs and knowledge are
factors that tend to affect how you view things and what you think
is important. This is one of the reasons that software architectures
should be designed and documented using multiple architectural
views [27]. Since the organisational role most likely affects both
needs and knowledge, we anticipated differences in both view-
points and priorities.

We apply statistical methods to test for differences among roles. For
this purpose, the following statistical hypotheses are evaluated
(independently for viewpoints and priorities):

• Null hypothesis, H0: There are no differences among roles.
• Alternative hypothesis, HA: There is a difference among roles.

This study is justified by two main reasons. First, it adds to existing
research about similarities and non-similarities among roles, which
is necessary to better understand the impact of roles in various
research contexts. Second, it provides an example of empirical SPI
research targeted at industry, with the focus on creating an under-
standing of process users’ viewpoints and priorities.

3.1.1 Architecture-Related Process Improvement
As mentioned, we explored process users’ viewpoints and opinions
in order to prepare for improvement of the architecture documen-
tation process. However, the questions posed in the questionnaire
were more germane to the product (i.e., the architecture documen-
tation) than to the process (i.e., documenting the architecture). Our
reason for posing questions about the product rather than the proc-
ess was that we considered the product to be more tangible to the
process users than the process itself. In other words, we expected
that we would get more well-founded answers by asking about the
product. Furthermore, we argue that the quality of the documenta-
tion reflects the quality of the process of documenting it as much
Background and Research Setting 67

Understanding the Importance of Roles in Architecture-Related Process Improvement – A Case Study
as, for example, the quality of requirements reflects the quality of
the process of eliciting, formulating and managing them.

Since the software architecture of a system is a fundamental build-
ing block that has many stakeholders within the organisation,
changes to architecture-related processes can have great organisa-
tional impact, including new workflows, altered mindsets and
changed team structures. This further establishes the need for
investigating differences in viewpoints and priorities among process
users.

3.2 Related Work

For an overview of the Software Process Improvement area, we
recommend Zahran’s book, which covers the topic from a practi-
tioner’s perspective [124]. Zahran discusses the general challenges
of SPI, such as management commitment, buy-in from process
users etc. There are some publications (see below) that discuss dif-
ferences among roles in various contexts. In general, they show that
there are differences among roles in some situations, but not in oth-
ers. It all depends on what you evaluate.

Baddoo and Hall have studied de-motivators in SPI among soft-
ware practitioners, in order to understand what hinders SPI success
[5]. Dividing the practitioners into developers, project managers
and senior managers, they find both common and unique de-moti-
vators. They conclude that differences in de-motivators for SPI
often are related to the roles that software practitioners have.

Berander and Wohlin have looked at agreement on SPI issues
among traditional software development roles [10]. Their findings
indicate that there is agreement among roles about communication
of processes, but disagreement about, for example, importance of
improvement and urgency of problems.

Conradi and Dybå have investigated how the use of formal routines
for transferring knowledge and experience is perceived by develop-
ers and managers [29]. Their results show that there is a difference
between the two groups; developers are more sceptical to formal
routines, while managers take them for granted.

Hall and Wilson have studied views of quality among software prac-
titioners in UK companies, with focus on two groups – managers
68 Related Work

Understanding the Importance of Roles in Architecture-Related Process Improvement – A Case Study
and developers [51]. According to their findings, developers and
managers differ in that they have different primary quality concerns,
although the differences are not conflicting.

Karlström et al. present a method for aggregating viewpoints of
process users in an organisation [58]. The essence of the method is
to let process users rate factors believed to affect the SPI goal
according to their viewpoints. The authors divide the process users
into two groups, managers and engineers, based on their roles, and
conclude that the groups differ on some factors, but not on all.

In [114], Svahnberg has studied how participants in an architecture
assessment form groups when prioritising quality attributes and
assessing architecture candidates. Svahnberg concludes that the role
of the participant is the main influence when prioritising quality
attributes, but not when assessing architecture candidates.

Questionnaires are often used as instruments in Software Process
Assessment, for example the SEI Maturity Questionnaire for
CMM-based assessment and the BOOTSTRAP questionnaire
[124]. Klappholz et al. have developed an assessment tool, ATSE,
for assessing attitude towards and knowledge of the development
process [60]. While questionnaires in process assessment com-
monly measure the effectiveness of an improvement programme,
our questionnaire was rather a part of the preparations for an
upcoming improvement programme. In other words, it was not a
substitute for a process assessment questionnaire.

3.3 Design

In this section, we outline the design of the study. We describe the
contents of the questionnaire, the sampling and response rate, the
technique for treating missing data, roles in the study and finally
threats to the validity of the study.

3.3.1 Questionnaire Design
In order to assess process users’ viewpoints and priorities, we
designed a questionnaire consisting of six questions collecting data
about the current state of the architecture documentation (the infra-
structure questions), and one question about how to improve the archi-
tecture documentation (the improvement question). There was also a
question asking about the process user’s organisational role.
Design 69

Understanding the Importance of Roles in Architecture-Related Process Improvement – A Case Study
The infrastructure questions, which we believed would yield differ-
ent results for different roles, were formulated as follows (words in
bold are keywords used for identifying the questions later):

1. “In your opinion, to what extent does architecture documenta-
tion exist?”

2. “How would you, in general, describe the form of the architec-
ture documentation?”

3. “How would you judge the quality of the documentation?”
4. “In your opinion, to what extent is architecture documentation

updated as the system evolves?”
5. “In your opinion, how well does the architecture documenta-

tion match the actual architecture?”
6. “Imagine being a newly hired employee – how easy would it be

to gain insight into the system using the current architecture
documentation?”

For these questions, five point Likert scales (i.e., with five response
options for each question) were used. Such scales are ordinal and
are often used for collecting degrees of agreement [98]. For almost
all questions, a low score indicated a negative response (little, low,
seldom), while a high score indicated a positive response (much,
high, often). The scale for the second question was slightly different
from the others, though, in that a low score indicated text-orienta-
tion, while a high score indicated model-orientation.

The improvement question was formulated as follows: “If architec-
ture documentation was to be improved in some way, what do you
think is the most important purpose it could serve in addition to
the present ones?” Five predefined purposes were given: change
impact analysis, risk analysis, cost analysis, driver for development
and system insight. In case these were not satisfactory, the respond-
ent could choose “other” and suggest a new purpose as the most
important one.

3.3.2 Sampling and Response Rate
The recipients of the questionnaire were selected using systematic
sampling [98]. We obtained a list of all employees from an employee
directory, and selected every second person on the list for the study.
The reason for this was that another study was performed simulta-
neously and the employees were shared evenly between the studies.
70 Design

Understanding the Importance of Roles in Architecture-Related Process Improvement – A Case Study
The recipients of the questionnaire were given two weeks to fill it
out and return the answers. The recipients were also allowed to
reject the questionnaire if they had no time available or if they felt
that it was not relevant for them. The two-week deadline seemed
reasonable even for people with heavy workload. After one week, a
reminder was sent to those who had not already responded or
explicitly rejected the first distribution.

The population consisted of the 400 persons employed at the com-
pany. The selection of employees described above resulted in a sam-
ple of around 200 persons. While some responses were discarded
because they contained invalid answers to some questions, around a
third of the sample, or 65 persons, did give valid responses to the
questionnaire. The other two thirds explicitly rejected the question-
naire, chose not to respond or were unable to respond before the
deadline. Not all 65 respondents did answer all the questions, how-
ever. Because of that, some respondents had to be discarded, while
some could be kept by imputing missing data in their answers, as
described in the next section. As a result, the data presented in this
chapter are based on answers from 58 respondents.

In order to verify that the respondents were representative for the
population, we examined the departmental distribution. We could
not use the role distribution, since the roles were known only for
the respondents, not the entire population. We saw that there were
only minor differences in departmental distribution between the
respondents and the population, and consequently considered the
respondents being representative for the population. In this con-
text, it should also be noted that the roles are in many cases closely
linked to departments (i.e., testers come from the test department
and so forth). While the respondent drop-out is a threat to the
external validity of the study, as discussed in Section 3.3.5, we con-
sider the absolute size of the sample to be satisfactory.

3.3.3 Treatment of Missing Data
As implied in the previous section, some of the initial respondents
did not answer all the questions discussed in this chapter. To be able
to keep as many data points as possible, missing answers for those
respondents that had answered at least five of the seven questions
were imputed. The respondents that had answered only four ques-
tions or less were discarded, leaving 40 complete cases and 18 cases
to impute. Only the complete cases were used as basis for the impu-
tation.
Design 71

Understanding the Importance of Roles in Architecture-Related Process Improvement – A Case Study
The answers were imputed using the hot-deck k-Nearest Neigh-
bour imputation technique, which imputes values based on the k
cases most similar to the target case [33]. We have found this impu-
tation technique to be suitable for Likert data (see Chapter 6). The
similarity metric used was the Euclidean distance calculated only for
the infrastructure questions (the improvement question was disre-
garded because of its nominal scale). As a replacement for a missing
data value, the median of the k nearest cases was used for the infra-
structure questions, while the mode was used for the improvement
question. Based on a recommendation by Duda and Hart [33] (see
also the supporting k-NN evaluation in Chapter 6), the value of k
was chosen to 7, which is approximately the square root of the
number of complete cases (k = 6, while closer, would be unsuitable
when calculating the median). In the few cases when the mode was
not unique at k = 7, k was increased to 8 instead.

3.3.4 Roles
The organisational roles of the respondents are rather specific for
the company. Thus, in order to increase the generalisability of the
results, and the replicability of the study, we have mapped the
organisational roles to traditional software engineering roles. We
mean that these represent the parts of software development nor-
mally discussed in software engineering literature [110]. To ensure
the relevance of the resulting role list, the mapping was carried out
together with a company-appointed specialist. The resulting roles,
with abbreviated form and number of respondents within paren-
theses, are:

• Designer (D, 6) – creates system descriptions that the program-
mer can base the implementation on [89].

• Programmer (P, 8) – writes code that implements the require-
ments [89].

• Tester (T, 13) – catches faults that the programmer overlooks
[89].

• Functional manager (FM, 5) – responsible for staffing, organ-
ising, and executing project tasks within their functional areas
[85].

• Project manager (PRJ, 8) – plans, directs and integrates the
work efforts of participants to achieve project goals [85].

• Product manager (PRD, 4) – responsible for product related
planning activities [72].
72 Design

Understanding the Importance of Roles in Architecture-Related Process Improvement – A Case Study
• Architect (A, 11) – makes decisions, coordinates, manages
dependencies, negotiates requirements, recommends technol-
ogy etc. [42, 85]

• Process group member (PGM, 3) – facilitates the definition,
maintenance and improvement of the software processes used
by the organisation [56].

The process group member role is derived from Humphrey’s Soft-
ware Engineering Process Group (SEPG) [56]. Persons who work
with infrastructure, which is seen as a kind of process support, are
also included in this role. The architect role stems from an organisa-
tional role with responsibility for the system as a whole and its sur-
vival in the product chain. Architecture work is a part of this role,
but implementation and low-level design is not.

3.3.5 Validity Threats
In this section, the most important threats to the validity of the
study are presented together with measures that have been taken to
avoid them.

Construct Validity. Construct validity is concerned with the
design of the main study instrument (i.e., the questionnaire) and
that it measures what it is intended to measure [98]. A threat to con-
struct validity is that not all respondents may have had the same
perception of what architecture is. In order to avoid that, a com-
mon definition of the term “software architecture” was given in the
questionnaire, and each respondent was given the opportunity to
disagree and give his or her own definition.

To counter the threat that some questions would be easier to
answer for persons with certain roles, the questionnaire was
checked by a screening group at the company. Because several roles
(product manager, project manager, architect, designer and pro-
grammer) were represented by the persons in the screening group,
there should be little bias towards any particular role. The screening
group also verified that the role list in the questionnaire did contain
relevant organisational roles.

External Validity. External validity is concerned with the gener-
alisability of the results [122]. The main threat to external validity is
that differences (and non-differences) found among roles could be
true only for the studied company. Since we are dealing with just
Design 73

Understanding the Importance of Roles in Architecture-Related Process Improvement – A Case Study
one case, this threat cannot be ruled out. There are, however, two
circumstances that we believe make our findings interesting in a
wider context. First, the studied company operates, as stated, on the
world market with several large, international customers. As such, it
should be considered a strong industrial case. Second, by mapping
the organisational roles to traditional software engineering roles,
generalisability to a wider software engineering community, and
greater replicability of the study, has been strived for.

Another threat to external validity is the fact that we cannot guaran-
tee that the distribution of roles for the respondents equals the dis-
tribution of roles in the population. Since we do not know the roles
of all the persons in the population, we cannot avoid this threat. We
have tried to ensure that the respondents are representative of the
population by looking at the departmental distribution instead.

Internal Validity. Internal validity is concerned with the rela-
tionship between the treatment (i.e., the questionnaire) and the out-
come (i.e., the results collected) [122]. The imputation of data
described in Section 3.3.3 is a threat, since it essentially is fabrica-
tion of data. However, of the incomplete cases, almost all had only
one question out of seven unanswered. Only one incomplete case
had two questions unanswered. Furthermore, we have evaluated the
chosen imputation technique and seen that it performs well with
the type of data used in this study (see Chapter 6).

Conclusion Validity. Conclusion validity is concerned with the
statistical relationship between the treatment and the outcome
[122]. A threat to conclusion validity is that we, in the data analysis,
use the Kruskal-Wallis test when the number of ties in the data is
large (see Section 3.5). To address this, we apply an additional Chi-
Square test to validate the outcome of the Kruskal-Wallis test. It
should also be noted that the Kruskal-Wallis test includes correc-
tion for ties. Thus, the effect of this threat should be minimal.

Another threat to conclusion validity is that we use the Chi-Square
test when the expected frequencies in the cells are relatively small.
While this may mean that the outcome is not reliable, Siegel and
Castellan acknowledge that for a large number of cells, the expected
frequencies should be allowed to be small [106]. In our case, the
number of cells is nearly 50, which they hint should be enough to
allow small expected frequencies. Thus, we believe that the effect of
this threat should be small.
74 Design

Understanding the Importance of Roles in Architecture-Related Process Improvement – A Case Study
3.4 Results

In this section, we present the results on the questionnaire that was
distributed at the company. We show the distribution of answers for
the infrastructure questions as well as for the improvement ques-
tion. The results are analysed statistically in Section 3.5.

3.4.1 Infrastructure Questions
Figure 3.1 shows, for each of the infrastructure questions, how the
answers are distributed on the response options. The exact phrasing
of the questions can be found in Section 3.3.1. The question about
to what extent documentation exists is special in the sense that the
respondents made use of all five response options. As response
options 3 and 4 account for 50% or more of the answers from all
roles, the agreement among roles can be seen as large. Internally,
architects (A) and designers (D) disagree more than the other roles,
whereas on the whole, there is a consensus that documentation
exists to a large extent.

For the question about documentation form, it is apparent that
response option 2 dominates the answers (i.e., accounts for 50% or
more) from all roles except the architects, meaning that most roles
consider the documentation to be more text-oriented than model-
oriented.

The answers to the question about how well the documentation
matches the system indicate that all roles consider the match to be
medium to good (as response options 3 and 4 dominate the
answers). Again, architects have greater internal disagreement than
the other roles. Also, functional managers (FM) and product man-
agers (PRD) have a slightly more positive view than the other roles.

The question about quality of documentation has the narrowest dis-
tribution of answers of all the infrastructure questions. The
respondents only made use of three of the response options in
total, while most roles only made use of two, namely 3 and 4.
Hence, the roles seem to agree that the documentation quality is
medium or slightly above medium. The designers have a somewhat
more positive view than other roles, whereas testers and program-
mers stand out because some of them consider the quality to be
below medium.
Results 75

Understanding the Importance of Roles in Architecture-Related Process Improvement – A Case Study
In the answers to the question about to what extent documentation
is updated, there seem to be a general consensus that the update
frequency is high, with architects and functional managers having
the most positive views. For this question, project managers (PRJ)
have larger internal disagreement than the other roles.

Finally, for the question about how easy it is to gain insight into the
system using the documentation, response option 2 dominates the
answers from all roles except designers (where it is tied with

Figure 3.1 Infrastructure Questions – Answer Distribution (y axis) per
Role (x axis)
76 Results

Understanding the Importance of Roles in Architecture-Related Process Improvement – A Case Study
response option 3) and functional managers. This means that there
is agreement among the roles also for this question. Here, both pro-
grammers (P) and testers (T) have more internal disagreement than
the other roles.

3.4.2 Improvement Question
When answering the improvement question, the respondents could
choose “other” and add a new purpose if the predefined ones were
not satisfactory (see Section 3.3.1). However, only one of the
respondents chose to do this. We did not ask the other respondents
to reconsider their answers with this additional purpose in mind for
two reasons: (1) we estimated the added value to be minimal, and
(2) we anticipated that it would be difficult to get new answers from
all respondents. Consequently, only the predefined purposes are
included in the analysis.

Table 3.1 shows the results from the improvement question. An
ocular inspection reveals a couple of interesting differences (shown
in the table as shaded cells with bold text). First, system insight (SI)
was frequently specified by all roles except the product managers.
Second, risk analysis (RA) and in particular cost analysis (CA) were
more frequent for the product manager role than for any other role.
In fact, risk analysis was not specified at all by most roles except
product managers and testers. Third, change impact analysis (IA)
was considerably more frequent for designers than for any other
role.

Table 3.1 Most Important Improvement – Answer Distribution Among
Roles

Role IA RA CA DD SI

Architect 27.3 0.0 9.1 27.3 36.4

Designer 66.7 0.0 0.0 0.0 33.3

Process group member 33.3 0.0 0.0 0.0 66.7

Functional manager 20.0 0.0 0.0 0.0 60.0

Project manager 0.0 0.0 12.5 37.5 50.0

Programmer 25.0 0.0 0.0 25.0 50.0

Tester 0.0 7.7 15.4 0.0 76.9

Product manager 0.0 25.0 50.0 25.0 0.0
Results 77

Understanding the Importance of Roles in Architecture-Related Process Improvement – A Case Study
3.5 Analysis

In this section, the results from the questionnaire are analysed sta-
tistically. The null hypothesis stated in Section 3.1 is tested at signif-
icance level . Two statistical tests are used, the Kruskal-
Wallis test and the Chi-Square test [106]. We use these tests because
we consider the data, being on ordinal and nominal scales, respec-
tively, unsuitable for parametric tests. Both tests are applied to the
infrastructure questions, whereas only Chi-Square is applied to the
improvement question, because of its nominal scale.

3.5.1 Infrastructure Questions
The statistical significances of the results for the infrastructure
questions are first calculated using the Kruskal-Wallis test. As can
be seen in the second and third columns in Table 3.2, the results
from the infrastructure questions are not significant at the selected
significance level, as p exceeds 0.05 for all questions. This outcome
aligns well with the results from the infrastructure questions pre-
sented in Section 3.4.1, where it can be seen that there is much
agreement among the roles.

Since the Kruskal-Wallis test should be used with care when the
number of ties in the data is large (as in our case) [46], we use the
Chi-Square test for the infrastructure questions as well. The out-
come of this test, presented in the rightmost three columns in Table
3.2, further confirms that there are no statistical significances in the
results. This means that the null hypothesis cannot be rejected for
the infrastructure questions.

Table 3.2 Kruskal-Wallis (left) and Chi-Square (right) Outcome, All
Questions

Question H (K-W) p (df=7) X2 df p

Exists 5.02 0.66 31.04 28 0.32

Form 4.38 0.73 12.46 14 0.57

Quality 3.62 0.82 16.41 14 0.29

Update 9.83 0.20 24.14 21 0.29

Match 5.88 0.55 17.56 21 0.68

Insight 4.12 0.77 14.91 21 0.83

Improve N/A N/A 47.71 28 0.046

α 0.05=
78 Analysis

Understanding the Importance of Roles in Architecture-Related Process Improvement – A Case Study
3.5.2 Improvement Question
Because the data collected from the improvement question are
nominal, we apply only the Chi-Square test and not the Kruskal-
Wallis test. The outcome, presented in the bottom row in Table 3.2,
shows that there is a statistically significant difference among the
roles, as p is less than 0.05. Thus, the null hypothesis can be rejected
in favour of the alternative hypothesis for the improvement ques-
tion.

The overall Chi-Square does not pinpoint the differences. In other
words, it does not identify exactly which roles that differ from oth-
ers. To find the exact locations of the differences, the significances
of all the partitions in the data are calculated. Each partition repre-
sents one pair of role and purpose (i.e., most important improve-
ment), and has one degree of freedom. Simply speaking, the
partition significance for a particular role-purpose pair is calculated
based on the score of the pair and all scores to the left and above it.
Consequently, the a priori order of the rows and columns affects
the outcome of the partition significances [106]. We deal with this
problem by performing an exhaustive calculation where all possible
permutations of row and column order are evaluated. We argue that
the pairs of role and purpose that are significant in more than 50%
of the permutations can be considered significant overall. Table 3.3
shows the resulting pairs of role and purpose.

It can be seen that product managers differ from other roles in that
they more frequently chose risk analysis and cost analysis. Moreo-
ver, designers differ in that they more frequently chose change
impact analysis than other roles. We see that this aligns well with
some of the observations made in Section 3.4.2.

3.6 Discussion

In Section 3.4.1, we have seen that there seems to be much agree-
ment among the roles regarding the infrastructure questions. This is

Table 3.3 Significant Role-Purpose Pairs

Role Purpose Sig. frequency (%)

Product manager Risk analysis 53.5

Product manager Cost analysis 54.7

Designer Change impact analysis 59.1
Discussion 79

Understanding the Importance of Roles in Architecture-Related Process Improvement – A Case Study
supported by the statistical analysis in the previous section, which
shows that there are no statistical differences among the roles for
these questions. In other words, the respondents have fairly similar
viewpoints. Our interpretation of this is that the architecture docu-
mentation process is well established at the company and that eve-
ryone has a joint understanding of how the architecture is
documented and what the state of the documentation is. This is an
important starting point when doing architecture-related process
improvement, because it makes it easier to obtain a baseline of the
current process. If the viewpoints had differed among roles, it
could be difficult to find a common baseline.

Looking at individual roles, the results in Section 3.4.1 shows that
some roles have more internal disagreement than other roles. This
is true for architects and designers on the question about to what
extent architecture documentation exists, and also for architects on
the question about to what extent the documentation matches the
system. The reason that there is disagreement within both roles may
be that people with these roles work closer to the documentation
and are therefore more sensitive to variations in its state. Moreover,
internal disagreement is also noticeable for project managers on the
question about to what extent the documentation is updated. A rea-
son may be that project managers are more dependent on docu-
mentation update frequency when working with time and resource
allocation. Finally, programmers and testers have larger internal dis-
agreement than other roles for the question about how easy it is to
gain insight into the system through the documentation. An expla-
nation for this can be that these roles use the documentation for
gaining system insight more than the other roles, and are therefore
more sensitive to its ability to provide insight.

The results in Section 3.4.2 clearly show differences among the
roles for the improvement question. System insight is the top
improvement for all roles except designers and product managers.
For these roles, change impact analysis and cost analysis are most
important, respectively. The product manager role also stands out
because it is the only role with strong focus on risk and cost analy-
sis, and no focus at all on system insight. The reason that the prod-
uct manager role differs on several accounts may be that this role
has more market focus and less development focus than the other
roles. The reason that the designer role differs may be that design-
ers depend on the information in the architecture documentation
more than other roles, and that this requires a strong focus on
80 Discussion

Understanding the Importance of Roles in Architecture-Related Process Improvement – A Case Study
change impact analysis in order to handle ever-changing require-
ments.

The statistical analysis of the improvement question supports the
differences among the roles outlined above. More specifically,
designers’ focus on change impact analysis and product managers’
focus on cost and risk analysis are statistically significant. The fact
that product managers do not consider system insight an important
improvement is not significant, however. The existence of differ-
ences among the roles for the improvement question indicates that
the priorities of respondents are different. This means that it
becomes more difficult to create an improvement plan that satisfies
all process users, since the plan needs to have a wider scope.

3.7 Conclusions

In this chapter, we have presented results from a case study where
we used a questionnaire for investigating process users’ viewpoints
and priorities regarding the architecture documentation process.
The study was conducted at an office of Ericsson, with the objec-
tive of preparing improvement of the architecture documentation
process at the company by examining process users’ viewpoints and
priorities with respect to their roles.

A large number of employees were asked questions about the cur-
rent state of the architecture documentation and possible improve-
ments of it. As explained in Section 3.1.1, we asked about the
product (architecture documentation) rather than the process in
order to have more tangible questions. The process users were
divided into groups according to their software engineering roles.
In order to analyse the results statistically, the following hypotheses
were evaluated:

• H0: There are no differences among roles.
• HA: There is a difference among roles.

The two types of questions (current state and improvement) in the
questionnaire were analysed separately. When analysing the results
from the questions about the current state of the process, the null
hypothesis could not be rejected. Our interpretation of this is that
the company has succeeded in spreading knowledge about the
process to the process users. However, some roles have larger inter-
nal disagreement compared to other roles for some of the question.
Conclusions 81

Understanding the Importance of Roles in Architecture-Related Process Improvement – A Case Study
This indicates that there may be underlying factors, other than role,
that affect viewpoints.

When analysing the results from the improvement question, on the
other hand, the null hypothesis could be rejected in favour of the
alternative hypothesis. By performing a more in-depth statistical
test and investigating the results from the improvement question
directly, we found the following:

• System insight is not considered important to improve by the
product managers. It is, however, the most important improve-
ment for all other roles except the designers.

• Cost analysis and risk analysis are significantly more important
to improve for product managers than for other roles. The rea-
son may be a stronger market focus for this role than for the
other roles.

• Change impact analysis is significantly more important to
improve for designers than for other roles. The reason may be
that designers use the documentation more than other roles
when determining change impact.

Initially, we expected differences among roles both for viewpoints
and priorities, since stakeholders of architecture documentation
often are considered to have different needs and knowledge. Our
expectations were however only fulfilled for priorities, as these
clearly were different among the roles. It could be argued that it is
“common knowledge” that priorities differ, which is why our
expectations were set as they were. However, it remains difficult to
foresee exactly how roles differ, which is important to know in
process improvement. Furthermore, we had expected larger differ-
ences than were actually found. In any case, the fact that view-
points, contrary to our expectations, did not differ while priorities
did, leads us to conclude the following:

• It is important to cover process users’ viewpoints and priorities
in process improvement work, because they may not coincide
with the prevalent expectations.

• Further research should investigate in which situations roles are
likely to differ and in which they are likely to be similar.
82 Conclusions

C H A P T E R

4
Understanding Impact Analysis: An
Empirical Study to Capture
Knowledge on Different
Organisational Levels

Intl. Conference on Software Engineering and Knowledge Engineering, 2005
(submitted)

Per Jönsson and Claes Wohlin

Change impact analysis (IA) is a crucial part of change management
and requirements engineering (RE), as all software are exposed to
changing requirements. Bohner and Arnold define impact analysis
as “...identifying the potential consequences of a change, or estimat-
ing what needs to modified to accomplish a change.” [14]

Research about impact analysis is commonly found in the field of
software maintenance (see Section 1.2.2 in Chapter 1), although IA
doubtlessly plays an important role in the entire product cycle. For
example, Lindvall coined requirements-driven impact analysis to denote
the activity of identifying the impact of new requirements on an
existing system [73].
83

Understanding Impact Analysis: An Empirical Study to Capture Knowledge on Different Organisational
Levels
The gross of IA research concerns the development of methods
and algorithms for supporting and automating the analysis, or the
adaptation of existing methods in new contexts. To our knowledge,
there is little research about more non-technical aspects of the sub-
ject, such as process and organisational aspects. In our experience,
IA is, as a part of the change management process, heavily depend-
ent on organisational support and stakeholder views.

In this chapter, we present an empirical study of the views of IA on
different organisational levels. In exploring the uses (application
areas) and issues of IA at a software development company, we
identified three levels with different foci: one with technical focus,
one with resource focus and one with product focus. Looking at
management science, we found that these levels mapped well to the
decision-making model originally defined by Anthony (see, for
example, [4] or [84]), where decisions are categorised as operative, tac-
tical or strategic.

In order to understand how potential issues and uses associated
with IA are seen on the three organisational levels, we interviewed
18 employees at the company mentioned above, in their roles as
industrial experts. Our hypothesis is that people on different organ-
isational levels see IA differently, and consequently have little
awareness of issues and uses on other levels.

Gathering knowledge is an important step towards being able to
overcome differences. Therefore, our contribution does not only lie
in the study of an organisational aspect of IA, but also in the sys-
tematic method for collecting, extracting and prioritising knowledge
pertaining to issues and uses of IA.

The chapter is structured as follows. Section 4.1 covers related
work. Section 4.2 describes the design of the study, whereas Section
4.3 details how the study was carried out. Section 4.4 presents
results, which are subsequently analysed and discussed in Section
4.5. Finally, conclusions are drawn in Section 4.6.

4.1 Related Work

Aurum and Wohlin tie RE activities to decision-making models,
arguing that RE is a decision-intensive process [4]. They suggest
that studying decision-making within RE helps organisations struc-
ture their RE decisions better and, ultimately, produce software
84 Related Work

Understanding Impact Analysis: An Empirical Study to Capture Knowledge on Different Organisational
Levels
with higher quality. We mean that the same argument holds for IA,
due to the strong connection between IA and RE.

Several researchers report on differences between managers and
engineers in the context of software process improvement (SPI),
for example concerning views of quality [51], use of formal routines
to transfer knowledge and experience [29] and how they rate factors
affecting an SPI goal [58]. These examples demonstrate the rele-
vance in studying different organisational levels.

Some uses of IA are mentioned in the literature, for example esti-
mating resource needs, assessing system impact, weighing change
proposals against each other and finding the overlap of parallel
changes [14, 108]. Issues are mentioned as well, for example lack of
automation and tools, insufficient traceability, documentation that
is not updated, inconsistent models and high time-consumption
[14, 27]. In this chapter, we explicitly focus on both uses and issues.

4.2 Method

This section describes our research setting, introduces the three
organisational levels and presents our method for carrying out the
study. The method consists of three main steps: (1) interviews with
employees, (2) results triangulation and filtering, and (3) prioritisa-
tion of the results.

4.2.1 Research Setting
The study was conducted at Ericsson, whose organisation can be
characterised as a matrix organisation, where functional areas and
projects are separated [85]. Whenever a project is launched, project
managers negotiate with functional managers in order to borrow
resources for a limited period of time. A matrix organisation allows
for a balanced utilisation of resources and fosters exchange of
knowledge and experience between workers belonging to the same
functional area. It may, however, also induce conflict due to the fact
that workers belong both to a functional organisation and a project
organisation at the same time, and consequently have two different
managers.

While the study was conducted at a specific company, the popula-
tion we wish to generalise to is industrial software development
experts in general rather than just within the company.
Method 85

Understanding Impact Analysis: An Empirical Study to Capture Knowledge on Different Organisational
Levels
4.2.2 Organisational Levels
As mentioned earlier, the three organisational levels we identified
map well to the decision-making model defined by Anthony. The
model differentiates between decisions at three levels as follows
[84]:

• Strategic decisions have typically large scope, large impact and
long-term perspective. They concern organisational or product-
related goals and strategies.

• Tactical decisions concern planning of time and resources to
reach strategic goals, and are often made by middle manage-
ment. They have smaller scope and impact, and shorter time
horizon, than strategic decisions.

• Operative decisions are made when realising the project accord-
ing to the plan, and are often of technical nature.

4.2.3 Interview Design
The interview instrument contained seven main topics, of which
each was associated with one or more open questions. The instru-
ment in its entirety can be obtained from the authors by request. In
this chapter, we focus on two of the main topics: potential issues
and uses. The questions for these topics were as follows (translated
from Swedish):

• Issues: Which potential issues are associated with performing
impact analysis?

• Uses: Which potential uses does impact analysis have?

Note that we asked about potential issues and uses, rather than
actual ones. The reason for this was to avoid limiting the generalisa-
bility of the results by extracting company-specific issues and uses
only.

The remaining topics were more qualitative in their nature, and
were intended both for providing a context for and for collecting
hidden or implicit knowledge about the issues and uses. We did not
intend for the participants to prioritise during the interviews, as we
expected each of them to see only a subset of the possible issues
and uses.
86 Method

Understanding Impact Analysis: An Empirical Study to Capture Knowledge on Different Organisational
Levels
In order to ensure the appropriateness and clarity of the questions,
the interview instrument was developed in close cooperation with
the company where the study was conducted.

4.2.4 Results Triangulation and Filtering
A triangulation and filtering scheme was designed in order to get as
complete lists as possible of both issues and uses. The scheme
involved three information sources:

• the lists generated in the interviews,
• qualitative information from the interviews, and
• information from the literature.

By using information from all interview topics, it would be possible
to extract both explicit and implicit knowledge about issues and
uses, and by collecting information from the literature, we would be
able to add issues and uses of which the participants were not
aware.

The filtering part was intended to remove redundancies and incon-
sistencies in the lists by merging similar items together, and by dis-
carding items that were not directly related to IA.

4.2.5 Prioritisation
In order to get prioritised lists of both issues and uses, a post-test
was designed as a follow-up to the interviews. In the post-test, the
participants should state the distribution of their decisions on the
decision levels. Based on this, it would be possible to deduce their
organisational levels. For example, a participant making mostly stra-
tegic decisions would be regarded as belonging to the strategic
organisational level. This scheme was used since, as Aurum and
Wohlin point out [4], Anthony’s decision levels are not entirely
orthogonal.

For uses, the participants should prioritise such that the use with
the highest priority would be the one most relevant to the organisa-
tion if it was realised. For issues, the participants should prioritise
such that the issue with the highest priority would be the one most
critical to the organisation if it existed.
Method 87

Understanding Impact Analysis: An Empirical Study to Capture Knowledge on Different Organisational
Levels
We chose the organisational perspective based on our initial
hypothesis. However, we were also interested in knowing if the par-
ticipants would prioritise differently from an individual perspective.
Trying to maintain a balance between collecting much information
and keeping the post-test short, we added the individual perspective
to the prioritisation of issues only.

To account for the problem that the first prioritisation of issues
could affect the second (due to maturation issues), a two group
design was used for the post-test, such that half of the participants
should prioritise from the organisational perspective first, and the
other half from the individual perspective first.

When prioritising both issues and uses, the participants should
assign weights to the items, such that the weights should sum to
1 000. Thus, each weight could be seen as a certain percentage of
the total importance (i.e., criticality for issues and relevance for
uses) of all items. This is also known as the hundred-dollar method
[70]. Advantages of this method are that it is easy to learn and use,
and that the resulting weights are on a ratio scale.

4.3 Operation

In this section, we describe relevant parts of the operation of the
study based on the design presented in the previous section.

4.3.1 Organisational Levels
We did not know the organisational levels of the participants prior
to the interviews, since we chose not to map roles to levels directly.
During the interview round, we let a manager estimate the levels of
the participants, based on the descriptions of Anthony’s decision
levels as provided by Ngo-The and Ruhe [84]. The estimated levels
were used to determine when it was likely that enough interviews
had been performed to cover all levels. It was in the interest of the
company to keep the number of interviews down to save resources.

The actual level used for a participant was determined by looking at
the estimated and reported (i.e., from the post-test) levels, and, if
necessary, by matching the participant’s work tasks to Anthony’s
decision levels. As an example, consider a person with mismatching
reported and estimated levels. If there is another person with the
same role but matching levels, use his or her level for the first per-
88 Operation

Understanding Impact Analysis: An Empirical Study to Capture Knowledge on Different Organisational
Levels
son. Otherwise, deduce the level by matching the first person’s
work tasks to the decision levels.

It was necessary to match work tasks to the decision levels for four
of the participants. To increase the certainty in the level assignment,
we successfully validated the levels of the remaining participants by
matching their work tasks to the decision levels as well.

4.3.2 Interviews
A pilot interview was conducted at the company in order to meas-
ure the interview time and find discrepancies, if any, in the inter-
view instrument. Since it resulted in only minor modifications to
the interview instrument, the pilot was included in the analysis.

18 interviews were conducted, including the pilot, in the course of
one month. The participants were sampled using convenience sam-
pling [98], which in practise means that they were selected based on
accessibility and recommendations from people at the company. We
sampled based on convenience for two main reasons. First, we did
not know prior to the interview which organisational level a person
belonged to, and could consequently not sample based on that. Sec-
ond, we argued that a person would be more committed to partici-
pate if he or she had been recommended by someone else.

The interviews were semi-structured, meaning that it was not nec-
essary to follow the predefined question order strictly, and that the
wording of questions was not seen as crucial for the outcome of the
interviews [98]. The participant could speak rather freely, but the
interviewer made sure that all questions were answered in one way
or another.

The participants were asked if they would accept receiving and
answering a post-test where they should prioritise both issues and
uses. This was done in order to prepare the participants and
increase their commitment towards the post-test.

A great variety of roles were covered in the interviews, including
developer, tester, technical coordinator, manager (functional, prod-
uct and project) and system architect.
Operation 89

Understanding Impact Analysis: An Empirical Study to Capture Knowledge on Different Organisational
Levels
4.3.3 Prioritisation
Based on the complete lists of issues and uses, we constructed a
post-test, as described in Section 4.2.5. The purpose of the post-test
was to let the participants prioritise issues (from two different per-
spectives) and uses. To avoid maturation effects in the prioritisation
of issues, we divided the participants into two groups based on their
estimated organisational levels. Persons on each level were split at
random between the two groups.

We required that the participants should specify a unique (non-tied)
share for the level of their principal decisions. This way, we could
deduce a non-ambiguous organisational level.

Since we were interested in potential issues and uses only, we asked
the participants to prioritise without regard to actual issues and
uses. In other words, we wanted to avoid priorities biased towards
actual issues and uses.

4.4 Results

The mapping of participants to the organisational levels (described
in Section 4.3.1) resulted in eight participants in the operative level,
five in the tactical level and five in the strategic level.

The interviews resulted in 18 uses after irrelevant uses were
removed and similar uses were merged together. These were subse-
quently combined with 11 uses found in the literature, which, due
to overlap, resulted in 20 uses in total. For issues, there were 25
coming from the interview data. We found six issues mentioned in
the literature, but these were already among the 25. Thus, the result-
ing list contained 25 issues in total.

For brevity, we do not show all issues and uses here. The list below
contains only the issues (prefix i) and uses (prefix u) that are rele-
vant for the analysis (see Section 4.5). Lists of all issues and uses can
be found in the end of this chapter.

• i1: Hard to get resources for performing IA
• i2: Lack of time for performing IA
• i3: System impact is underestimated or overlooked
• i4: Unclear change requests
• i6: Analyses are incomplete or delayed
90 Results

Understanding Impact Analysis: An Empirical Study to Capture Knowledge on Different Organisational
Levels
• i8: Analyses are too coarse or uncertain
• i14: Affected parties are overlooked
• i15: Analyses are performed by the wrong persons
• i16: Interest-based change request decisions
• i19: Not possible to see change request outcome
• i22: Cheap, short-term solutions win over good, long-term solu-

tions
• i23: High levels specify solutions with too much detail
• i24: Hardware and protocol dependencies are difficult to handle

for late change requests
• i25: Missing relevant structure and documentation to support

the analysis
• u1: Planning the project with respect to time and cost
• u2: Determining cost versus benefit
• u3: Deciding whether to accept or reject the change
• u6: Understanding technical and market consequences of

including or not including the change
• u8: Understanding the proposed change
• u13: Assessing system impact
• u14: Obtaining a new or changed requirements baseline
• u20: Revealing synergies and conflicts between change propos-

als

4.4.1 Threats to Validity
In this section, the most important threats to the validity of the
study are presented and discussed.

External validity is concerned with the generalisability of the results
[122]. The small sample size and the fact that we used convenience
sampling are threats to this type of validity. Nevertheless, as the par-
ticipants were selected based on recommendations, we believe they
were good representatives of their respective organisational levels.
Furthermore, the fact that we focused on potential issues and uses
rather than actual ones should increase the external validity. Also,
the participants covered all uses but two and all issues from the lit-
erature, which indicates that their views of IA were not company-
specific.
Results 91

Understanding Impact Analysis: An Empirical Study to Capture Knowledge on Different Organisational
Levels
Construct validity is concerned with the design of the main study
instrument and that it measures what it is intended to measure [98].
A threat to this type of validity is that the participants may not have
had the desired mindset when prioritising items. As stated in Sec-
tion 4.3.3, we asked the participants to prioritise as if neither issues
nor uses currently were present, but we could not verify if they
adhered to our request.

Internal validity is concerned with the relationship between the
treatment and the outcome [122]. The assignment of participants to
organisational levels is a threat to this type of validity. We tried to
minimise the threat by basing the assignment on several informa-
tion sources (see Section 4.3.1). The use of an external source
(matching work tasks to decision levels) also strengthens the exter-
nal validity.

4.5 Analysis and Discussion

This section describes two separate data analyses, one qualitative
and one quantitative (statistical). We also comment briefly on the
most interesting results.

4.5.1 Qualitative Analysis
In the qualitative analysis, we studied two aspects of the prioritised
lists of potential issues and uses. First, we looked at the top five
placements (which could include more than five items due to tied
priorities) for each organisational level, in order to see if there was
agreement on the most important items among the levels. Table 4.1
shows the top five placements for issues from an individual per-
spective (left), issues from an organisational perspective (middle)
and uses (right). Top issues and uses common for two or more lev-
els are displayed in bold text. It is clear that there was much agree-
ment on the most important issues (regardless of perspective) and
uses. Note that no single issue was considered important by all
three levels, while two uses were (u1 and u3). Moreover, the two
issue perspectives differed somewhat. For example, issue i4 (unclear
change requests) was seen as the most critical issue by the operative
level from an individual perspective, but was not among the top five
from an organisational perspective.

Second, we compared the top five placements in each level with the
bottom five in the other levels. The intention was to find items that
92 Analysis and Discussion

Understanding Impact Analysis: An Empirical Study to Capture Knowledge on Different Organisational
Levels
were considered important by one level but unimportant by another
level. None of the uses matched this criterion, and only a few issues
from both perspectives did. This concurs with the observation that
there was much agreement among the levels. Table 4.2 shows the
ranks of the issues for each level, with negative ranks counting from
the end. For example, issue i16 (interest-based change request deci-
sions) had the fourth highest priority in the operative level, but the
fourth lowest in the tactical level. In the strategic level, it had nei-
ther a top five nor bottom five placement (empty cell).

4.5.2 Quantitative Analysis
In the quantitative analysis, we tested each issue and use for depar-
ture from normality by using the Shapiro-Wilk test for normality.
The test showed that the data in general did not have a normal dis-
tribution. Therefore, we used the non-parametric Kruskal-Wallis
test for further analysis. The Kruskal-Wallis test is a non-parametric
alternative to ANOVA, and should be used when there are more
than two independent groups [106]. At a significance level of 0.05,
the test showed the following:

Table 4.1 Top Five Placements for Issues and Uses

Issues, ind. Issues, org. Uses

O
p

er
at

iv
e

T
ac

ti
ca

l

St
ra

te
gi

c

O
p

er
at

iv
e

T
ac

ti
ca

l

St
ra

te
gi

c

O
p

er
at

iv
e

T
ac

ti
ca

l

St
ra

te
gi

c

i4 i24 i15 i3 i14 i6 u3 u3 u1

i22 i14 i1 i22 i3 i1/
i15/
i23

u8 u8 u3

i14 i3/
i1/
i19

i3 i14 i1 u13 u1 u14

i15 i2 i16 i4 i24/
i25

u2 u6,
u20

u6

i8 i6 i15 i6 u1 u2

Table 4.2 Top Five vs. Bottom Five Issues

Perspective Issue Operative Tactical Strategic

Organisational i16 4 -4

Organisational i25 -5 5

Individual i19 -2 3 -1
Analysis and Discussion 93

Understanding Impact Analysis: An Empirical Study to Capture Knowledge on Different Organisational
Levels
• There were neither significant differences among the three
organisational levels for uses nor issues from an organisational
perspective.

• There were significant differences among the levels for two of
the issues from an individual perspective. These are displayed in
Table 4.3.

Outliers were not removed due to the relatively small sample size
and the fact that there were many items to prioritise. We did, how-
ever, verify that the outliers for issues i4 and i19 were not responsi-
ble for the significant differences.

Figure 4.1 shows box plots for issues i4 and i19 (from an individual
perspective). As can be seen, there was a larger spread in the opera-
tive level for issue i4 than for the other levels. Similarly, the spread
in the tactical level for issue i19 was larger than for the other levels.
This reflects the fact that the majority of the weights given to these
two issues came from participants at the operative and tactical lev-
els, respectively.

4.5.3 Discussion
The two analyses both indicate that the participants, regardless of
organisational level, had a coherent view of what IA could (or
should) be used for. Top uses were planning the project with
respect to time and cost (u1), deciding whether to accept or reject
the change (u3) and understanding the proposed change (u8). We
had, however, expected assessing system impact (u13) to have a top
five placement as well.

Similarly, both analyses show that participants on different levels
saw different issues as critical (individual perspective), whereas on
the whole, the awareness of each other’s potential issues was large
(organisational perspective). We were surprised that issue i19 (not

Table 4.3 Kruskal-Wallis for Issues i4 and i19

Issue H Sig.

i4 6.934 0.031

i19 9.530 0.009
94 Analysis and Discussion

Understanding Impact Analysis: An Empirical Study to Capture Knowledge on Different Organisational
Levels
possible to see change request outcome) was only considered criti-
cal by the tactical level from an individual perspective.

4.6 Conclusions

In this chapter, we have presented an empirical study of views of
impact analysis (IA) at three different organisational levels: opera-
tive, tactical and strategic. In the study, we interviewed 18 employ-
ees, representing industrial experts, at a software development
company in order to understand how potential issues and uses of
IA are seen at the three levels.

The qualitative analysis shows that there was much agreement
among the levels for both issues and uses. In other words, people at
the different organisational levels seemed to view IA in the light of
what was important for all levels, not just their own. This means
that our initial hypothesis does not hold, as we expected the views
to diverge. The qualitative analysis does, however, also show that
there were minor differences among the levels with respect to
issues, regardless of whether the participants prioritised from an
individual or an organisational perspective. The statistical analysis
reveals some differences for issues as well, but only for the individ-
ual perspective. Unclear change requests (issue i4) was seen as more
critical by the operative level, which is reasonable given that people
at this level are the ones responsible for implementing changes. Not
possible to see change request outcome (issue i19) was seen as more
critical by the tactical level, which may be related to a need for the
ability to follow up estimates. The fact that there were some differ-

Figure 4.1 Box Plots for Issues i4 and i19, Individual Perspective

Operative Tactical Strategic

level

0

100

200

300

400

500

i4

Operative Tactical Strategic

level

0

50

100

150

200

250

300

i1
9

Conclusions 95

Understanding Impact Analysis: An Empirical Study to Capture Knowledge on Different Organisational
Levels
ences indicates that it is relevant to look at organisational levels
when studying IA. We suggest that Anthony’s decision-making
model is a good basis for the levels.

Finally, we want to emphasise the importance of studying the non-
technical aspects of IA in order to better understand how to use it
successfully in change management. Our systematic method for
extracting knowledge pertaining to potential issues and uses of IA
proved to be successful in terms of providing relevant data.

Issues and Uses, Complete Lists

Complete lists of issues and uses are shown below. Table 4.1 con-
tains all issues found during the interviews, and Table 4.2 contains
all uses.

Table 4.1 All Issues

Id Issue

i1 Hard to get resources for performing IA

i2 Lack of time for performing IA

i3 System impact is underestimated or overlooked

i4 Unclear change requests

i5
Responsibility and product/project balance are difficult in analy-
ses that span several systems

i6 Analyses are incomplete or delayed

i7 Analyses require much expertise and experience

i8 Analyses are too coarse or uncertain

i9 Difficult to handle conflicting and synergetic change requests

i10 Analyses are not prevented from being disregarded

i11 Existing traceability is manual and cumbersome

i12 Difficult to see trends and statistics for collective impact

i13 Tools for supporting the analysis are missing

i14 Affected parties are overlooked

i15 Analyses are performed by the wrong persons

i16 Interest-based change request decisions

i17 Missing requirements and baseline for early changes

i18 Analyses and change implementation evoke stress

i19 Not possible to see change request outcome
96 Conclusions

Understanding Impact Analysis: An Empirical Study to Capture Knowledge on Different Organisational
Levels
The following list shows all uses found during the interviews:

i20 Difficult to see status and updates for a change request

i21 No method can handle all levels of change complexity

i22 Cheap, short-term solutions win over good, long-term solutions

i23 High levels specify solutions with too much detail

i24
Hardware and protocol dependencies are difficult to handle for
late change requests

i25
Missing relevant structure and documentation to support the
analysis

Table 4.2 All Uses

Id Use

u1 Planning the project with respect to time and cost

u2 Determining cost versus benefit

u3 Deciding whether to accept or reject the change

u4 Identifying particularly change-prone system parts

u5 Identifying improvement potential for future releases

u6
Understanding technical and market consequences of including
or not including the change

u7 Measuring the quality of the basis for analyses

u8 Understanding the proposed change

u9 Identifying affected product releases

u10 Finding test impact to simplify regression testing

u11 Assessing the feasibility of a change request

u12 Synchronising deliverables for testing

u13 Assessing system impact

u14 Obtaining a new or changed requirements baseline

u15 Identifying trends and statistics for collective change impact

u16 Updating maintenance and support plans

u17 Supporting measurement of actual impact

u18 Avoiding side effects and guaranteeing system stability

u19 Prioritising among change requests

u20 Revealing synergies and conflicts between change proposals

Table 4.1 All Issues (Continued)

Id Issue
Conclusions 97

Understanding Impact Analysis: An Empirical Study to Capture Knowledge on Different Organisational
Levels
98 Conclusions

C H A P T E R

5
Semi-Automatic Impact Analysis
through Keyword-Based
Relationships – A Feasibility Study

To be submitted

Per Jönsson and Claes Wohlin

Software development is an engineering activity in which many dif-
ferent kinds of artefacts are produced, refined, used and validated.
These artefacts, such as requirements, architecture components,
classes, source files, test cases and documents, are intertwined in a
web of dependencies that can be complex even for small systems.
Traceability, the ability to trace dependencies between artefacts [95],
serves as a means to understand the web of dependencies and to
use it to perform various kinds of analysis, such as impact analysis.

In this chapter, we use Lindvall’s definition of impact analysis as
“the identification of the set of software entities that need to be
changed to implement a new requirement in an existing system.”
[73] Impact analysis is crucial both in software development, where
it is used to assess the impact of new requirements as well as
changes to requirements, and in software maintenance, where it is
used to assess the impact of changes made as parts of maintenance
99

Semi-Automatic Impact Analysis through Keyword-Based Relationships – A Feasibility Study
activities. Arnold and Bohner gathered in 1996 much of the impor-
tant research about impact analysis [14]. Later, Lindvall explored
requirements-driven impact analysis for object-oriented systems,
thereby focusing more on new requirements than on changing
requirements [73].

A common way of performing impact analysis is to examine
dependencies among development artefacts, both of the same type
and of different types. A restraining factor is, however, that depend-
encies among artefacts are not always properly documented. For
example, architecture and design models are sometimes only
coarsely connected to requirements, thereby decreasing the preci-
sion of impact analysis and making it difficult to verify that the sys-
tem fully implements all requirements. One possible way around
this problem is to identify dependencies among artefacts by exam-
ining sources that implicitly convey information about relation-
ships.

In this chapter, we present a feasibility study of a method for per-
forming semi-automatic impact analysis based on lexicographic
relationships between requirements and architecture component
descriptions1. The method is intended to be used in software evolu-
tion, where systems have multiple succeeding releases, and each
release inherits the architecture, and corresponding documentation,
from the previous release.

Our hypothesis is that requirements and architecture component
descriptions are written using the same technical language, which
means that it is possible to estimate the impact of new requirements
by finding the components whose descriptions contain keywords
from the requirements. We do, however, not intend for the pro-
posed method to provide final impact estimates, but rather to act as
a decision-support system for impact analysis. Three usage scenar-
ios are presented in Section 5.1.

The method consists of four main steps: screen for relevance, identify
keywords, identify dependencies and examine results and estimate impact. The
dependency identification step is entirely automatic, and uses the
information retrieval technique Latent Semantic Indexing (LSI; also
known as Latent Semantic Analysis) for identifying lexicographic

1. The software architecture is the basic structure of a system, consisting of
software components and the relationships between them.
100

Semi-Automatic Impact Analysis through Keyword-Based Relationships – A Feasibility Study
relationships. LSI provides a way to group similar documents based
on their semantic (or conceptual) similarity rather than on their
word-by-word similarity [30]. By looking at word structures, the
technique has the ability to relate documents based on what they
should contain rather than on what they do contain.

Our method differs from standard applications of LSI, and from
approaches based on natural language processing (NLP), in that the
identification of keywords is performed manually by someone with
insight in the system and its domain. We argue that this is beneficial
because the human brain still outperforms computer-based systems
when it comes to understanding human language. Furthermore,
written software development artefacts typically contain technical
jargon and abbreviations, which may make them unsuitable for
NLP-based methods.

In order to evaluate the method, we have applied it to an industrial
software system with around 50 architecture components and
around 400 requirements. As the architecture of the system is
largely based on previous releases, its structure is established and
documented. We compare the outcome of the method with exist-
ing, albeit coarse, impact predictions made by the developers early
in the development phase. The comparison shows that the per-
formance of the method, in terms of correspondence with the
existing estimates, is not very impressive. There are, however, a
number of method parameters that can be adjusted, and we have
made a number of assumptions that may or may not be entirely
appropriate. Therefore, we end the chapter by discussing future
work of improving and further evaluating the method.

The chapter is structured as follows. Section 5.1 presents three
usage scenarios of the method. Section 5.2 outlines related work,
while Section 5.3 describes the steps of the method and the tech-
niques used by it. The evaluation is presented in Section 5.4 and
subsequently analysed in Section 5.5. Evaluation results and plans
for future work are discussed in Section 5.6. Finally, a short sum-
mary is given in Section 5.7.

5.1 Usage Scenarios

As stated, our main goal is to support software engineers in their
task of analysing the impact of new requirements. This is, however,
Usage Scenarios 101

Semi-Automatic Impact Analysis through Keyword-Based Relationships – A Feasibility Study
only one possible application of the method. We see three possible
scenarios:

• Scenario 1: Estimate the impact of a new requirement.
• Scenario 2: Estimate the impact of a change to a requirement.
• Scenario 3: Extract traceability of a legacy system.

The first scenario is the main scenario. When a new requirement
appears, one challenge from a requirements engineering point-of-
view is to make an early prediction of the impact of the require-
ment. Since several architecture components most likely need to
include or handle the new functionality, it is not trivial to estimate
the impact. During the implementation of the system, the develop-
ers can probably determine the impact with high accuracy, but
before the implementation has started, other stakeholders may need
more support when they are faced with the same task.

The second scenario is concerned with changes to requirements.
Here, the method will estimate the impact of a requirement after it
has been changed. By comparing this to the corresponding estimate
from before the change, the impact difference can be calculated.
The size of the impact difference may be an indicator of the scope
of the change, although a zero difference need not mean that the
architecture is unaffected; changes may still be necessary within the
components that already implement the functionality stated in the
requirement.

It should be noted that the method should not be seen as a replace-
ment for documented traceability; if it is documented where
requirements actually are implemented in the architecture, this
information should be used rather than anything else to accurately
determine change impact.

In the third scenario, the method is used to extract traceability from
an existing, already developed system. This may be useful, for
example, if the traceability has not been documented properly. If
the architecture component descriptions are updated in accordance
with the final architecture, the method should perform better than
in the previous scenarios, where they may still be under develop-
ment.
102 Usage Scenarios

Semi-Automatic Impact Analysis through Keyword-Based Relationships – A Feasibility Study
5.2 Related Work

Traceability and impact analysis are important in requirements engi-
neering, since both new and changing requirements are significant
causes for software change. When requirements change or new
requirements appear, adequate traceability can provide a fair under-
standing of how the system is built, and accordingly, how it should
be changed in the most optimal way. Traceability is a common
means for performing impact analysis, something that is discussed
more in detail in Chapter 2.

Lee provides a concise overview of NLP and the many inherent
problems it has to face [67]. Ryan argues that the role of NLP in
requirements engineering has been overstated, and that the belief
that computer systems should be able to fully comprehend require-
ments specifications written in natural language is unrealistic [101].
He concludes that the role of NLP in future software development
is one of supporting rather than one of replacing manually per-
formed tasks. This corresponds well to our intention of using the
proposed method as a decision-support system.

Natt och Dag et al. present a method for automatic similarity analy-
sis of requirements written in natural language, based on the same
underlying model as LSI [82, 83]. They observe that the method is
suitable for identifying both requirements duplicates and interde-
pendencies. While the method thus is promising, they emphasise
the fact that this type of automatic analysis should not be allowed to
replace human judgement, but should instead support it.

Etzkorn and Davis have studied source code comments and identi-
fiers in legacy object-oriented systems in order to support reuse
[40]. They state that source code comments are typically written in a
subset of the natural language used by the developers. This facili-
tates the parsing process, as the grammar tends to be simpler and
the vocabulary smaller, consisting of a limited set of words specific
for the system. Thus, our hypothesis that software development
artefacts are generally written in the same technical language seems
to be appropriate.

LSI was originally proposed by Deerwester et al. [30] as a method
for automatic indexing and information retrieval (see also the pre-
ceding paper by Furnas et al. [43]). The work presented in this
chapter was largely inspired by Marcus and Maletic, who have used
LSI to extract traceability between source code and documentation
Related Work 103

Semi-Automatic Impact Analysis through Keyword-Based Relationships – A Feasibility Study
[76]. Their approach is similar to ours, in that the words they use are
based on a subset of all words in the source code, more specifically
comment text and identifiers (e.g., variable names). They conclude
that LSI performs well, and that it requires less processing of the
source code, and thus less computation, than other information
retrieval methods.

5.3 Method

In this section, we begin by discussing natural language versus tech-
nical language, in order to shed some light on the challenges for our
method. Next, we describe fuzzy string matching, a technique for
matching strings without requiring total letter-by-letter similarity.
We also describe how LSI works. Finally, we present the steps of
our proposed method.

5.3.1 Natural vs. Technical Language
According to ANSI/IEEE Std 830-1984, requirements are often
written in natural language [3]. However, they also include, by
necessity, technical terms and abbreviations that relate to the
domain or system. Dressel means that technical language exposes
far more structure than does natural language, which implies that it
should be easier to understand and process [32]. In our effort to
find a method for automatic processing of the mix of natural lan-
guage and technical language found in requirements (as well as in
architecture component descriptions), we observed the following:

• Common stop words (i.e., words without normal semantic
meaning, such as FOR, OR and AND) can have significant techni-
cal meaning. For example, we have found the word ZERO in
some stop lists, while in the Microsoft Windows operating sys-
tem, this is probably a significant word in a requirement for the
WIRELESS ZERO CONFIGURATION service.

• Words that are different forms of the same stem may have sig-
nificantly different meaning, which means that stemming (i.e.
reducing a word to its stem) may not be a viable option. For
example, the Porter stemming algorithm (see, for example, [6]
or [90]) would reduce both ACCUMULATED and ACCUMULATOR
into ACCUMUL, whereas the two words may occur in require-
ments with completely different foci.

• Due to polysemy (i.e., the fact that many words have more than
one distinct meaning), a word may appear as both non-technical
104 Method

Semi-Automatic Impact Analysis through Keyword-Based Relationships – A Feasibility Study
and technical in different contexts. For example, NUMBER as in
NUMBER OF CALLS is likely less significant (for the meaning of a
requirement) than as in MOBILE PHONE NUMBER.

• Both requirements and architecture components often contain
technical abbreviations. These are particularly difficult to han-
dle, both as they may be hard to identify as words (because they
may contain non-word characters, such as punctuation), and as
they sometimes occur spelled out.

Based on these observations, we have made certain assumptions
regarding the processing of requirements and component descrip-
tions. These assumptions are detailed further on.

5.3.2 Fuzzy String Matching
Several factors prevent direct comparison of words in language-
based methods. One such factor has to do with word tenses, conju-
gation of verbs, singular and plural forms and so on. Usually, this is
solved through stemming of words. By comparing stems instead of
words, mismatches due to morphological variants of a word can be
avoided.

Another factor is that people may misspell, especially those who
write in another language than their native one. This is common in
global enterprises, such as the one that has developed the system we
use in the evaluation of the method.

One way of comparing words despite spelling mistakes is to employ
fuzzy string matching. In its simplest form, fuzzy string matching is
accomplished through the use of a string distance algorithm and a
threshold value. Two words with a distance below the threshold are
considered the same.

In our method, we use fuzzy string matching based on case-insensi-
tive edit distance to account for both spelling errors and morphologi-
cal variants. Edit distance is defined to be the minimum number of
deletions, insertions and substitutions required to transform one
word into another [107]. For example, the edit distance between
RECEIVE and RECIEVE is 2, as two substitutions (I for E and E for I)
are required to transform the former into the latter.

In other words, we do not use stemming in any form. Stemming is
highly language-dependent (the Porter stemming algorithm, for
Method 105

Semi-Automatic Impact Analysis through Keyword-Based Relationships – A Feasibility Study
example, does not even work properly with British English) and
does not take into account misspellings. As pointed out before, nor-
mal stemming rules for English may not perform satisfactory with
technical terms. Also, we are concerned that stemming may trans-
form abbreviations into words without meaning. Furthermore,
Berry et al. mention that LSI does not require stemming – if words
with the same stem are used together in a document, LSI will iden-
tify and make use of that pattern [12].

5.3.3 Latent Semantic Indexing
This section outlines LSI on the conceptual level. For mathematical
details and associated proofs, see, for example, [12].

LSI was introduced as a means for retrieving information from
documents based or their conceptual contents rather than solely on
the words contained within them [30]. The basic assumption is that
documents expose a structure that makes it possible to relate them
regardless of whether a term missing from a document is really
missing or should have been there as it is a natural part of the con-
ceptual contents of the document. As an example, consider two
documents describing the theory of general relativity in great detail,
whereas only one of them contains the word EINSTEIN. Now,
someone who searches for documents about Einstein would likely
consider both documents relevant for his or her query, not only the
one actually containing the sought name. Here, LSI would detect
that the two documents share a lot of words (related to the theory
of general relativity) and therefore are semantically close to each
other.

The starting point of LSI is a term-by-document (TBD) matrix, which
is a rectangular matrix associating terms with documents. Each row
corresponds to a specific term, and each column to a specific docu-
ment. The occurrence of a term in a document is marked in the
corresponding cell in the matrix.

In the general case, for example when the documents are web
pages, all content words in all documents must appear as terms in
the TBD matrix. Thus, it is necessary to extract all relevant terms
from the documents, which can be done by going through the doc-
uments and removing all stop words. Furthermore, it is customary
to remove words that occur in only one document (see, for exam-
ple, [12] or [35]), while Kolda suggests that this is a matter of choice
depending on the situation [62].
106 Method

Semi-Automatic Impact Analysis through Keyword-Based Relationships – A Feasibility Study
Each column in the TBD matrix is a representation of a document
as a vector with as many dimensions as there are terms (i.e., each
term occurrence is a vector coordinate). LSI uses by default a
method called Singular Value Decomposition (SVD; although others
are possible – see, for example, [62]), the purpose of which is to cal-
culate an approximate representation of the original TBD matrix
with fewer dimensions [12, 30, 65]. Basically, each document will be
represented by a vector of semantic concepts rather than terms.
The dimensional reduction means that vectors that initially are close
to each other (i.e., that represent similar documents) will be merged
together.

The raw outcome of SVD consists of three matrices, which
together represent the approximation of the original TBD matrix.
Based on these, it is possible to calculate the cosine coefficient of two
documents, which corresponds to the similarity of the documents,
ranging from a minimum of 0 to a maximum of 1 [24]. It is of
course also desirable to be able to calculate the similarity between a
search query and all documents. This can be done by considering
the query to be a pseudo-document, i.e. a document where only the
query terms occur. The pseudo-document is subsequently pro-
jected onto the less-dimensional representation of the TBD matrix,
and compared to other documents using the cosine coefficient [12].

Dumais discusses the use of term weighting, which is intended to
improve the results through the assignment of different weights to
terms depending on, for example, how many times they occur in a
document or across documents [34]. Terms that occur many times
in a document are likely more important than terms that occur few
times. Thus, terms can be assigned local weights proportional to their
respective frequencies within a document. Similarly, terms that
occur only in a few documents are likely more important than com-
mon terms that occur in many documents. Thus, terms can be
assigned global weights that are inversely proportional to their respec-
tive frequencies across documents.

Dumais mentions log weighting as a type of local weighting. With log
weighting, the logarithm of 1 plus the term frequency is used
instead of only the term frequency. The benefit of this is that large
differences in term frequencies are dampened [34].

Finally, smaller documents can be given more significance and
larger documents less through normalisation [62]. This is to prevent
large documents from dominating over small documents. The total
Method 107

Semi-Automatic Impact Analysis through Keyword-Based Relationships – A Feasibility Study
weight for a term is obtained by multiplying its local weight, its glo-
bal weight and its normalisation factor.

5.3.4 Method Introduction
In software development, written artefacts, whether they be
requirements, test cases or architecture component descriptions,
need to use the same language, or they will not be understood by all
stakeholders. Here, using the same language means essentially using
the same or similar words for describing relevant concepts. Our
basic hypothesis is that it is possible to identify the traceability that
exists due to lexicographic relationships between different kinds of
written artefacts, in this research requirements and architecture
component descriptions.

The impact of new requirements can be divided into direct and indi-
rect impact (the same argument holds for changed requirements).
Direct impact concerns, for example, parts of the system that must
be changed for it to include the new functionality. Indirect impact
concerns parts of the system that must be changed as a conse-
quence of the directly impacted parts being changed. From this
division of impact, it follows that it is not enough to look at rela-
tionships between requirements and component descriptions, but it
is also necessary to consider relationships between different com-
ponent descriptions. This motivates our choice of LSI for extract-
ing implicit traceability.

Our method uses LSI as its core component, but the TBD matrix is
not constructed exactly as described in the previous section. First,
instead of extracting all content words from the component
descriptions (the documents), keywords in the requirements are
manually identified and used as terms in the matrix. This is done for
the following reasons:

• Our main goal with the method is to be able to estimate the
impact of new requirements (see Section 5.1 for possible usage
scenarios). Thus, the words that convey the lexicographic rela-
tionships must necessarily exist in the requirements.

• We argue that the common language used for all written arte-
facts must be rooted in the requirements, as the requirements
dictate the intended function and use of the system.

• It allows us to disregard the language-dependent lexicographic
processing required to sort out words without semantic mean-
ing from the documents. This would be troublesome as words
108 Method

Semi-Automatic Impact Analysis through Keyword-Based Relationships – A Feasibility Study
in technical language are highly context-dependent (recall the
earlier example of the word NUMBER).

Second, instead of using the entire term weighting approach
described in the previous section, we only use local weighting
(based on simple non-logarithmic term frequency) combined with
weighting based on keyword class. During the phase of identifying
keywords in requirements, each identified keyword is assigned to a
predefined class. Examples of classes are general keywords, context
keywords and application keywords. When weighting terms in the
TBD matrix, more significance can be given to terms belonging to a
certain class. Our intention is to put more emphasis on application
keywords (such as domain and system keywords), and less emphasis
on more generic keywords.

We do not use global weighting and normalisation for the following
reasons:

• Global weighting is performed to give more significance to
words that are infrequent. The rationale behind this is that infre-
quent words, being unusual, are considered to be more mean-
ingful than frequent, common words. In our method, the
meaningfulness of a word follows from its class belonging. Fur-
thermore, the frequency of a word across all documents reflects
in our case the distribution of the corresponding functionality in
the architecture, which is important when performing impact
estimation.

• Normalisation is performed to prevent large documents from
overwhelming smaller documents. In our case, large documents
can be said to represent large architecture components, which
are likely to be more affected by new requirements than smaller
components. We do not want to discard this type of informa-
tion.

5.3.5 Method Steps
Our proposed method is incremental, and should be run for each
new requirement or each accumulated batch of requirements.
Exactly how often to run the method is basically a cost-effective-
ness trade-off. The following list gives an overview of the four main
steps of the method:

1. Screen for relevance: In this step, which is optional, the
requirements are checked for relevance with respect to the
Method 109

Semi-Automatic Impact Analysis through Keyword-Based Relationships – A Feasibility Study
traceability between requirements and architecture components.
If a requirement is deemed irrelevant, it is excluded from fur-
ther use of the method.

2. Identify keywords: This is a manual or semi-automatic step, in
which keywords are identified in the requirements. The key-
words are classified and stored in persistent glossaries.

3. Identify dependencies using LSI: In this automatic step, LSI
is used to identify dependencies between the requirements and
the architecture components. The strength of a dependency
indicates the estimated impact of a particular requirement on a
particular component.

4. Examine results and estimate impact: This is a necessarily
manual step that serves two purposes. First, the results from the
previous step are examined for accuracy. Second, the total
requirements impact is estimated based on individual compo-
nent impact estimates.

Step 1: Screen for Relevance. The purpose of this step is to
sort out requirements that do not bear directly on the dependencies
intended to be identified. More specifically, requirements that are
unlikely to be strongly connected to the architecture should be dis-
regarded. One example is non-functional requirements, which typi-
cally have very broad impact and consequently may have keywords
that occur in all or none of the architecture component descrip-
tions. Another example is requirements that concern installation
and support, as these likely are disconnected from the functional
scope of the architecture.

Step 2: Identify Keywords. During keyword identification,
the relevant keywords in a requirement are identified manually. The
resulting keywords are stored in glossaries corresponding to prede-
fined keyword classes, if such classes have been defined, or in a glo-
bal glossary that do not distinguish between keyword types. The
choice of classes depends on the situation; as stated before, one
example is to have a general class, a context class and an application
class. Thus, keywords, especially those in more generic classes, can
be reused for future releases and systems. If appropriate glossaries
already exist (for example, as a result of applying the method to pre-
vious systems), they should be used as an input to the identification
step. This will allow automatic keyword identification, as discussed
next, which maximises the gain from previous efforts spent on
identifying keywords.
110 Method

Semi-Automatic Impact Analysis through Keyword-Based Relationships – A Feasibility Study
While the identification of keywords is largely manual, it can be
automated based on previous glossaries as well as on already identi-
fied keywords. Provided that there is a bounded space of keywords,
more and more of it will be covered as the keyword identification
progresses. In the end, new requirements should require little iden-
tification effort, as the majority of their relevant keywords should
already have been identified (and thus can be automatically sug-
gested as keywords). This does of course not hold if a new require-
ment introduces a feature based on an entirely new concept.

Note that for the automatic identification of keywords based on
previously identified keywords to work, it is necessary to use fuzzy
string matching as described in Section 5.3.2. Still, there will always
be different words that are very similar, such as DATE and DATA. A
solution is to construct an exception list based on rejected auto-sug-
gestions. Such a list can be used to improve both the automatic sug-
gestion of keywords and the accuracy of the impact estimation step.
Another problem is words that are truly similar, but fall beyond the
threshold anyway. These will most likely be recognised by the
method user, who naturally will do “manual stemming” as part of
his or her thought process. Such words can be stored in a synonym
list.

Step 3: Identify Dependencies Using LSI. In this step,
which is entirely automatic, the identified keywords are matched
against the component descriptions to add to the TBD matrix (the
matrix is never final, as new requirements may appear at any time; it
may, however, be treated as a complete matrix after each new
requirement or batch of requirements).

To build the TBD matrix, the identified keywords are put as terms
along the vertical axis of the matrix. Then, each component
description (i.e., each document) is examined for the occurrence of
each term, and the appropriate frequencies are recorded in the col-
umn of the matrix that represents the description. In order to find
terms in component descriptions, fuzzy string matching is used to
decrease the sensitivity for misspellings and morphological variants.
This is described in Section 5.3.2.

The TBD matrix is subsequently fed to the SVD algorithm, which
performs dimensional reduction as described earlier. Finally, each
requirement is seen as a query for relevant component descriptions.
Thus, the requirement is projected onto the same space as the
descriptions, and similarity measures are calculated for each descrip-
Method 111

Semi-Automatic Impact Analysis through Keyword-Based Relationships – A Feasibility Study
tion. The similarity measure can be seen as the strength of a
requirement-component dependency, which in turn can be
regarded as the estimated impact of the requirement on the compo-
nent. Note that this individual estimate is only one fraction of the
total impact of the requirement; it may be zero or close to zero if
the component is not related to the requirement.

Both the previous and this step can be tailored with respect to the
algorithm used for fuzzy string matching. However, this step is
more sensitive to the choice of algorithm than the keyword identifi-
cation step, as the entirely automatic procedure does not provide
any means for manual confirmation or rejection of fuzzy matches.
While the edit distance algorithm is straightforward, alternatives
exist, for example Hamming distance and Levenshtein distance
(both closely related to the edit distance) [107].

The distance threshold can (and should) be adjusted depending on
the language in both requirements and component descriptions,
and the types of misspellings and morphological variants that can
be expected.

Step 4: Examine Results and Estimate Impact. In the
final step, which is performed manually, the requirement-compo-
nent dependencies are examined for accuracy. This is particularly
important in early use of the method, before the relevant thresholds
have been adjusted to give maximum confidence in the results. For
example, if the estimated individual impact of a requirement on a
components seems to be too large (as judged by system experts),
the fuzzy string matching threshold could be made more restrictive.

The total estimated impact of a requirement is based on the individ-
ual estimates for each component. There are four ways in which the
total impact can be estimated:

1. Select all components with an estimated impact that exceeds a
predefined threshold.

2. Always select the N highest ranked components (i.e., those with
highest impact estimates).

3. Use a combination of (1) and (2).
4. Visualise the component impacts, and select components manu-

ally based on differences in impact estimates. For example, if the
two highest ranked components have similar estimated impact,
112 Method

Semi-Automatic Impact Analysis through Keyword-Based Relationships – A Feasibility Study
but there is a leap to the third ranked component, select only
the first two.

The obvious drawback with the first three ways is that it is unlikely
that there is an appropriate threshold, or rank limit (i.e., value of N),
that is suitable for all requirements. A lower threshold or a higher
rank limit (i.e., larger N) will result in a greater total estimated
impact, but also a higher possibility that the estimate is too large.

If a requirement has no estimated impact, there are three probable
causes. It is important to determine which cause is the real one, and
to deal with the requirement accordingly:

• The method failed, because of improper parameters, wrong key-
words or insufficient level of detail in requirements and/or
component descriptions. If this happens for many require-
ments, an appropriate action would be to consider if the
method should be used at all.

• The requirement does not represent functionality, for example
because it is a compatibility requirement or a non-functional
requirement. If this is the case, then it can be dismissed without
further action. Feeding the method with this kind of require-
ments may lead to unnecessary effort spent on keyword identifi-
cation, though. To prevent this, such requirements should be
weeded out already in the first step.

• Functional responsibility is missing in the system. In other
words, the architecture does not contain any component
responsible for the functional area the requirement belongs to.
Should this be the case, it is necessary to extend the architecture
with additional components, or to expand the responsibility of
existing components.

In the long run, the method may reveal components that seldom or
never are included in the total impact estimates. The reasons for
this are similar to those for requirements without estimated impact:

• The method failed; see above.
• The component is a component whose main function is to

assist other components in order to achieve separation of con-
cerns. An example is a database object framework that all other
components use to retrieve information from the database.

• The system has more functionality than dictated by the require-
ments. This can happen if the component remains from an ear-
lier release or version, even though the requirements for it have
Method 113

Semi-Automatic Impact Analysis through Keyword-Based Relationships – A Feasibility Study
been removed. Appropriate actions would be to consider
removing the component, or to add requirements that dictate its
functionality.

5.4 Evaluation

In order to evaluate the method, we have applied it to a release of
an industrial software system developed for the telecom domain.
This section describes the evaluation context, the tools used, and
the execution of the method.

The evaluation is the first in a series of three planned evaluations, of
gradually increasing thoroughness:

1. Laboratory evaluation using available traceability data from an
existing system.

2. Interview-based evaluation involving the developers of an exist-
ing system. This evaluation should allow a comparison to
undocumented, actual traceability in addition to documented
traceability.

3. Evaluation in a sharp situation, for new requirements on a sys-
tem being developed. The intention is to investigate how the
method performs compared to a system expert performing the
impact estimation task.

5.4.1 Evaluation Context

The system has around 50 architecture components and around
400 requirements. Since the release has already been developed, we
use the method in a less incremental way than described in Section
5.3.5. More specifically, we collect all requirements in one batch and
run the method steps sequentially.

The traceability we have used to evaluate against consists of
dependencies between features and requirements, and features and
architecture components. Each feature is connected to a number of
requirements and a number of components. Thus, it is not possible
to see dependencies for individual requirements. It should also be
noted that the documented traceability exist in the form of solution
proposals, which means that it corresponds to predicted impact
rather than actual impact. Therefore, we cannot assert the exact
performance of our method, but only if it seems to provide esti-
114 Evaluation

Semi-Automatic Impact Analysis through Keyword-Based Relationships – A Feasibility Study
mates that agree with the predictions documented by the develop-
ers of the system.

5.4.2 Tools Used
In order to test our method, we constructed a tool that supports the
keyword identification step as described earlier, by collecting key-
words in glossaries and automatically suggesting relevant keywords
based on fuzzy string matching. The tool also builds the TBD
matrix and evaluates the similarities between requirements and
components.

For the SVD method, we used the SVDLIBC tool developed by
Rohde [99]. This tool is based on SVDPACK by Berry [11], and
uses the Lanczos algorithm for calculating the decomposition of
the TBD matrix. It outputs all relevant matrices that are necessary
for further calculation of query-document similarity.

5.4.3 Step 1: Screen for Relevance
Of the 400 initial requirements, around 80 were deemed irrelevant.
Some of these requirements were non-functional, others concerned
backwards compatibility, installation, hardware etc. The remaining
320 requirements were subsequently fed to the keyword identifica-
tion step.

5.4.4 Step 2: Identify Keywords
Table 5.1 shows the keyword classes used in the evaluation (as sug-
gested in the example earlier). For each class, the type of words in
the class are stated, as well as how the keywords were distributed
over the classes.

The class weights, also shown in Table 5.1, were set to reflect the
differences in word significance among the classes. We recognise,
however, that we need to explore the effect of class weights further
in order to determine more well-founded weights. The classification
of keywords was not a trivial process, indicating that it is crucial to
select non-overlapping classes and to explicitly define the types of
words that go into the different classes.

Furthermore, during initial testing of the tool, the following obser-
vations were made:
Evaluation 115

Semi-Automatic Impact Analysis through Keyword-Based Relationships – A Feasibility Study
• A maximum edit distance of 2 seemed to be appropriate for
long words, whereas it was unacceptable for short words. For
example, the edit distance between NAME and BLAME is 2, even
though the words are definitively not similar.

• Even with a distance threshold of 1 for short words, technical
abbreviations (which, in general, tend to be short) often was
regarded by the algorithm as similar to words like FOR and ALL.
It should be noted that we chose to not remove stop words, in
accordance with the discussion in Section 5.3.1.

The solution we decided on was to use the following thresholds:

• 0 (i.e., exact match required) if either of the words was shorter
than four letters, and

• 1 if either of the words was shorter than seven letters, and
• 2 otherwise.

The limits and exact thresholds were selected purely based on
observation, and seemed suitable in our case. More sophisticated
solutions are briefly mentioned in Section 5.6.

The keyword identification was complicated by the fact that it was
not always clear whether or not a word should be regarded as a key-
word. In software requirements, very generic words may have great
significance; consider, for example, the words ABOVE and BELOW in
relation to the word THRESHOLD. To not miss any keywords, we
erred on the side of having too many keywords.

Some of the effort was spent on rejecting keywords automatically
suggested because of polysemy or because of clearly different
words falling within the fuzzy string matching thresholds. Further-

Table 5.1 Keyword Classes Used in the Evaluation

Class Word type Share Weight

General
general words (relevant from a
requirements formulation
point-of-view)

18% 1

Context
consisting of words related to
events or functionality in the
system

48% 2

Application
words specific for the domain
or the system 34% 3
116 Evaluation

Semi-Automatic Impact Analysis through Keyword-Based Relationships – A Feasibility Study
more, a synonym list was maintained based on “manual stemming”
of keywords that were not automatically detected as similar.

5.4.5 Step 3: Identify Dependencies Using LSI
As SVD performs a dimensional reduction of the original TBD
matrix, there is the question about how many dimensions to use in
the reduction. In the original LSI paper by Deerwester et al., the
authors argue that neither too few nor too many dimensions should
be used, but rather the number that results in the best performance
[30]. Landauer et al. classify the problem as being an empirical issue,
and point out that the optimal dimensionality is the one that causes
correct induction of underlying relationships in the documents [65].
Sarwar et al. resolve the issue by evaluating a number of different
dimensionalities and picking the one with the best performance
[103].

With no firm guideline for selecting the number of dimensions, we
went for a 75% reduction as recommended in a data conversion
script designed for SVDPACK. Thus, with an original dimensional-
ity of 50 (given by the fact that there was 50 architecture compo-
nents), the destination dimensionality was set to 12. There is clearly
an incentive for studying the effect of dimensionality in future
work.

As stated in Section 5.3.4, we have chosen to disregard global
weighting and normalisation in the TBD matrix in favour of class
weighting. Thus, in the evaluation, we assigned to each cell in the
TBD matrix the product of the in-document frequency and the
class weight of the term.

We did not remove keywords from the TBD matrix that occurred in
only one document, as we regard such occurrence patterns as
important in the context of impact estimation (as they communi-
cate important information about the architectural scope of a func-
tional concept).

5.4.6 Step 4: Examine Results and Estimate Impact
The purposes of this step are to examine the identified dependen-
cies in order to assess the accuracy of the method, and to estimate a
total requirements impact based on individual component impact
estimates. In this special case of evaluating the method on an
Evaluation 117

Semi-Automatic Impact Analysis through Keyword-Based Relationships – A Feasibility Study
already implemented system, we verify the accuracy of the results by
comparing them to the somewhat coarse-grained documented
traceability of the system. For the sake of structuredness, the actual
analysis of this is discussed further in Section 5.5.

Due to the exploratory character of the evaluation, we did neither
consider a similarity threshold nor a fixed rank limit in advance.
Deerwester et al. [30] seem to consider a cosine coefficient above
0.9 to represent nearness between documents, while Marcus and
Maletic [76] set the limit at 0.7. We are not certain, however, exactly
in which contexts these figures are appropriate or where the thresh-
old is for a “good enough” coefficient. Furthermore, as pointed out
before, having a static threshold or rank limit can be problematic.

As mentioned in Section 5.4.1, the documented traceability of the
system connects clusters of requirements to clusters of architecture
components. As a result, we could only perform a coarse compari-
son of the impact estimates produced by the method and the
impact predictions documented by the developers. Furthermore,
we were not able to access all relevant traceability documentation,
which means that only around 200 of the 320 requirements could
be subjected to the comparison. Finally, the documented traceabil-
ity did not encompass all 50 components in the system; a majority
of the components were not connected to any requirements. This
naturally affects the evaluation outcome, as all 50 components were
considered as impact candidates.

Figure 5.1 shows the average cosine coefficients for the 10 highest-
ranked component descriptions. For example, the value of the
cosine coefficient of the highest ranked component description for
each requirement was on average around 0.65. The error bars in the
figure each correspond to one standard deviation. It is clear that
even if we had used the lower similarity threshold of 0.7 mentioned
in the previous section, most requirements would only have been
considered to have an estimated impact on at most one component.

5.5 Analysis

Two common performance indicators for information retrieval
methods are precision and recall [6]. Assume that an information
retrieval method (such as LSI) deems a set of documents A to be
relevant for a query. Furthermore, let R be the set of all documents
truly relevant for the query. It follows that is the set ofRa R A∧=
118 Analysis

Semi-Automatic Impact Analysis through Keyword-Based Relationships – A Feasibility Study
documents that are actually relevant among the ones deemed rele-
vant by the method. Now, precision and recall can be defined as fol-
lows (|X| denotes the cardinality of set X):

Table 5.2 shows average precision and recall figures for the 200
requirements used in the evaluation, based on rank limits (corre-
sponding to |A|) from 1 to 10. The table does not show rank limits
above 10, since no requirement was predicted by the developers to
have an impact on more than 10 architecture components. Both |R|
and |Ra| in the table are average values over all 200 requirements.

The recall reflects in our case how many of the components pre-
dicted to be impacted by the developers that the method was able
to pinpoint. For example, if only the highest ranked component
would be regarded as our method’s estimated impact, then that
component would only correspond to the “true” predicted impact
for 2.6% of the requirements. The precision is a measure of how
large the estimated impact needs to be to reach a certain recall level.
For example, in order to reach 30% recall, we would have to accept
the estimated impact to consist of slightly more than 80% false pos-
itives.

Normally, precision and recall figures are used to compare the per-
formance of two information retrieval methods, often by interpo-
lating the precision for a set of 11 standard recall values (0-100%)

Recall = (5-1)

Precision = (5-2)

Figure 5.1 Average Query-Document Similarities

Ra
R

Ra
A

Analysis 119

Semi-Automatic Impact Analysis through Keyword-Based Relationships – A Feasibility Study
[6]. The figures in Table 5.2 show that the method was not able to
reach maximum recall (i.e., where all relevant documents have been
captured) even for a rank limit of 10. Marcus and Maletic, who used
LSI to extract traceability between source code and documentation,
reported on recall values starting at 60% and reaching 100% at a
rank limit of 11, and corresponding precision values from 77%
down to 12% [76].

It is not entirely clear to us the amount of confidence that can be
attributed to the recall and precision values in Table 5.2, given that
the documented traceability, against which we compare results from
the method evaluation, associates a cluster of components to each
requirement rather than one single component. This means in prac-
tise that if a requirement is associated with five components, it may
well be that in reality, only one of them corresponds to the true
locus of the requirement. Thus, the figures in Table 5.2 must be
seen as a worst-case scenario.

A best-case scenario would be to investigate in how many cases the
method was able to pinpoint at least one of the components that
was predicted by the developers to be impacted by a requirement.
In the evaluation, the method was successful for around 125 of the
200 requirements. In other words, for slightly less than two thirds of
the requirements, the method was able to identify at least one of the
components predicted by the developers to be impacted. This is,
however, still not an encouraging figure.

Table 5.2 Recall and Precision for the Evaluation

|A| |R| |Ra| Recall Precision

1 5.46 0.14 2.6% 14.4%

2 5.46 0.33 6.1% 16.6%

3 5.46 0.50 9.1% 16.5%

4 5.46 0.69 12.6% 17.2%

5 5.46 0.87 15.9% 17.3%

6 5.46 1.07 19.6% 17.8%

7 5.46 1.25 22.9% 17.8%

8 5.46 1.45 26.5% 18.1%

9 5.46 1.62 29.8% 18.0%

10 5.46 1.74 31.9% 17.4%
120 Analysis

Semi-Automatic Impact Analysis through Keyword-Based Relationships – A Feasibility Study
It should be noted that the method did differentiate between
requirements with respect to component impact estimates. In other
words, it did not estimate the same component impact for all
requirements. This ability indicates some potential, despite the low
performance in both the worst-case scenario and the best-case sce-
nario.

5.6 Discussion and Future Work

In this section, we discuss the results of the method evaluation with
focus on validity and possible explanations for the observed per-
formance. We also share some subjective experiences from per-
forming the evaluation, and present future work.

As seen in the previous section, the average recall and precision val-
ues were very low. Similarly, the performance in the best-case sce-
nario was not that high. However, these figures may be incorrect,
due to the fact that the documented traceability used in the evalua-
tion may have been too coarse to act as a fair evaluation object. Fur-
thermore, since the documented traceability represented predicted
rather than actual impact, it may in itself be incorrect. To obtain a
more robust evaluation, we intend to use a different evaluation sys-
tem with more detailed documented traceability. Also, as described
initially in Section 5.4, further evaluations are planned.

There are certain other issues related to the validity of the evalua-
tion. First, the identification of keywords in requirements was per-
formed by one of the authors, who has some, but not full, insight in
the system used in the evaluation. The classification of keywords
was performed by the same author. Thus, the evaluation results
could be different than if a true system expert had performed the
identification and classification (as intended). Second, the require-
ments and the component descriptions used in the evaluation did
not have entirely corresponding dates. More specifically, the com-
ponent descriptions were last modified 3-4 months after the
requirements. This may mean (although it has not been verified)
that the component descriptions had been updated to correspond
better to the current requirements, which potentially could have
affected the evaluation results.

It is not very likely that LSI does not work well in the evaluation
context (i.e., with written software development artefacts), since
written software development artefacts do not have drastically dif-
Discussion and Future Work 121

Semi-Automatic Impact Analysis through Keyword-Based Relationships – A Feasibility Study
ferent characteristics than most textual documents, and LSI has
previously proved to perform well both in its intended context [30]
and in a software development context [76]. There are, however, a
number of parameters that may have affected the evaluation:

• The component descriptions we used as documents for LSI
contained from around 800 to around 21 000 words, with an
average of 5 000 words. Marcus and Maletic mention, however,
that LSI should be used on paragraphs or sections rather than
entire chapters, which tend to be too large [76]. This implies
that we should try to break down the component descriptions
into smaller parts and use these parts as documents.

• As stated earlier, the number of dimensions to use in the SVD
reduction of the TBD matrix is an open research issue. We
chose 12 dimensions, which may be too few or too many. It is
clear that we need to experiment with different values of this
parameter in order to see how the results are affected.

• When weighting terms, we used only local (non-logarithmic)
weighting and class weighting. Dumais describes other weight-
ing schemes that we need to consider [34]. Also, the class
weights used (1, 2 and 3) may be inadequate with respect to
properly balancing the significances of the different keyword
types. Which class weights to use is a question that must be
addressed in future work.

While evaluating our method, we found that the described automa-
tion of the keyword identification worked very well, in that already
identified keywords were automatically suggested for new require-
ments. As described in Section 5.4.4, however, the fuzzy string
matching algorithm occasionally failed with respect to matching
words correctly. We also realised that the process of searching
through the component descriptions in order to locate and count
keywords can be an extremely time-consuming process, even for a
fast computer. The reason is that we used a very straightforward
approach of comparing each word in a description with each key-
word, which obviously is slow given that the edit distance algorithm
is (where m and n are the lengths of the words to compare,
respectively) [107]. There are plenty of room for improvement here,
for example to use at least some stop words (see Section 5.3.1 for a
motivation to why we did not use stop words), to cache word dis-
tances, to use early rejection of words that differ on the first letter
(see below) and so on.

Finally, some other issues that we wish to explore further are:

O mn()
122 Discussion and Future Work

Semi-Automatic Impact Analysis through Keyword-Based Relationships – A Feasibility Study
• The use of fuzzy string matching and proper thresholds for
finding similar words despite misspellings and morphological
variants. A threshold based on percentage can be problematic
for short words (as each individual letter will have greater influ-
ence than in a long word), while the approach we used (to have
three distinct thresholds based on word lengths) was not opti-
mal either (see Section 5.4.4). A possible solution is to assign
different significances to letters depending on where they occur
in a word. For example, we believe it to be less likely that a word
is misspelled in the beginning than in the middle or in the end.
While UBIQUITOUS is difficult to spell completely right, most
people would probably get the U right. An exception is possibly
ACQUIRE, which admittedly has a difficult beginning, at least for
people who do not have English as their native language.

• Even though Berry et al. [12] mention that LSI should not need
stemmed words to function properly, we want to investigate the
use of stemming and certain stop words (in particular simple
ones such as OR, AND and THE) to further automate and sup-
port the manual keyword identification step.

• Since LSI allows us to not only find the similarity between a
requirement (expressed as a query) and component descriptions
(the documents), but also between different component
descriptions, it may be possible to use the outcome of LSI as an
indicator of problems with the distribution of functional
responsibility in the architecture. For example, if many compo-
nent descriptions are very similar, it could mean that the corre-
sponding components should be joined together.

5.7 Summary

We have presented a feasibility study of a semi-automatic method
for estimating the impact of new requirements on an existing sys-
tem, based on lexicographic relationships between requirements
and architecture component descriptions. The method can also be
used for requirements changes and to extract the traceability of a
legacy system.

The method consists of four steps. In the first step, the require-
ments are screened for relevance (e.g., non-functional requirements
may be sorted out). Relevant keywords are subjected to the second
step, in which keywords are manually identified and classified
(although automation to a large extent is possible). In the third step,
Summary 123

Semi-Automatic Impact Analysis through Keyword-Based Relationships – A Feasibility Study
Latent Semantic Indexing is used to automatically create dependen-
cies between requirements and architecture component descrip-
tions. Finally, in the fourth step, the dependencies are examined,
and requirements impact is estimated manually based on them (vis-
ualisation and some automation can alleviate the manual effort).

In an evaluation on an industrial software system, the performance
of the method was less than expected, indicating that it would not
be suitable for impact analysis. However, the documented traceabil-
ity against which the method estimates were compared was coarse-
grained and represented predicted impact rather than actual impact
of requirements (and may thus have been incorrect in itself).
Despite the discouraging results, we will perform additional, more
robust, evaluations in order to better assess the performance of the
method. Moreover, there are a number of parameters of the
method that can be adjusted and must be explored further.

Finally, we would like to point out that we believe our hypothesis,
that it is possible to find lexicographic relationships between
requirements and architecture components due to the use of similar
language, to be sound. Thus, we find it most relevant to pursue fur-
ther exploration and evaluation of our proposed method. Also, we
would consider an appropriate design guideline to be to use the
same language in architecture component descriptions as is used in
requirements. This would facilitate and strengthen understanding of
the system among its various stakeholders.
124 Summary

C H A P T E R

6
Benchmarking k-Nearest Neighbour
Imputation With Homogeneous
Likert Data

Journal of Empirical Software Engineering, 2005 (submitted)

Per Jönsson and Claes Wohlin

Missing data pose a serious problem to researchers in many differ-
ent fields of research, for example artificial intelligence [47],
machine learning [9] and psychology [31]. The situation is, unsur-
prisingly, similar in software engineering [20, 81, 113]. The absence
of data may substantially affect data analysis as statistical tests will
lose power and results may be biased because of underlying differ-
ences between cases with and without missing data [55]. Simple
ways to deal with missing data are, for example, listwise deletion, in
which incomplete cases are simply discarded from the data set, or
variable deletion, in which variables with missing data are discarded.
However, a consequence of using a deletion procedure is that
potentially valuable data are discarded, which is even worse than
having missing data in the first place. Another approach, advanta-
geous because it does not require useful data to be removed, is to
use a method for imputing data. Imputation methods work by substi-
125

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
tuting replacement values for the missing data, hence increasing the
amount of usable data.

A multitude of imputation methods exist (see, for example, [54] for
a categorisation), whereas this chapter deals mainly with hot-deck k-
Nearest Neighbour imputation, but also with Random Draw Sub-
stitution, Random Imputation, Median Imputation and Mode
Imputation. In hot-deck imputation, a missing value is replaced by a
value derived from one or more complete cases (the donors) in the
same data set. The choice of donors should depend on the case
being imputed, which means that Median Imputation, for example,
in which a missing value is replaced with the median of the non-
missing values, does not qualify as a hot-deck method [102]. There
are different ways of picking a replacement value, for example by
choosing a value from one of the donors by random [55] or by cal-
culating the mean of the values of the donors [9, 20].

The k-Nearest Neighbour (k-NN) method is a common hot-deck
method, in which k donors are selected from the available neigh-
bours (i.e., the complete cases) such that they minimise some simi-
larity metric [102]. The method is further described in Section 6.3.5.
An advantage over many other methods, including Median and
Mode Imputation, is that the replacement values are influenced
only by the most similar cases rather than by all cases. Several stud-
ies have found that the k-NN method performs well or better than
other methods, both in software engineering contexts [20, 112, 113]
and in non-software engineering contexts [9, 22, 116].

This chapter builds on previous work, where we have evaluated the
k-NN method and concluded that the performance of the method
was satisfactory. In order to better assess the relative performance
of the method, we extend the evaluation by benchmarking the k-
NN method against four other methods: Random Draw Substitu-
tion, Random Imputation, Median Imputation and Mode Imputa-
tion. These methods are clearly less sophisticated than k-NN, but
can be said to form an imputation baseline. Thus, the main research
question concerns the performance of the k-NN method in relation
to the other methods.

The data used in the evaluation is of Likert type in a software engi-
neering context. A Likert scale is ordinal, and consists of a number
of alternatives, typically weighed from one and up, that concern
level of agreement (e.g., disagree, agree, strongly agree etc.). Such
scales are commonly used when collecting subjective opinions of
126

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
individuals in surveys [98]. The evaluation is performed by running
the k-NN method and the other imputation methods on data sets
with simulated non-response.

Apart from the benchmarking, we discuss the following questions
related to the k-NN method:

• How many donors should preferably be selected?
• At which amount of missing data is it no longer relevant to use

the method?
• Is it possible to decrease the sensitivity to the amount of miss-

ing data by allowing imputation from certain incomplete cases
as well?

• What effect has the number of attributes (variables) on the
results?

The remainder of the chapter is structured as follows. In Section 6.1
and Section 6.2, we outline related work, describe the data used in
the evaluation and discuss different mechanisms for missing data.
In Section 6.3, we present the k-NN method as well as the other
imputation methods against which we benchmark k-NN. In Section
6.4, we describe the process we have used for evaluating the k-NN
method. Although the process is generic in the sense that it sup-
ports any imputation method, we focus on k-NN. In Section 6.5,
we briefly describe how we instantiated the process in a simulation,
but also how we performed additional simulations with other impu-
tation methods. In Section 6.6, we present the results and relate
them to our research questions. In Section 6.7, we discuss validity
threats and outline possible future work. Finally, we draw conclu-
sions in Section 6.8.

6.1 Related Work

As Cartwright et al. point out, publications about imputation in
empirical software engineering are few [20]. To our knowledge,
those that exist have focused on comparing the performance of dif-
ferent imputation methods. For example, Myrtveit et al. compare
four methods for dealing with missing data: listwise deletion, mean
imputation, full information maximum likelihood and similar
response pattern imputation (which is related to k-NN with k = 1)
[81]. They conclude, among other things, that similar response pat-
tern imputation should only be used if the need for more data is
Related Work 127

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
urgent. Strike et al. describe a simulation of listwise deletion, mean
imputation and hot-deck imputation (in fact, k-NN with k = 1), and
conclude that hot-deck imputation has the best performance in
terms of bias and precision [113]. Furthermore, they recommend
the use of Euclidean distance as a similarity measure. In these two
studies, the context is software cost estimation. Cartwright et al.
themselves compare sample mean imputation and k-NN, and reach
the conclusion that k-NN may be useful in software engineering
research [20]. Song et al. evaluate the difference between MCAR
and MAR using k-NN and class mean imputation [112]. Their find-
ings indicate that the type of missingness does not have a significant
effect on either of the imputation methods, and furthermore that
class mean imputation performs slightly better than k-NN. In these
two studies, the context is software project effort prediction.

It is common to compare imputation methods in other research
areas as well. Batista and Monard compare k-NN with the machine
learning algorithms C4.5 and C2, and conclude that k-NN outper-
forms the other two, and that it is suitable also when the amount of
missing data is large [9]. Engels and Diehr compare 14 imputation
methods, among them one hot-deck method (however, not k-NN),
on longitudinal health care data [38]. They report, however, that the
hot-deck method did not perform as well as other methods. Huis-
man presents a comparison of imputation methods, including Ran-
dom Draw Substitution and k-NN with k = 1 [55]. He concludes
that Random Draw Substitution is among the worst performers,
that the k-NN method performs well when the number of response
options is large, but that corrected item mean imputation generally
is the best imputation method. In the context of DNA research,
Troyanskaya et al. report on a comparison of three imputation
methods: one based on single value decomposition, one k-NN vari-
ant and row average [116]. They conclude that the k-NN method is
far better than the other methods, and also that it is robust with
respect to amount of missing data and type of data. Moreover, they
recommend the use of Euclidean distance as a similarity measure.
Gmel compares four different imputation methods, including sin-
gle-value imputation based on median and k-NN with k = 1 [49]. He
argues that single-value imputation methods are considered poor in
general as they disturb the data distribution by repeatedly imputing
the same value. He concludes that the k-NN method seems to per-
form better than the other methods. Chen and Åstebro evaluate six
methods for dealing with missing data, including Random Draw
Substitution and Mode Imputation, by looking at the sample statis-
tics mean and variance [23]. They report that Random Draw Substi-
128 Related Work

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
tution systematically biases both the mean and the variance,
whereas Mode Imputation only systematically biases the variance.

Imputation in surveys is common, due to the fact that surveys often
are faced with the problem of missing data. De Leeuw describes the
problem of missing data in surveys and gives suggestions for how
to deal with it [69]. Downey and King evaluate two methods for
imputing data of Likert type, which is often used in surveys [31].
Their results show that both methods, item mean and person mean
substitution, perform well if the amount of missing data is less than
20%. Raaijmakers presents an imputation method, relative mean
substitution, for imputing Likert data in large-scale surveys [93]. In
comparing the method to others, he concludes that it seems to be
beneficial in this setting. He also suggests that it is of greater impor-
tance to study the effect of imputation on different types of data
and research strategies than to study the effectiveness of different
statistics. Nevertheless, Chen and Shao evaluate k-NN imputation
with k = 1 for survey data, and show that the method has good per-
formance with respect to bias and variance of the mean of esti-
mated values [22].

Gediga and Düntsch present an imputation method based on non-
numeric rule data analysis [47]. Their method does not make
assumptions about the distribution of data, and works with consist-
ency between cases rather than distance. Two cases are said to be
consistent when their non-missing values are the same whenever
they occur in both cases, i.e., donorship is allowed both for com-
plete and incomplete cases. This resembles our relaxation of the k-
NN method rules when it comes to selecting neighbours (see Sec-
tion 6.3.5), in that both approaches allow values that will not con-
tribute to the similarity measure to be missing in the donor cases.

6.2 Research Data

In this section, we present the data used in the evaluation. We also
discuss different missingness mechanisms (i.e., different ways in
which data can be missing).

6.2.1 Evaluation Data
The data used in the evaluation comes from the case study on archi-
tecture documentation at Ericsson, described in detail in Chapter 3.
In the case study, a questionnaire containing questions pertaining to
Research Data 129

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
viewpoints on architecture documentation was distributed to
employees in the organisation. For the evaluation, we chose to use
the answers to six questions selected such that the resulting data set
was complete and contained as many respondents as possible. The
six questions were answered by 54 respondents.

Each of the six questions used a Likert scale for collecting answers,
where the numbers 1 to 5 were used to represent different levels of
agreement to some statement or query. Each of the numbers 1 to 5
was associated with a short text explaining its meaning, and we tried
to make sure that distances between two adjacent numbers were
conceptually similar everywhere.

We have previously examined the original data with respect to dif-
ferences between roles, and found that there are no differences for
the questions involved in this evaluation (see Chapter 3). We have
also sought differences based on other ways to group the data, but
found none. Hence, we presuppose that the data is homogeneous.
Figure 6.1 shows the distribution of response options of the six
questions as well as on average (rightmost bar). As can be seen,
options 1 and 5 are largely underrepresented, while in particular
options 3 and 4 are common answers to most of the questions.

Figure 6.1 Distribution of Response Options
130 Research Data

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
6.2.2 Missing Data
There are three main ways in which data can be missing from a data
set [9, 20, 104]. These ways, or missingness mechanisms, are:

• MCAR (Missing Completely At Random), means that the miss-
ing data are independent on any variable observed in the data
set.

• MAR (Missing At Random), means that the missing data may
depend on variables observed in the data set, but not on the
missing values themselves.

• NMAR (Not Missing At Random, or NI, Non-Ignorable),
means that the missing data depend on the missing values them-
selves, and not on any other observed variable.

Any action for dealing with missing data must take the missingness
mechanism into account. For example, to discard cases with miss-
ing data altogether is dangerous unless the missingness mechanism
is MCAR [104]. Otherwise, there is a risk that the remaining data
are severely biased. NMAR is the hardest missingness mechanism
to deal with, because it, obviously, is difficult to construct an impu-
tation model based on unobserved data.

When data are missing from the responses to a questionnaire, it is
more likely that the missingness mechanism is MAR than MCAR
[93]. For example, a respondent could leave out an answer because
of lack of interest, time, knowledge or because he or she did not
consider a question relevant. If it is possible to distinguish between
these different sources of missing data, an answer left out because
of lack of question relevance could be regarded as useful informa-
tion rather than a missing data point. If so, the degree of missing-
ness would be different than if the source of missing data could not
be distinguished.

6.3 Imputation Methods

In this section, we describe the k-NN imputation method as well as
the imputation methods used for benchmarking. We divide the
imputation methods into the three categories uninformed, informed
and intelligent:

• Uninformed imputation methods do not take into considera-
tion properties of the data that are important from an imputa-
tion perspective, such as distribution of response options.
Imputation Methods 131

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
Random Draw Substitution, where a replacement value is ran-
domly drawn from the set of response options, falls into this
category.

• Informed imputation methods do take data properties into con-
sideration. Random Imputation, where a replacement value is
randomly drawn from the available (observed) answers, Median
Imputation and Mode Imputation fall into this category.

• Intelligent imputation methods are those that base the imputa-
tion on hypothesised relationships in the data. The k-NN
method falls into this category.

We go deeper into details for the k-NN method than for the other
methods, in particular with respect to how the properties of the
method affect the imputation results. Based on this, we differentiate
between two different strategies for selecting neighbours. The
standard strategy adheres to the rules of the method in that only
complete cases qualify as neighbours, while the other relaxes this
restriction slightly.

6.3.1 Random Draw Substitution
Random Draw Substitution (RDS) is an imputation method in
which a missing value is replaced by a value randomly drawn from
the set of available response options [55]. In our case, this means
that we randomly generate replacement values from 1 to 5 such that
all values have equal possibilities of being generated.

RDS falls into the category of uninformed imputation methods, as
it does not consider data distribution or any other relevant proper-
ties. The relevance in benchmarking against RDS, or any other
uninformed method for that matter, can of course be debated.
However, we argue that a hallmark of any method necessarily must
be to beat the entirely random case.

6.3.2 Random Imputation
Hu et al. describe generic Random Imputation (RI) as a method
where replacement values are drawn at random from observed data,
given some sampling scheme [54]. In our use of the method, we
replace a missing value for a particular question with a value drawn
randomly from all available answers to the question. Thus, we effec-
tively set the probabilities of the response options in accordance
with the distribution of response options for the question. This
132 Imputation Methods

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
means that RI can be categorised as an informed imputation
method.

By obeying the distribution of observed response options, we can
expect RI to outperform RDS unless the possible response options
are equally distributed for each question. This is not the case in our
data, where response options 1 and 5 in particular are largely under-
represented (see Figure 6.1).

6.3.3 Median Imputation
Due to the fact that our original data are ordinal, we impute based
on median rather than mean. In Median Imputation (MEI), a miss-
ing value is replaced by the median of all available answers to the
question. As with any type of single-value imputation, this method
disturbs the distribution of response options, since the same value
is used to replace each missing value for a particular question [49].

If the number of available answers to a question is even, the median
may become a non-integer value. Since non-integer values are not
compatible with ordinal data, we round the value either downwards
or upwards at random in order to get an integer value.

MEI is highly sensitive to the distribution of response options for a
question. More specifically, if the median corresponds to a response
option with low frequency, the percentage of correct imputations
will be low. Conversely, if the median corresponds to a frequent
response option, MEI will have good performance.

6.3.4 Mode Imputation
Mode Imputation (MOI) is similar to MEI, except the mode is used
instead of the median. As with MEI, MOI disturbs the distribution
by imputing the same value for all missing values for a particular
question.

A problem with using the mode as replacement value is that the dis-
tribution of available answers may be multimodal, i.e., have several
modes. If that is the case, we obtain a unique replacement value by
randomly selecting one of the modes.

If the mode corresponds to a response option with high frequency
compared to the other response options, the percentage of correct
Imputation Methods 133

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
imputations will be high. Otherwise, i.e., if the difference in fre-
quency to the next most common value is small, the imputation
performance decreases. Similarly, if the mode is a response option
towards one of the ends of the scale, and a response option in the
other end is common as well, the relative error of incorrectly
imputed values will be high.

6.3.5 k-Nearest Neighbour
In the k-NN method, missing values in a case are imputed using
values calculated from the k nearest neighbours, hence the name.
The nearest, most similar, neighbours are found by minimising a
distance function, usually the Euclidean distance, defined as (see,
for example, [121]):

where

• is the distance between the two cases a and b,
• xai and xbi are the values of attribute i in cases a and b, respec-

tively, and
• D is the set of attributes with non-missing values in both cases.

The use of Euclidean distance as similarity measure is recom-
mended by Strike et al. [113] and Troyanskaya et al. [116]. The k-
NN method does not suffer from the problem with reduced vari-
ance to the same extent as single-value imputation, because when
mean imputation imputes the same value (the mean) for all cases, k-
NN imputes different values depending on the case being imputed.

Consider the data set shown in Table 6.1; when calculating the dis-
tance between the cases Bridget and Eric, the attributes for which
both have values are Q1, Q3, Q4 and Q5. Thus,
D = {Q1, Q3, Q4, Q5}. We see that Bridget’s answer to Q2 does not
contribute to the calculation of the distance, because it is not in D.
This implies that whether a neighbour has values for attributes out-
side D or not does not affect its similarity to the case being imputed.
For example, Bridget and Eric are equally similar to Susan, because

 = = despite the
fact that Bridget is more complete than Eric.

(6-1)E a b,() xai xbi∠()2

i D∈
∑=

E a b,()

E Bridget Susan,() E Eric Susan,() 2 4 2∠()2×
134 Imputation Methods

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
Another consequence of how the Euclidean distance is calculated,
is that it is easier to find near neighbours when D is small. This
occurs because the number of terms under the radical sign has fairly
large impact on the distance. Again, consider the data set in Table
6.1; based on the Euclidean distance, Bridget and Eric are equally
similar to Quentin (in fact, their distances are zero). Still, they differ
considerably on Q5, and Eric has not answered Q2 at all. This sug-
gests that the distance function does not necessarily reflect the true
similarity between cases when D is small.

Once the k nearest neighbours (donors) have been found, a replace-
ment value to substitute for the missing attribute value must be esti-
mated. How the replacement value is calculated depends on the
type of data; the mode can be used for discrete data and the mean
for continuous data [9]. Because the mode may be tied (several val-
ues may have the same frequency), and because we use Likert data
where the magnitude of a value matters, we will instead use the
median for estimating a replacement value.

An important parameter for the k-NN method is the value of k.
Duda and Hart suggest, albeit in the context of probability density
estimation within pattern classification, the use of , where N
in our case corresponds to the number of neighbours [33]. Cart-
wright et al., on the other hand, suggest a low k, typically 1 or 2, but
point out that k = 1 is sensitive to outliers and consequently use
k = 2 [20]. Several others use k = 1, for example Myrtveit et al. [81],
Strike et al. [113], Huisman [55] and Chen and Shao [22]. Batista
and Monard [9], on the other hand, report on k = 10 for large data
sets, while Troyanskaya et al. [116] argue that the method is fairly
insensitive to the choice of k. As k increases, the mean distance to
the donors gets larger, which implies that the replacement values
could be less precise. Eventually, as k approaches N, the method
converges to ordinary mean imputation (median, in our case) where
also the most distant cases contribute.

Table 6.1 Example Incomplete Data Set

Person Q1 Q2 Q3 Q4 Q5

Bridget 2 3 4 2 1

Eric 2 – 4 2 5

Susan – – 2 4 –

Quentin 2 – – – –

k N≈
Imputation Methods 135

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
Neighbour Strategy. In hot-deck imputation, and conse-
quently in k-NN imputation, only complete cases can be used for
imputing missing values [9, 20, 102]. In other words, only complete
cases qualify as neighbours. Based on the discussion in the previous
section about how the Euclidean distance between cases is unaf-
fected by values of attributes not in D, we suggest that it is possible
to relax this restriction slightly. Thus, we see two distinct strategies
for selecting neighbours.

The first strategy is in line with how the method normally is used,
and allows only the complete cases to be neighbours. This means
that no incomplete cases can contribute to the substitution of a
replacement value in an incomplete case. We will refer to this strat-
egy as the CC (complete case) strategy.

The second strategy allows all complete cases and certain incom-
plete cases to be neighbours. More specifically, a case can act as a
neighbour if and only if it contains values for all attributes that the
case being imputed has values for, and for the attribute being
imputed. We will refer to this strategy as the IC (incomplete case) strat-
egy.

It is important to note that we do not permit already imputed cases
to be donors in any of the strategies. Thus, imputed data will never
be used to impute new data.

For an example of the two strategies, consult again Table 6.1.
Assuming we are about to impute attribute Q1 for Susan, the CC
strategy would only allow Bridget to be a neighbour. The IC strat-
egy, however, would allow both Bridget and Eric to be neighbours,
because Eric contains values for at least the necessary attributes:
Q1, Q3 and Q4. Because the IC strategy potentially has more
neighbours to select donors from, it can be expected to be able to
handle large amounts of missing data better than the CC strategy.

6.4 Evaluation Process

The process for evaluating the k-NN method consists of the three
main steps data removal, imputation and evaluation (illustrated in
Figure 6.2). In this section, we describe each step with respect to
consumed input, responsibility, calculated metrics and produced
output. The process is generic in that it does not depend on any
particular data removal mechanism or imputation method. Here, we
136 Evaluation Process

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
present it using k-NN as the imputation method. In Section 6.5, we
detail the actual simulation of the process and describe how we
have reused parts of it for benchmarking k-NN against the other
imputation methods.

6.4.1 Data Removal - Step 1
Input to the data removal step is a data set where no data are miss-
ing. The responsibility of the step is to generate one or more artifi-
cially incomplete data sets from the complete data set, in order to
simulate non-response. The generated data sets are subsequently
sent to the imputation step.

In order to obtain a wide range of evaluation conditions for the k-
NN method, it would be beneficial to use both the MCAR and
MAR missingness mechanisms when generating incomplete data
sets. In order to remove data to simulate MAR, a model for the
non-responsiveness is required. In a longitudinal study of health
data, for example, Engels and Diehr devised a model where the
probability of removing a value increased if the previous value had
been removed, thereby modelling a situation where a serious health
condition could result in repeated non-response [38].

Possible models for simulating MAR in our data could involve, for
example, experience in software architecture issues, organisational
role or number of years in the industry, where different values

Figure 6.2 Evaluation Process Outline
Evaluation Process 137

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
would yield different probabilities for removing data from a case.
However, given that our data is homogeneous, these models would
not affect the imputation in other ways than would an MCAR-
based model. Thus, we use only MCAR, and remove data in a com-
pletely random fashion.

We do not try to simulate different sources of missing data (e.g.,
lack of relevance, simple omission etc.), which means that we con-
sider all removed data points as being truly missing.

There are two parameters that guide the data removal step, the case
reduction limit and the data set reduction limit. These are called reduction
limits because they prevent the data from being reduced to a level
where it is unusable. The effects of the parameters can be seen in
Figure 6.2. If it is decided in step 1-1 that a case contains too many
missing values after data removal, as dictated by the case reduction
limit, it is discarded from the data set. The reason for having this
limit is to avoid single cases with so little data that it becomes mean-
ingless to calculate the Euclidean distance to other cases. If it is
decided in step 1-2 that too few cases remain in the data set, as dic-
tated by the data set reduction limit, the entire data set is discarded.
The idea with this limit is to avoid a data set with so few cases that it
no longer can be said to represent the original data set.

These limits mean, in a way, that we combine the k-NN imputation
method with simple listwise deletion. As discussed earlier, this is
dangerous unless the missing data truly is MCAR. However, we
argue that keeping cases with very little data left would also be dan-
gerous, because the imputed data would contain loosely grounded
estimates. In other words, it is a trade-off that has to be made.

The removal step is executed for a number of different percentages.
Furthermore, it is repeated several times for each percentage. Thus,
the output from the removal step is a large number of incomplete
data sets to be fed to the imputation step. For each incomplete data
set coming from the removal step, we define

• A as the number of complete cases remaining,
• as the number of incomplete cases remaining, and thus
• C = A + as the total number of cases remaining.

Since entire cases may be discarded in the removal step, the actual
percentage of missing data may be different from the intended per-
centage. For the incomplete data sets generated in the simulation,

A′

A′
138 Evaluation Process

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
both the intended percentages and the actual percentages of miss-
ing data are presented. When analysing and discussing the results, it
is the actual percentages that are used, though.

6.4.2 Imputation - Step 2
Input to the imputation step is the incomplete data sets generated
in the data removal step. Here, each data set is fed to the imputation
method in order to have its missing values imputed. We exemplify
this step using the k-NN method.

With the k-NN method, several imputations using different k-val-
ues and different neighbour strategies are performed for each
incomplete data set. As discussed earlier, a missing value is replaced
by the median of the answers given by the k nearest neighbours,
which means that the replacement value may become a non-integer
value if k is even. However, since the data in the data set are of Lik-
ert type, non-integer values are not permitted. To avoid this prob-
lem, only odd k-values are used.

The k cases with least distances are chosen as donors, regardless of
ties among the distances, i.e., two cases with equal distances are
treated as two unique neighbours. This means that it is not always
possible to pick k cases such that the remaining cases (where
K is the total number of neighbours) have distances greater to that
of the kth case. Should such a situation occur, it is treated as fol-
lows. If l, cases have been picked, and there are m,

 cases with distance d, then the first cases
of the m, in the order they appear in the original data set, are picked.
This procedure is safe since the cases in the original data set are not
ordered in a way that could affect the imputation.

If there are not enough neighbours available, cases may get lost in
the imputation process. For the CC strategy, this will always happen
when k is greater than the number of complete cases in the incom-
plete data set. The IC strategy has greater imputation ability,
though, but will inevitably lose cases when k is large enough. This
second situation where cases can be discarded is numbered 2-1 in
Figure 6.2.

The output from the imputation step is a number of imputed data
sets, possibly several for each incomplete data set generated in the
data removal step (depending on the imputation method used and
its parameters). For each imputed data set, we define

K k∠

0 l k<≤
k l∠() m K l∠()≤< k l∠
Evaluation Process 139

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
• as the number of cases that were imputed (i.e.,
that were not lost in step 2-1), and consequently

• as the total number of cases, and also
• B as the number of imputed attribute values.

6.4.3 Evaluation - Step 3
In the evaluation step, each imputed data set from the imputation
step is compared to the original data set in order to measure the
performance of the imputation. Three separate metrics are used:
one ability metric and two quality metrics. The two quality metrics
differ both in what they measure and how they measure it. The first
quality metric is a measure of how many of the imputed attribute
values that were imputed correctly. In other words, it is a precision
metric. The second quality metric is a measure of how much those
that were not imputed correctly differ from their correct values,
which makes it a distance (or error) metric.

We define the ability metric as

which equals 0 if all incomplete cases were lost during the imputa-
tion (in step 2-1), and 1 if all incomplete cases were imputed. To
define the precision metric, let be the number of matching
imputed attribute values. Then, the metric can be expressed as

which equals 0 if all the imputed attribute values are incorrect, and 1
if all are correct. Finally, we calculate the mean square error of the
incorrectly imputed attribute values as

where xi is the correct value and is the imputed value of the ith
incorrectly imputed attribute value.

(6-2)

(6-3)

(6-4)

A″ 0 A″ A′≤ ≤,

C′ A A″+=

R A″
A′
------=

B′

Q
B
B′
----- if B 0>

undefined if B 0=

=

MSE
xi x̂i∠()2

i
∑

B B′∠
------------------------------- if B 0 and B′ B<>

undefined if B 0 or B′ B==

=

x̂i
140 Evaluation Process

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
Since B = 0 when R = 0, it is apparent that both the precision metric
and the mean square error are invalid when the ability metric is
zero. Moreover, the mean square error becomes invalid when Q = 1.
Consequently, the three metrics need to have different priorities: R
is the primary performance metric, Q is the secondary, and MSE is
the tertiary. Recognising that it would be difficult to create one sin-
gle metric for measuring the performance, no attempts to accom-
plish this have been made.

Average values of R, Q and MSE are presented in the results,
because several imputations are performed with identical parame-
ters (percentage, and for k-NN, value of k and neighbour strategy).
For R, the mean includes all measured instances, while for Q and
MSE, only those instances where the metrics are not undefined are
included.

6.5 Simulation

The previous section described the outline of the evaluation proc-
ess. In this section, we briefly address the actual simulation of the
process and which parameters we used to control it. We also pro-
vide some information about the simulation software used. Finally,
we explain how we reused the process to run additional simulations
with different imputation methods in order to obtain benchmarking
figures.

6.5.1 Parameters
Each of the three steps in the process described in Section 6.4 is
guided by a number of parameters. As discussed, two reduction lim-
its, the case reduction limit and the data set reduction limit, con-
strain the data removal step. Based on the number of attributes and
cases in the original data set, we used the following values in the
simulation:

• Case reduction limit = 3 (inclusive)
• Data set reduction limit = 27 (inclusive)

With six attributes in each case, the case reduction limit means that
cases with less than 50% of the attribute values left were discarded
in step 2-1. The reason for this limit is that we wanted each imputed
case to have at least equally much real data as imputed data.
Simulation 141

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
With 54 cases in the original data set, the data set reduction limit
means that data sets with less than 50% of the cases left were dis-
carded in step 2-2. Since each case is a respondent, we wanted to
make sure that each data set being imputed contained at least half of
the respondents in the original data set.

The removal step generated data sets where 5, 10, 15, 20, 25, 30, 35,
40, 45, 50, 55 and 60 percent data had been removed (however, as
discussed in Section 6.4.1, the actual percentages became different).
For each percentage, 1 000 data sets were generated, which means
that a total of 12 000 data sets were generated. The simulation was
controlled so that the removal step would generate the requested
number of data sets even if some data sets were discarded because
of the data set reduction limit.

In the imputation step, the controlling parameters depend on the
imputation method. For the k-NN method, the only controlling
parameter is the choice of which k-values to use when imputing
data sets. We decided to use odd values in an interval from 1 to C,
inclusively. Even though we knew that the CC strategy would fail at
k = A + 1, we expected the IC strategy to be able to handle larger k-
values.

6.5.2 Software
In order to execute the simulation, an application for carrying out
the data removal, imputation and evaluation steps was written. In
addition, Microsoft Excel and Microsoft Access were used for ana-
lysing some of the results from the evaluation step.

In order to validate that the application worked correctly with
respect to the k-NN method, a special data set was designed. The
data set contained a low number of cases, in order to make it feasi-
ble to impute data manually, and was crafted so that the imputation
should give different results both for different k-values, and for the
two neighbour strategies. By comparing the outcome of the imputa-
tions performed by the application to the outcome of imputations
made manually, it was decided that the implementation of the k-NN
method was correct. To further assess this fact, a number of appli-
cation features were inspected in more detail: the calculation of
Euclidean distance, the calculation of median, and the selection of k
donors for both strategies. Finally, a number of entries in the simu-
lation results were randomly picked and checked for feasibility and
correctness.
142 Simulation

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
The implementation of the remaining imputation methods was
deemed correct through code reviews.

6.5.3 Process Reuse
To be able to benchmark k-NN against the other imputation meth-
ods, we took advantage of the fact that we could reuse the results
from the data removal step. We instructed the application to save
the 12 000 incomplete data sets before passing them on to the
imputation step. To obtain the benchmarking figures, we ran the
simulation again for each of the other imputation methods except
Random Draw Substitution, this time skipping the data removal
step and feeding the saved incomplete data sets directly to the
imputation step. This way, the other imputation methods worked
with the same incomplete data sets as the k-NN method.

Moreover, we had constructed the application to accept a reference
data set in the evaluation step, in case the data removal step was
omitted. This allowed us to obtain values for the R, Q and MSE met-
rics.

6.6 Results

In this section, we present the results from the simulations of the k-
NN method and the other imputation methods. First, we provide
descriptive statistics of the incomplete data sets generated in the ini-
tial simulation (and reused in subsequent simulations). Then, we
address the questions posed initially as follows:

• We compare the results for different values of k in order to find
the appropriate number of donors. In doing so, we also look at
differences between the CC and IC strategies, to assess whether
or not the IC strategy is appropriate to use.

• We compare the results from the original simulation with results
from simulations using data sets with 12 and 18 attributes,
respectively.

• We look at how the performance of k-NN changes for different
percentages of missing data, in order to find a limit where the
method stops being usable.

• Finally, we compare the performance of k-NN with the per-
formance of the other imputation methods described in Section
6.3, in order to be able to judge its relative goodness.
Results 143

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
6.6.1 Incomplete Data Sets
As discussed in Section 6.4.1, there is a difference between the
amount of data removed from the original data set and the amount
of data actually missing from the resulting, incomplete, data sets.
The main reason for this is that entire cases may be discarded
because of the case reduction limit. Another, less significant, reason
is rounding effects. For example, removing 5% of the data in the
original data set means removing 16 attribute values out of 324,
which equals 4.9%.

Table 6.2 shows descriptive statistics for the incomplete data sets
generated in the removal step. Each row represents the 1 000 data
sets generated for the percentage stated in the left-most column.
The second and third columns contain the mean and standard devi-
ation (expressed with the same magnitude as the mean) of the per-
centage of missing data, respectively. The fourth and fifth columns
contain the average number of cases and the average number of
complete cases in each data set, respectively. Finally, the sixth col-
umn contains the average number of imputations made on each
data set. This corresponds roughly to the average number of cases
(), which is the upper limit of k.

Table 6.2 Overview of Incomplete Data Sets

Pct.
Mean
missing
data (%)

s Avg.
#imp.

5 4.9 0.1 54.0 39.8 54.0

10 9.8 0.3 53.9 28.8 54.0

15 14.5 0.5 53.7 20.4 53.9

20 19.0 0.8 53.2 14.2 53.6

25 23.4 1.0 52.1 9.6 52.6

30 27.2 1.2 50.5 6.3 51.0

35 30.8 1.3 48.4 4.0 48.9

40 34.4 1.3 46.0 2.4 46.5

45 38.0 1.3 43.1 1.5 43.6

50 42.1 1.3 40.1 0.8 40.6

55 46.5 1.3 37.4 0.4 37.9

60 51.5 1.3 34.9 0.2 35.4

C

C A
144 Results

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
6.6.2 Comparison of k-Values and Strategies
For each percentage of missing data, we plotted the ability metric
and the quality metrics for different values of k and for both of the
neighbour selection strategies. It is not necessary to show all the 24
resulting diagrams, as there is a common pattern for all percentages.
To illustrate this pattern, we show the diagrams for the data sets
with 14.5% and 19.0% missing data, respectively, in Figure 6.3.

The diagrams in the figure show the ability and quality for both the
CC strategy and the IC strategy. In the upper diagram, the ability (R)

Figure 6.3 Performance at 14.5% and 19.0% Missing Data, CC and IC
Results 145

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
is 1.0 up until k is around 15 for both strategies, after which it falls
and reaches 0.5 when k is around 21 for the CC strategy and slightly
more for the IC strategy. The latter limit coincides with the average
number of complete cases () in the data sets for this percentage
(see Table 6.2). Similarly, in the lower diagram we see that the ability
is 1.0 up until k is around 9, and falls to 0.5 when k is around 15.
Such limits, albeit different, exist for other percentages as well.

Both diagrams further show that the precision (Q) of the method
starts at around 0.4 when k is 1, and increases up to around 0.5
when k reaches 5. Thereafter, the precision is fairly unaffected by
the value of k and varies only slightly on a “ledge” of k-values, an
observation similar to that made by Troyanskaya et al. [116]. This is
true for both strategies. Because of the priorities of the perform-
ance metrics, discussed in Section 6.4.3, the ledge has a natural
upper limit as the ability of the method drops. The initial increase in
precision and the ledge of k-values exist for other percentages as
well, up to a percentage where the drop in ability occurs already for
a low k. In our data, this happens when around 30% data is missing,
in which case the ability drops to 0.8 for the CC strategy and 0.9 for
the IC strategy already when k is 3.

The mean square error (MSE), which is the tertiary performance
metric, starts off high but shows a noticeable decrease as k increases
to 7. Then, it slowly increases for higher k-values on the aforemen-
tioned ledge. Although the increase is minimal, it seems to concur
with the observation made in Section 6.3.5, that the estimated
replacement values get worse as the mean distance to the donors
increase. The described pattern in mean square error occurs for
both strategies and for other percentages as well.

The differences between the neighbour strategies can be seen by
comparing the black curves, representing the CC strategy, to the
grey curves, representing the IC strategy. As can be seen, the curves
for R, Q and MSE are nearly identical between the strategies. The
main difference is that the ability (R) of the method, as expected,
does not drop as fast for the IC strategy as it does for the CC strat-
egy. Two important observations regarding the IC strategy are that
the precision is generally not lower than for the CC strategy, and the
mean square error is not larger.

We see, based on the discussion about the performance metrics
above, that k should be selected so that it is large enough to be on
the ledge, but low enough to minimise the mean square error. Since

A

146 Results

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
the ledge gradually diminishes for higher percentages of missing
data, k would preferably depend on the amount of missing data. In
fact, the dependency should be on the number of available neigh-
bours for at least two reasons. First, the drop in ability occurs
because the number of available neighbours decreases. For the CC
strategy, the number of available neighbours is the number of com-
plete cases. For the IC strategy, it is slightly more, but not so much
more that the number of complete cases is an unfit approximation.
Second, removing a certain percentage of data from two data sets
with different numbers of attributes but the same number of cases
would result in different numbers of complete cases.

Table 6.3 and Table 6.4 show the observed optimal k-values for the
CC strategy and the IC strategy, respectively, given the average
number of complete cases for the simulated percentages. It can be
seen that the optimal value of k for a certain number of neighbours
is the same regardless of strategy. The tables also show the values of
R, Q and MSE for each optimal k-value. As can be seen, the quality
metrics get gradually worse as the number of complete cases, and
thus the ability of the method, decreases.

Looking for an appropriate model for k, we compared each optimal
k-value to the square root of the average number of complete cases,
as suggested by Duda and Hart [33]. The reason they suggest this
model is that k should be large enough to give a reliable result, but
small enough to keep the donors as close as possible. This concurs
with our own requirements on k. Thus, we have chosen to examine

Table 6.3 Optimal k-Values with R, Q and MSE for the CC Strategy

39.8 28.8 20.4 14.2 9.6 6.3 4.0 2.4 1.5 0.8 0.4 0.2

k 7 7 7 7 5 3 1 1 1 1 1 1

R 1.00 1.00 1.00 1.00 0.99 0.98 0.99 0.93 0.80 0.57 0.37 0.20

Q 0.52 0.51 0.51 0.50 0.48 0.47 0.42 0.42 0.41 0.41 0.40 0.40

MSE 1.56 1.54 1.53 1.55 1.58 1.63 1.88 1.89 1.94 1.93 1.95 1.95

Table 6.4 Optimal k-Values with R, Q and MSE for the IC Strategy

39.8 28.8 20.4 14.2 9.6 6.3 4.0 2.4 1.5 0.8 0.4 0.2

k 7 7 7 7 5 3 1 1 1 1 1 1

R 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.92 0.82 0.69 0.56

Q 0.52 0.51 0.51 0.50 0.49 0.47 0.43 0.42 0.42 0.42 0.42 0.42

MSE 1.56 1.54 1.52 1.54 1.57 1.62 1.87 1.88 1.90 1.90 1.90 1.90
Results 147

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
, i.e. the square root of the average number of
complete cases after data removal, rounded to the nearest odd inte-
ger. This function is compared to the optimal k-values in Table 6.5.
As can be seen, the function underestimates k somewhat in the
mid-range of missing data. This does not mean that the calculated
k-values are inappropriate, though. The relative errors in R, Q and
MSE between the non-matching calculated and optimal k-values are
for the CC strategy within the ranges 0-0.80%, 0.63-4.03% and
0.44-4.19%, respectively, and for the IC strategy within the ranges
0-0.45%, 0.80-4.42% and 0.31-4.48%, respectively.

6.6.3 Comparison of Attribute Counts
As mentioned, the number of complete cases for a data set with a
certain percentage of missing data depends on, among other things,
the number of attributes in the data set. Thus, in order to further
test our findings, we performed two additional simulations with the
k-NN method. In the first, the number of attributes was increased
to 12 by simply appending a copy of each case to itself. In the sec-
ond simulation, the number of attributes was increased to 18 in a
similar way. The case reduction limits were increased accordingly.
Since the number of cases was unchanged in these extended data
sets, a certain percentage of removed data yielded more incomplete
cases compared to the data set with six attributes. Consequently, the
ability of the method drops quicker with more attributes.

For 12 attributes and 4.9% missing data (5% removed), using k = 3
and the IC strategy results in and . The results
are the same with 18 attributes, also with 4.9% missing data (5%
removed), k = 3 and the IC strategy.

The diagrams in Figure 6.4 show the results of imputing data sets
with on average 9.9% missing data using the IC strategy. With 12
attributes, the average number of complete cases at this percentage
is 15.3, and with 18 attributes it is 8.0. The precision (Q) is highest at
k = 3 in both diagrams, but declines as k increases instead of show-
ing a ledge as was the case with six attributes. Another difference is
that the precision generally is higher with more attributes. Also, the

Table 6.5 Optimal k vs. Calculated k

39.8 28.8 20.4 14.2 9.6 6.3 4.0 2.4 1.5 0.8 0.4 0.2

Optimal 7 7 7 7 5 3 1 1 1 1 1 1

Calculated 7 5 5 3 3 3 1 1 1 1 1 1

k RoundOdd A()=

Q 0.65≈ MSE 1.15≈
148 Results

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
mean square error starts low in both diagrams, and the increase as k
grows larger is articulated compared to the results with six
attributes. These observations further support our requirements on
k, as stated earlier.

In total, the results from the two additional simulations indicate that
it is suitable to use with higher numbers of
attributes as well, although comparing the optimal k-values and the
calculated ones reveals that the optimal values are slightly lower for
low percentages of missing data. As with six attributes, both Q and
MSE get gradually worse as the percentage of missing data increases.
For 12 attributes, the method can maintain maximum ability (at
k = 1) up to 19.8% missing data (20% removed), whereas for 18
attributes, the corresponding limit is at 14.9% missing data (15%
removed).

Figure 6.4 9.9% Missing Data, 12 and 18 Attributes, IC

k RoundOdd A()=
Results 149

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
6.6.4 Comparison of Percentages
In addition to comparing the ability and quality for different k-val-
ues, we compared the ability of the method for different amounts
of missing data, using for each percentage the optimal k-value
found earlier. The diagram (for six attributes) can be seen in Figure
6.5 (for the raw numbers, see Table 6.3 and Table 6.4). Both neigh-
bour strategies provide nearly maximum ability (R) up to around
30% missing data (when, on average, 88% of the cases are incom-
plete). After that, the ability when using the CC strategy drops rap-
idly down to 0.2 at around 50% missing data (when, on average,
98% of the cases are incomplete), meaning that only 20% of the
incomplete cases were recovered. The IC strategy, on the other
hand, drops less drastically and can recover nearly 60% of the
incomplete cases at around 50% missing data.

The figure clearly shows that the IC strategy is more advantageous
when more data is missing. Because the comparison of k-values
showed that the IC strategy does not give lower precision (Q) or
larger mean square error (MSE) than the CC strategy, we consider it
more favourable regardless of the amount of missing data.

6.6.5 Benchmarking
Here, we present the benchmarking of the k-NN method against
the four other imputation methods. As basis for the comparisons,
we use only the results from the original data set with six attributes
imputed using the IC strategy.

For Random Draw Substitution, where the selection of replacement
values does not depend on the data distribution, it is straightfor-

Figure 6.5 Ability vs. Amount of Missing Data
150 Results

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
ward to calculate the expected values of R, Q and MSE. For the
informed imputation methods, we have performed additional simu-
lations reusing the incomplete data sets generated initially (see Sec-
tion 6.5.3).

Random Draw Substitution. With RDS, we randomly draw a
replacement value from the set of response options, i.e. from 1 to 5.
Each response option has a 20% chance of being selected, which
means that the expected value of Q is 0.2. Since this imputation
technique never can fail to impute (as opposed to k-NN, which fails
when there are too few neighbours), the expected value of R is 1.

The expected value of MSE can be calculated given the average dis-
tribution of response options in the original data set. Let
denote the probability that the correct value of a missing value is z.
Given the fact that any value has a 20% chance of being imputed,
the expected total MSE (TMSE) for all imputations can be expressed
as

where x is the imputed value and y is the correct value. The problem
is that TMSE includes the errors also when the correct value is
imputed. These errors are all zero, which means that TMSE is lower
than the expected MSE, which is defined as the relative error for the
incorrectly imputed values. To obtain the correct MSE, TMSE must
be divided by the probability of imputing an incorrect value:

With , , which is
the average distribution of response options in the original data, we
obtain .

Random Imputation. With RI, we draw a replacement value
from the set of available answers to the current question, which
means that the distribution of response options is taken into con-
sideration. Given that the missingness mechanism for our data is
MCAR, the distributions in the incomplete data sets can be
assumed to equal the distribution in the complete data set. Thus, RI

(6-5)

(6-6)

P z()

TMSE 0.2 P y() x y∠ 2×()
y
∑

x
∑×=

MSE TMSE
0.8

----------------=

P z() 0.015 0.296 0.340 0.327 0.022, , , ,{ }= 1 z 5≤ ≤

MSE 3.465≈
Results 151

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
can be expected to perform reasonably well. With MAR as the
missingness mechanism, the performance could be worse.

As with RDS, this imputation technique cannot fail, and the
expected value of R is 1. The simulation with RI as the imputation
method resulted in and averaged over all
12 000 incomplete data sets. The averages for each individual per-
centage did not deviate much from the total averages.

Median Imputation. With MEI, the replacement value is the
median of all available answers to the current question. As pointed
out in Section 6.3.3, the frequency of the response option that cor-
responds to the median has large effect on the imputation perform-
ance. Figure 6.1 shows that our data is favourable for MEI in this
aspect, since most questions have frequent median response
options.

MEI cannot fail to impute, which means that the expected value of
R is 1. The simulation with MEI as the imputation method gave the
values and averaged over all incomplete data
sets. The averages of Q for individual percentages did not differ
much from the total average. However, for MSE, the averages
ranged from 1.55 to 1.61.

Mode Imputation. With MOI, the replacement value is the
mode of all available answers to the current question. If the distri-
bution of answers is multimodal, one of the modes is selected ran-
domly. As described in Section 6.3.4, MOI does not perform well if
the response option that corresponds to the mode is only slightly
more frequent than other response options. Figure 6.1 clearly
shows that this is not the case in our data, which means that we can
expect MOI to perform well.

MOI cannot fail to impute, which means that the expected value of
R is 1. The simulation with MOI as the imputation method resulted
in and averaged over all incomplete data sets.
The variations in average Q and average MSE for individual percent-
ages were noticeable; Q varied from 0.51 to 0.56, and MSE varied
from 1.79 to 1.90.

6.6.6 Summary and Interpretation of the Results
The results indicate that the k-NN method performs well on the
type of data we have used, provided that a suitable value of k is

Q 0.41≈ MSE 1.97≈

Q 0.50≈ MSE 1.59≈

Q 0.54≈ MSE 1.85≈
152 Results

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
selected. Table 6.6 presents an overview of the comparisons made
in evaluating k-NN, whereas Table 6.7 shows an overview of the
benchmarking against the other imputation methods.

Table 6.6 shows that the IC strategy is favourable over the CC strat-
egy, since it allows k-NN to maintain high ability for higher percent-
ages of missing data, while the precision and mean square error are
equally good. In addition, Figure 6.5 shows that, when using the IC

Table 6.6 Results Overview

Attr. CC IC

6

• R starts to drop at around 30%
missing data.

• With maximum ability, Q is at
best 0.52 and at worst 0.42.

• With maximum ability, MSE is at
best 1.53 and at worst 1.88.

• R drops less drastically than CC
when the percentage of missing
data increases.

• R starts to drop between 30 and
35% missing data.

• Q and MSE are similar to when
using CC.

12 –

• R drops earlier (as there are fewer
complete cases), at around 20%
missing data.

• Q is higher, at best 0.65.

• MSE is lower, at best 1.15.

18 –

• R drops even earlier, at around
15% missing data, than with 12
attributes.

• Q and MSE are similar to when
using 12 attributes.

Table 6.7 Benchmarking Overview

Method R Q MSE

k-NN (IC), 6
attr.

1 (up to 30-35%
missing data) 0.42 to 0.52 1.53 to 1.88

k-NN (IC),
12/18 attr.

1 (up to 15-20%
missing data) up to 0.65 down to 1.15

RDS 1 0.2 3.465

RI 1 0.41 1.97

MEI 1 0.50 1.55 to 1.61

MOI 1 0.51 to 0.56 1.79 to 1.90
Results 153

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
strategy, nearly 60% of the incomplete cases could be saved when
50% of the data were missing.

Furthermore, it can be seen that k-NN performs better with more
attributes, both with respect to precision and mean square error.
This is due to the fact that with more attributes, the method has
more information available to discriminate between neighbours
when it comes to distance.

It can be seen in Table 6.7 that RDS, as expected, does not perform
very well. Comparing with the values of Q and MSE for k-NN, it is
clear that k-NN easily outperforms the entirely random case. Fur-
thermore, RI performs much better than RDS. The precision (Q) is
twice as high, and the error (MSE) is much lower. However, com-
pared to k-NN, RI falls short.

MEI touches upon the six-attribute k-NN in terms of both preci-
sion and mean square error, and given that the ability (R) is always 1,
it seems to be a viable alternative. Disadvantages of MEI are that it
is more sensitive than k-NN to the distribution of response options
(see Section 6.3.3), and that it does not perform better when the
number of attributes increases. Furthermore, as with all single-value
imputation, MEI may result in a disturbed data distribution, which
becomes particularly noticeable when much data are missing.

MOI does perform slightly better than the six-attribute k-NN with
respect to precision (Q), but performs worse with respect to relative
error (MSE). As with MEI, MOI is sensitive for the distribution of
response option and does not improve with more attributes. The
reason for MOI having worse MSE than MEI is that the modes of
the majority of the questions in our data set correspond to response
options 2 or 4, which do not dominate the distributions. Thus, if
the mode is not the correct value, the error will be rather large.

With 12 or 18 attributes, k-NN outperforms both MEI and MOI.
These methods does not scale with respect to number of attributes,
since they only work with one attribute at a time.

Judging from the results, k-NN proved to have good performance.
However, both Median Imputation and Mode Imputation could
compete with k-NN, given that both these methods were favoured
by the distribution of our data. Median Imputation had similar pre-
cision and similar relative error, whereas Mode Imputation had
slightly better precision, but worse relative error. Both methods will
154 Results

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
always have maximum ability (i.e., save all incomplete cases) which
makes them attractive when much data is missing and there are
many incomplete cases.

It is of course desirable to achieve good values on all three per-
formance metrics. However, when the performance decreases for
whichever of the metrics, it is the priorities between them that
should determine whether the imputation was successful or not.
For example, if the quality drops but the ability stays high, the
imputation may still be considered successful, because resorting to
listwise deletion (or any other type of deletion procedure) may not
be an option.

6.7 Validity and Future Work

In this section, we discuss threats to the validity of the evaluation
and outline possible future work.

6.7.1 Threats to Validity
In the k-NN method, we used Euclidean distance as the similarity
measure. However, the data was of Likert type, i.e., on an ordinal
scale. This makes it debatable to perform distance calculations,
which normally requires an interval scale. Still, we argue that the
distance calculations were relevant, and thus the validity threat min-
imal, because effort was put into making the distances between Lik-
ert numbers similar. Furthermore, our results show that the k-NN
imputations were successful after all.

In step 1 of the evaluation, we removed data from the original data
set completely at random, which means that the missingness mech-
anism was MCAR. It is more likely, though, that missing responses
to a questionnaire are MAR, as pointed out by Raaijmakers [93]. In
other words, the missingness mechanism used in the evaluation did
not fully represent a real-world situation. Due to the nature of our
data, we could not avoid this problem.

It may be dangerous to use incomplete cases as donors when the
missingness mechanism is MAR, for example if incomplete cases
can be said to contain less valuable data. This could be the case if
missing answers were an indication that the respondents did not
take the questionnaire seriously. As a precaution, we recommend
Validity and Future Work 155

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
using a limit to prevent cases with far too much missing data both
from being imputed and from acting as donors.

A threat to the generalisability of the results is that we used a fairly
small data set with 54 cases as a basis for the simulation. With a
small data set with missing data, the neighbours that can be used as
donors are few. Hence, the outcome of the imputation is sensitive
to disturbances, such as outliers, in the data. We do, however,
believe that it is not uncommon to get a small data set when collect-
ing data from a survey, which means that our simulation should be
relevant from this point of view.

A threat to the evaluation of k-NN with 12 or 18 attributes is that
we created these extended data sets by appending one or two copies
of each case to itself. This means that the similarity, if any, between
two cases is duplicated as well. In a real data set with 12 or 18
attributes, two cases could be similar for six of the attributes, but
different for six other attributes. This may mean that the perform-
ance metrics for 12 and 18 attributes are overly positive.

6.7.2 Future Work
Due to the nature of our data, we used only MCAR as missingness
mechanism (see Section 6.6.1). In future work, it would be interest-
ing to study imputation of Likert data with systematic differences
that allow MAR missingness. For example, Song et al. have con-
cluded that the missingness mechanism does not significantly affect
the k-NN method in the context of software project effort data
[112].

Each of the questions in the original questionnaire used a Likert
scale with five response options. However, it is also common to use
Likert scales with more response options, for example seven or ten.
Hypothetically speaking, k-NN should gain from the fact that more
response options means that it would be easier to differentiate
between neighbours (and find close donors), but should lose from
the fact that more response options makes it easier for two
respondents to answer similarly, yet differently. The other imputa-
tion methods would likely have worse performance, as more
response options, provided they were used, would result in a wider
distribution with smaller frequencies for individual response
options. These hypotheses would be interesting to test in future
work.
156 Validity and Future Work

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
6.8 Conclusions

In this chapter, we have presented an evaluation of the performance
of the k-Nearest Neighbour imputation method when using homo-
geneous Likert data. This type of ordinal data is common in surveys
that collect subjective opinions from individuals. We performed the
evaluation by simulating non-responsiveness in questionnaire data
and subsequent imputation of the incomplete data.

Since we simulated the evaluation process, we were able to obtain
great variation in the imputation parameters and operate on a large
number of incomplete data sets. In the main imputation process, we
used different values of k, and also two different strategies for
selecting neighbours, the CC strategy and the IC strategy. The CC
strategy, which concurs with the rules of the k-NN method, allows
only complete cases to act as neighbours. The IC strategy allows as
neighbours also incomplete cases where attribute values that would
not contribute to the distance calculation are missing.

In order to measure the performance of the method, we defined
one ability metric and two quality metrics. Based on the results of
the simulation, we compared these metrics for different values of k
and for different amounts of missing data. We also compared the
ability of the method for different amounts of missing data using
optimal values of k. Furthermore, we performed additional simula-
tions with more attributes, in order to see how the number of
attributes affected the performance of the method. Finally, we
benchmarked the method against four other imputation methods,
in order to be able to assess its relative goodness. The methods
were Random Draw Substitution, Random Imputation, Median
Imputation and Mode Imputation. The benchmarking was per-
formed through additional simulations where the k-NN method
was replaced by the other methods.

Our findings lead us to conclude the following in response to our
research questions:

• What is the performance of the k-NN method in relation
to the other methods? Our results show that the k-NN
method performed well when imputing homogeneous Likert
data, provided that an appropriate value of k was used. It out-
performed both Random Draw Substitution and Random
Imputation, while both Median Imputation and Mode Imputa-
tion performed equally good or slightly better. However, it is
Conclusions 157

Benchmarking k-Nearest Neighbour Imputation With Homogeneous Likert Data
clear that our data was favourable both for Median Imputation
and Mode Imputation. With a different distribution of response
options, these methods could perform worse, whereas the k-
NN method should not, given that it is less sensitive to the data
distribution.

• How many donors should preferably be selected? It is not
best to use k = 1, as we have seen is common, in all situations.
Our results show that using the square root of the number of
complete cases, rounded to the nearest odd integer, is a suitable
model for k.

• At which amount of missing data is it no longer relevant to
use the method? The outcome of the imputation depends on
the number of complete cases more than the amount of missing
data. The method was successful even for high proportions of
incomplete cases. For example, with six attributes and the IC
strategy, the method had close to maximum ability when 95% of
the cases were incomplete.

• Is it possible to decrease the sensitivity to the amount of
missing data by allowing imputation from certain incom-
plete cases as well? When using the IC strategy, the ability of
the method increased substantially compared to the CC strategy
for larger amounts of missing data, while there was no negative
impact on the quality of the imputations for smaller amounts of
missing data. Consequently, the IC strategy seems, from a qual-
ity perspective, safe to use in all situations.

• What effect has the number of attributes (variables) on the
results? The k-NN method proved to scale well to more
attributes, as both the precision and the mean square error
improved for 12 and 18 attributes compared to six attributes. It
is also evident that the other imputation methods are not posi-
tively affected by the number of attributes, as they do not make
use of the additional amount of information.
158 Conclusions

References

[1] Aaen, I. (2003). Software Process Improvement: Blueprints versus
Recipes. IEEE Software, 20, 86-92.

[2] ACM (n.d.). ACM Guide. Retrieved March 22, 2005.
Web site: portal.acm.org

[3] ANSI/IEEE Std 830-1984 (1984). IEEE Guide to Software
Requirements Specifications. Institute of the Electrical and Electron-
ics Engineers.

[4] Aurum, A. and Wohlin, C. (2003). The Fundamental Nature of
Requirements Engineering Activities as a Decision-Making Process.
Information and Software Technology, 45, 945-954.

[5] Baddoo, N. and Hall, T. (2003). De-motivators for Software Process
Improvement: an Analysis of Practitioners’ Views. Journal of Sys-
tems and Software, 66, 23-33.

[6] Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern Information
Retrieval. Addison-Wesley.

[7] Basili, V. and Green, S. (1994). Software Process Evolution at the
SEL. IEEE Software, 11, 58-66.

[8] Bass, L., Clements, P. and Kazman, R. (2003). Software Architecture
in Practice. Addison-Wesley.

[9] Batista, G. E. A. P. A. and Monard, M. C. (2001). A Study of K-
Nearest Neighbour as a Model-Based Method to Treat Missing
Data. In Proceedings of the Argentine Symposium on Artificial Intelli-
gence, September, Buenos Aires, Argentina, pp. 1-9.

[10] Berander, P. and Wohlin, C. (2004). Differences in Views between
Development Roles in Software Process Improvement – A Quanti-
tative Comparison. In Proceedings of the International Conference on
Empirical Assessment in Software Engineering, May 24-25, Edin-
burgh, Scotland, pp. 57-66.

[11] Berry, M. (1992). Large Scale Singular Value Computations. Interna-
tional Journal of Supercomputer Applications, 6(1), 13-49.

[12] Berry, M. W., Dumais, S. T. and O’Brien, G. W. (1995). Using Linear
Algebra for Intelligent Information Retrieval. SIAM Review, 37(4),
573-595.

[13] Bohner, S. A. (2002). Extending Software Change Impact Analysis
into COTS Compo-nents. In Proceedings of the Annual NASA
159

Goddard Software Engineering Workshop, December 4-6, Greenbelt,
Maryland, USA, pp. 175-182.

[14] Bohner, S. A. and Arnold, R. S. (1996). Software Change Impact
Analysis. IEEE Computer Society Press.

[15] Bohner, S. A. and Gracanin, D. (2003). Software Impact Analysis in
a Virtual Environment. In Proceedings of the Annual NASA God-
dard Software Engineering Workshop, December 2-4, Greenbelt,
Maryland, USA, pp. 143-151.

[16] Bosch, J. (2000). Design & Use of Software Architectures – Adopting
and evolving a product-line approach. Pearson Education.

[17] Bratthall, L., Johansson, E. and Regnell, B. (2000). Is a Design
Rationale Vital when Predicting Change Impact? – A Controlled
Experiment on Software Architecture Evolution. In Proceedings of
the International Conference on Product Focused Software Process
Improvement, June 20-22, Oulu, Finland, pp. 126-139.

[18] Briand, L. C., Labiche, Y. and O’Sullivan, L. (2003). Impact Analysis
and Change Management of UML Models. In Proceedings of the
International Conference on Software Maintenance, September 22-26,
Amsterdam, Netherlands, pp. 256-265.

[19] Bud, R. (1998). Penicillin and the new Elizabethans. British Journal
for the History of Science, 31(3), 305-333.

[20] Cartwright, M. H., Shepperd, M. J. and Song, Q. (2003). Dealing
with Missing Software Project Data. In Proceedings of the Interna-
tional Software Metrics Symposium, September 3-5, Sydney, Aus-
tralia, pp. 154-165.

[21] Chen, K. and Rajich, V. (2001). RIPPLES: Tool for Change in Leg-
acy Software. In Proceedings of the International Conference on Soft-
ware Maintenance, November 6-10, Florence, Italy, pp. 230-239.

[22] Chen, J. and Shao, J. (2000). Nearest Neighbor Imputation for Sur-
vey Data. Journal of Official Statistics, 16(2), 113-131.

[23] Chen, G. and Åstebro, T. (2003). How to Deal with Missing Cate-
gorical Data: Test of a Simple Bayesian Method. Organizational
Research Methods, 6, 309-327.

[24] Chowdhury, G. G. (1999). Introduction to Modern Information
Retrieval. Library Association Publishing.

[25] Clarke, S., Harrison, W., Ossher, H. and Tarr, P. (1999). Subject-Ori-
ented Design: Towards Improved Alignment of Requirements,
Design and Code. In Proceedings of the Conference on Object-Oriented
Programming , Systems, Languages and Applications, November 1-5,
Denver, Colorado, USA, pp. 325-339.
160

[26] Cleland-Huang, J., Chang, C. K. and Wise, J. C. (2003). Automating
performance-related impact analysis through event based traceabil-
ity. Requirements Engineering, 8(3), 172-182.

[27] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J. and Little,
R. (2003). Documenting Software Architectures: Views and Beyond.
Addison-Wesley.

[28] Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales.
Educational and Psychological Measurement, 20(1), 37-46.

[29] Conradi, R. and Dybå, T. (2001). An Empirical Study on the Utility
of Formal Routines to Transfer Knowledge and Experience. In Pro-
ceedings of the Joint European Software Engineering Conference and
ACM SIGSOFT International Symposium on the Foundations of
Software Engineering, September 10-14, Vienna, Austria, pp. 268-
276.

[30] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K. and
Harschman, R. (1990). Indexing by Latent Semantic Analysis. Jour-
nal of the American Society For Information Science, 41, 391-407.

[31] Downey, R. G. and King, C. V. (1998). Missing Data in Likert Rat-
ings: A Comparison of Replacement Methods. Journal of General
Psychology, 125(2), 175-191.

[32] Dressel, S. (1990). Reference Bases in Natural Language and Tech-
nical Language. In Workshop Notes of the International Professional
Communication Conference, September 12-14, Guildford, UK, pp.
86-89.

[33] Duda, R. O. and Hart, P. E. (1973). Pattern Classification and Scene
Analysis. John Wiley & Sons.

[34] Dumais, S. T. (1991). Improving the Retrieval of Information from
External Sources. Behavior Research Methods, Instruments and Com-
puters, 23(2), 229-236.

[35] Dumais, S. T. (1993). LSI meets TREC: A Status Report. The First
Text REtrieval Conference (TREC1), National Institute of Stand-
ards and Technology Special Publication 500-207.

[36] Egyed, A. (2003). A Scenario-Driven Approach to Trace Depend-
ency Analysis. IEEE Transactions on Software Engineering, 29(2),
116-132.

[37] Eick, S. G., Graves, L., Karr, A. F. and Marron, J. S. (2001). Does
code decay? Assessing the Evidence from Change Management
Data. IEEE Transactions on Software Engineering, 27(1), 1-12.
161

[38] Engels, J. M. and Diehr, P. (2003). Imputation of Missing Longitudi-
nal Data: A Comparison of Methods. Journal of Clinical Epidemiol-
ogy, 56, 968-976.

[39] Engineering Village 2 (n.d.). Compendex & Inspec. Retrieved March
22, 2005.
Web site: www.engineeringvillage2.org

[40] Etzkorn, L. H. and Davis, C. G. (1997). Automatically Identifying
Reusable OO Legacy Code. Computer, 30(10), 66-71.

[41] Fasolino, A. R. and Visaggio, G. (1999). Improving Software Com-
prehension through an Automated Dependency Tracer. In Proceed-
ings of the International Workshop on Program Comprehension, May
5-7, Pittsburgh, Pennsylvania, USA, pp. 58-65.

[42] Fowler, M. (2003). Who Needs an Architect?. IEEE Software, 20,
11-13.

[43] Furnas, G. W., Deerwester, S., Dumais, S. T., Landauer, T. K.,
Harshman, R. A., Streeter, L. A. and Lochbaum, K. E. (1988).
Information Retrieval Using a Singular Value Decomposition
Model of Latent Semantic Structure. In Proceedings of the Annual
International ACM SIGIR Conference on Research and Development
in Information Retrieval, June 13-15, Grenoble, France, pp. 465-480.

[44] Gallagher, K. B. (1996). Visual Impact Analysis. In Proceedings of the
International Conference on Software Maintenance, November 4-8,
Monterey, California, USA, pp. 52-58.

[45] Gallagher, K. B. and Lyle, J. R. (1991). Using Program Slicing in
Software Maintenance. IEEE Transactions on Software Engineering,
17(8), 751-761.

[46] Garson, G. D. (n.d.). PA 765 Statnotes: An Online Textbook.
Retrieved March 3, 2005.
Web site: www2.chass.ncsu.edu/garson/pa765/statnote.htm

[47] Gediga, G. and Düntsch, I. (2003). Maximum Consistency of
Incomplete Data via Non-Invasive Imputation. Artificial Intelli-
gence Review, 19(1), 93-107.

[48] Glass, R. L., Vessey, I. and Ramesh, V. (2002). Research in Software
Engineering: an Analysis of the Literature. Information and Software
Technology, 44, 491-506.

[49] Gmel, G. (2001). Imputation of Missing Values In the Case of a
Multiple Item Instrument Measuring Alcohol Consumption. Statis-
tics in Medicine, 20, 2369-2381.

[50] Godfrey, L. W. and Lee, E. H. S. (2000). Secrets from the Monster –
Extracting Mozilla’s Software Architecture. In Proceedings of the
162

International Symposium on Constructing Software Engineering Tools,
June 5, Limerick, Ireland, pp. 15-23.

[51] Hall, T. and Wilson, D. (1997). Views of Software Quality: a Field
Report. IEE Proceedings on Software Engineering, 144, 111-118.

[52] Haney, F. M. (1972). Module Connection Analysis – A Tool for
Scheduling Software Debugging Activities. In AFIPS Joint Compu-
ter Conference, December 5-7, Anaheim, California, USA, pp. 173-
179.

[53] Hoffmann, M., Kühn, N. and Bittner, M. (2004). Requirements for
Requirements Management Tools. In Proceedings of the IEEE Inter-
national Requirements Engineering Conference, September 6-10,
Kyoto, Japan, pp. 301-308.

[54] Hu, M., Salvucci, S. M. and Cohen, M. P. (1998). Evaluation of
Some Popular Imputation Algorithms. In Proceedings of the Survey
Research Methods Section, American Statistical Association, pp. 308-
313.

[55] Huisman, M. (2000). Imputation of Missing Item Responses: Some
Simple Techniques. Quality and Quantity, 34, 331-351.

[56] Humphrey, W. (1989). Managing the Software Process. Addison-Wes-
ley.

[57] IEEE (n.d.). IEEE Xplore. Retrieved March 22, 2005.
Web site: ieeexplore.ieee.org

[58] Karlström, D., Runeson, P. and Wohlin, C. (2002). Aggregating
Viewpoints for Strategic Software Process Improvement – a
Method and a Case Study. IEE Proceedings on Software Engineering,
149, 143-152.

[59] Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoa-
glin, D. C., El Emam, K. and Rosenberg, J. (2002). Preliminary
Guidelines for Empirical Research in Software Engineering. IEEE
Transactions on Software Engineering, 28(8), 721-734.

[60] Klappholz, D., Bernstein, L. and Port, D. (2003). Assessing Attitude
Towards, Knowledge of, and Ability to Apply, Software Develop-
ment Process. In Proceedings of the Conference on Software Engineer-
ing Education and Training, , Madrid, Spain, pp. 268-278.

[61] von Knethen, A. and Grund, M. (2003). QuaTrace: A Tool Envi-
ronment for (Semi-) Automatic Impact Analysis Based on Traces.
In Proceedings of the International Conference on Software Mainte-
nance, September 22-26, Amsterdam, Netherlands, pp. 246-255.

[62] Kolda, T. G. (1997). Limited-Memory Matrix Methods with Applica-
tions. Ph.D. thesis, University of Maryland, Maryland, USA.
163

[63] Kotonya, G. and Sommerville, I. (1998). Requirements Engineering –
Processes and Techniques. John Wiley & Sons.

[64] Lam, W. and Shankararaman, V. (1999). Requirements Change: A
Dissection of Management Issues. In Proceedings of the EuroMicro
Conference, vol. 2, September 8-10, Milan, Italy, pp. 244-251.

[65] Landauer, T. K., Foltz, P. W. and Laham, D. (1998). Introduction to
Latent Semantic Analysis. Discourse Processes, 25, 259-284.

[66] Law, J. and Rothermel, G. (2003). Whole Program Path-Based
Dynamic Impact Analysis. In Proceedings of the International Confer-
ence on Software Engineering, May 3-10, Portland, Oregon, USA, pp.
308-318.

[67] Lee, L. (2004). “I’m sorry Dave, I’m afraid I can’t do that”: Linguis-
tics, Statistics, and Natural Language Processing circa 2001. In Com-
puter Science: Reflections on the Field, Reflections from the Field, The
National Academies Press.

[68] Lee, M., Offutt, J. A. and Alexander, R. T. (2000). Algorithmic Anal-
ysis of the Impacts of Changes to Object-Oriented Software. In
Proceedings of the International Conference on Technology of Object-
Oriented Languages and Systems, July 30-August 4, Santa Barbara,
California, USA, pp. 61-70.

[69] De Leeuw, E. D. (2001). Reducing Missing Data in Surveys: An
Overview of Methods. Quality and Quantity, 35, 147-160.

[70] Leffingwell, D. and Widrig, D. (1999). Managing Software Require-
ments – A Unified Approach. Addison-Wesley.

[71] Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry, D. E. and Turski,
W. M. (1997). Metrics and Laws of Software Evolution – The Nine-
ties View. In Proceedings of the International Software Metrics Sympo-
sium, November 5-7, Albuquerque, New Mexico, USA, pp. 20-32.

[72] Lehmann, D. R. and Winer, R. S. (2002). Product Management, 3rd
ed. McGraw-Hill.

[73] Lindvall, M. (1997). An Empirical Study of Requirements-Driven
Impact Analysis in Object-Oriented Systems Evolution. Ph.D. thesis
no. 480, Linköping Studies in Science and Technology, Linköping,
Sweden.

[74] Lindvall, M. and Sandahl, K. (1998). How well do Experienced
Software Developers Predict Software Change?. Journal of Systems
and Software, 43(1), 19-27.

[75] Maciaszek, L. (2001). Requirements Analysis and System Design –
Developing Information Systems with UML. Addison-Wesley.
164

[76] Marcus, A. and Maletic, J. I. (2003). Recovering Documentation-to-
Source-Code Traceability Links using Latent Semantic Indexing. In
Proceedings of the International Conference on Software Engineering,
May 3-10, Portland, Oregon, USA, pp. 125-135.

[77] Merriam-Webster (n.d.). Merriam-Webster Online Dictionary.
Retrieved March 7, 2005.
Web site: www.m-w.com

[78] Mockus, A. and Votta, L. G. (2000). Identifying Reasons for Soft-
ware Changes Using Historic Databases. In Proceedings of the Inter-
national Conference on Software Maintenance, October 11-14, San
Jose, California, USA, pp. 120-130.

[79] McFeeley, B. (1996). IDEALSM: A User's Guide for Software Proc-
ess Improvement. Software Engineering Institute, Carnegie Mellon
University.

[80] Miller, J. (2004). Statistical significance testing – a panacea for soft-
ware technology experiments?. Journal of Systems and Software, 73,
183-192.

[81] Myrtveit, I., Stensrud, E. and Olsson, U. H. (2001). Analyzing Data
Sets with Missing Data: An Empirical Evaluation of Imputation
Methods and Likelihood-Based Methods. IEEE Transactions on
Software Engineering, 27, 999-1013.

[82] Natt och Dag, J., Regnell, B., Carlshamre, P., Andersson, M. and
Karlsson, J. (2002). A Feasibility Study of Automated Support for
Similarity Analysis of Natural Language Requirements in Market-
Driven Development. Requirements Engineering, 7, 20-33.

[83] Natt och Dag, J., Regnell, B., Gervasi, V. and Brinkkemper, S.
(2005). A Linguistic-Engineering Approach to Large-Scale Require-
ments Management. IEEE Software, 22(1), 32-39.

[84] Ngo-The, A. and Ruhe, G. (2005). Decision Support in Require-
ments Engineering. In A. Aurum and C. Wohlin (Eds.), Engineering
and Managing Software Requirements. Springer-Verlag.

[85] Nicholas, J. M. (2001). Project Management for Business and Technol-
ogy: Principles and Practise, 2nd ed. Prentice Hall.

[86] O’Neal, J. S. and Carver, D. L. (2001). Analyzing the Impact of
Changing Requirements. In Proceedings of the International Confer-
ence on Software Maintenance, November 6-10, Florence, Italy, pp.
190-195.

[87] Orlikowski, W. J. and Baroudi, J. J. (1991). Studying Information
Technology in Organizations: Research Approaches and Assump-
tions. Information Systems Research, 2(1), 1-28.
165

[88] Orso, A., Apiwattanapong, T., Law., J., Rothermel, G. and Harrold,
M. J. (2004). An Empirical Comparison of Dynamic Impact Analy-
sis Algorithms. In Proceedings of the International Conference on Soft-
ware Engineering, May 23-28, Edinburgh, Scotland, UK, pp. 491-
500.

[89] Pfleeger, S. L. (1998). Software Engineering: Theory and Practise,
intl. ed. Prentice Hall.

[90] Porter, M. (1997). An Algorithm for Suffix Stripping. In K. Sparck
Jones and P. Willet (Eds.), Readings in Information Retrieval. Mor-
gan Kaufmann Publishers.

[91] Pour G., Griss, M.L. and Lutz M. (2000). The Push to Make Soft-
ware Engineering Respectable. Computer, 33(5), 35-43.

[92] PROFES (n.d.). User Manual - Final Version 1999. Retrieved
March 3, 2005.
Web site: www.vtt.fi/ele/profes/PUMv10.pdf

[93] Raaijmakers, Q. A. W. (1999). Effectiveness of Different Missing
Data Treatments in Surveys with Likert-Type Data: Introducing the
Relative Mean Substitution Approach. Educational and Psychological
Measurement, 59(5), 725-748.

[94] Rainer, A. and Hall, T. (2002). Key Success Factors for Implement-
ing Software Process Improvement: a Maturity-Based Analysis.
Journal of Systems and Software, 62, 71-84.

[95] Ramesh, B. and Jarke, M. (2001). Towards Reference Models for
Requirements Traceability. IEEE Transactions on Software Engi-
neering, 27(1), 58-93.

[96] Ren, X., Shah, F., Tip, F., Ryder, B. and Chesley, O. (2004). Chianti:
A Tool for Change Impact Analysis of Java Programs. In Proceed-
ings of the Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, October 26-28, Vancouver, Canada, pp.
432-448.

[97] Robertson, S. and Robertson, J. (1999). Mastering the Requirements
Process. Addison-Wesley.

[98] Robson, C. (2002). Real World Research, 2nd ed. Blackwell Publish-
ing.

[99] Rohde, D. (n.d.). SVDLIBC. Retrieved March 17, 2005.
Web site: tedlab.mit.edu/~dr

[100] Russ-Eft, D. F. (2004). So what is research anyway?. Human
Resource Development Quarterly, 15(1), 1-4.
166

[101] Ryan, K. (1993). The Role of Natural Language in Requirements
Engineering. In Proceedings of IEEE International Symposium on
Requirements Engineering, January 4-6, San Diego, California, USA,
pp. 240-242.

[102] Sande, I. G. (1983). Hot-Deck Imputation Procedures. In W. G.
Madow and I. Olkin (Eds.), Incomplete Data in Sample Surveys, vol.
3, Proceedings of the Symposium. Academic Press.

[103] Sarwar, B., Karypis, G., Konstan, J. and Riedl, J. (2002). Incremental
Singular Value Decomposition Algorithms for Highly Scalable Rec-
ommender Systems. In Proceedings of the International Conference on
Computer and Information Technology, December 27-28, Dhaka,
Bangladesh.

[104] Scheffer, J. (2002). Dealing with Missing Data. Research Letters in
the Information and Mathematical Sciences, 3, 153-160.

[105] Shahmehri, N., Kamkar, M. and Fritzson, P. (1990). Semi-Auto-
matic Bug Localization in Software Maintenance. In Proceedings of
the Conference on Software Maintenance, November 26-29, San
Diego, California, USA, pp. 30-36.

[106] Siegel, S. and Castellan Jr., N. J. (1988). Nonparametric Statistics for
the Behavioral Sciences, intl. ed. McGraw-Hill.

[107] Smyth, B. (2003). Computing Patterns in Strings. Pearson Education.
[108] Sneed, H. M. (2001). Impact Analysis of Maintenance Tasks for a

Distributed Object-Oriented System. In Proceedings of the Interna-
tional Conference on Software Maintenance, November 6-10, Flor-
ence, Italy, pp. 190-195.

[109] Software Engineering Institute (n.d.). How Do You Define Software
Architecture?. Retrieved March 5, 2005.
Web site: www.sei.cmu.edu/architecture/definitions.html

[110] Sommerville, I. (2001). Software Engineering , 6th ed. Addison-Wes-
ley.

[111] Sommerville, I. and Sawyer, P. (1997). Requirements Engineering –
A Good Practice Guide. John Wiley & Sons.

[112] Song, Q., Shepperd, M. and Cartwright, M. H. (2005). A Short Note
on Safest Default Missingness Mechanism Assumptions. Journal of
Empirical Software Engineering, 10, 235-243.

[113] Strike, K., El Emam, K. and Madhavji, N. (2001). Software Cost
Estimation with Incomplete Data. IEEE Transactions on Software
Engineering, 27, 890-908.
167

[114] Svahnberg, M. (2003). A Study on Agreement Between Participants
in an Architecture Assessment. In Proceedings of the International
Symposium on Empirical Software Engineering, September 30-Octo-
ber 1, Rome, Italy, pp. 61-71.

[115] Tip, F., Jong, D. C., Field, J. and Ramlingam, G. (1996). Slicing Class
Hierarchies in C++. In Conference on Object-Oriented Programming,
October 6-10, San Jose, California, USA, pp. 179-197.

[116] Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T.,
Tibshirani, R., Botstein, D. and Altman, R. B. (2001). Missing Value
Estimation Methods for DNA Microarrays. Bioinformatics, 17, 520-
525.

[117] Turver, R. J. and Munro, M. (1994). An Early Impact Analysis Tech-
nique for Software Maintenance. Journal of Software Maintenance
Research and Practice, 6(1), 35-52.

[118] Weinberg, G. M. (1983). Kill That Code. Infosystems, 30, 48-49.
[119] Weiser, M. (1979). Program Slices: Formal, Psychological, and Practi-

cal Investigations of an Automatic Program Abstraction Method.
Ph.D. thesis, University of Michigan, Michigan, USA.

[120] Wiegers, K. E. (2003). Software Requirements. Microsoft Press.
[121] Wilson, D. R. and Martinez, T. R. (1997). Improved Heterogeneous

Distance Functions. Journal of Artificial Intelligence Research, 6, 1-
34.

[122] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B.,
Wesslén, A. (2000). Experimentation in Software Engineering: An
Introduction. Kluwer Academic Publishers.

[123] Yau, S. S. and Collofello, J. S. (1980). Some Stability Measures for
Software Maintenance. IEEE Transactions on Software Engineering,
6(6), 545-552.

[124] Zahran, S. (1998). Software Process Improvement: Practical Guidelines
for Business Success. Addison-Wesley.

[125] Zelkowitz, M. V. and Wallace, D. R. (1998). Experimental models
for validating technology. Computer, 31(5), 23-31.

[126] Zhao, J. (1998). Applying Slicing Technique to Software Architec-
tures. In Proceedings of the IEEE International Conference on Engi-
neering of Complex Computer Systems, August 10-14, Monterey,
California, USA, pp. 87-98.
168

	Impact Analysis
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1
	1.1 Research Setting
	1.2 Impact Analysis
	1.2.1 Definitions
	1.2.2 Perspective
	1.2.3 Organisational vs. Technical
	1.2.4 Uses
	1.2.5 In Industry

	1.3 Thesis Papers
	1.3.1 Paper Abstracts
	1.3.2 Thesis Outline

	1.4 Research Methodology
	1.4.1 Research
	1.4.2 Empirical Research
	1.4.3 Research Taxonomies
	1.4.4 Classification of Thesis Studies
	1.4.5 Research Validity

	1.5 Contribution
	1.5.1 Thesis
	1.5.2 Chapters

	1.6 Future Work
	1.6.1 Semi-Automatic Impact Analysis
	1.6.2 Technical Support for Organisational IA
	1.6.3 Practitioners’ Impact Analysis Ability

	1.7 Summary

	Chapter 2
	2.1 Background
	2.1.1 Concepts and Terms
	2.1.2 Software Change and Impact Analysis
	2.1.3 History and Trends

	2.2 Strategies for Impact Analysis
	2.2.1 Automatable Strategies
	2.2.2 Manual Strategies

	2.3 Non-Functional Requirements
	2.4 Impact Analysis Metrics
	2.4.1 Metrics for Quantifying Change Impact
	2.4.2 Metrics for Evaluation of Impact Analysis

	2.5 Tool Support
	2.6 Future of Impact Analysis
	2.7 Summary

	Chapter 3
	3.1 Background and Research Setting
	3.1.1 Architecture-Related Process Improvement

	3.2 Related Work
	3.3 Design
	3.3.1 Questionnaire Design
	3.3.2 Sampling and Response Rate
	3.3.3 Treatment of Missing Data
	3.3.4 Roles
	3.3.5 Validity Threats

	3.4 Results
	3.4.1 Infrastructure Questions
	3.4.2 Improvement Question

	3.5 Analysis
	3.5.1 Infrastructure Questions
	3.5.2 Improvement Question

	3.6 Discussion
	3.7 Conclusions

	Chapter 4
	4.1 Related Work
	4.2 Method
	4.2.1 Research Setting
	4.2.2 Organisational Levels
	4.2.3 Interview Design
	4.2.4 Results Triangulation and Filtering
	4.2.5 Prioritisation

	4.3 Operation
	4.3.1 Organisational Levels
	4.3.2 Interviews
	4.3.3 Prioritisation

	4.4 Results
	4.4.1 Threats to Validity

	4.5 Analysis and Discussion
	4.5.1 Qualitative Analysis
	4.5.2 Quantitative Analysis
	4.5.3 Discussion

	4.6 Conclusions

	Chapter 5
	5.1 Usage Scenarios
	5.2 Related Work
	5.3 Method
	5.3.1 Natural vs. Technical Language
	5.3.2 Fuzzy String Matching
	5.3.3 Latent Semantic Indexing
	5.3.4 Method Introduction
	5.3.5 Method Steps

	5.4 Evaluation
	5.4.1 Evaluation Context
	5.4.2 Tools Used
	5.4.3 Step 1: Screen for Relevance
	5.4.4 Step 2: Identify Keywords
	5.4.5 Step 3: Identify Dependencies Using LSI
	5.4.6 Step 4: Examine Results and Estimate Impact

	5.5 Analysis
	5.6 Discussion and Future Work
	5.7 Summary

	Chapter 6
	6.1 Related Work
	6.2 Research Data
	6.2.1 Evaluation Data
	6.2.2 Missing Data

	6.3 Imputation Methods
	6.3.1 Random Draw Substitution
	6.3.2 Random Imputation
	6.3.3 Median Imputation
	6.3.4 Mode Imputation
	6.3.5 k-Nearest Neighbour

	6.4 Evaluation Process
	6.4.1 Data Removal - Step 1
	6.4.2 Imputation - Step 2
	6.4.3 Evaluation - Step 3

	6.5 Simulation
	6.5.1 Parameters
	6.5.2 Software
	6.5.3 Process Reuse

	6.6 Results
	6.6.1 Incomplete Data Sets
	6.6.2 Comparison of k-Values and Strategies
	6.6.3 Comparison of Attribute Counts
	6.6.4 Comparison of Percentages
	6.6.5 Benchmarking
	6.6.6 Summary and Interpretation of the Results

	6.7 Validity and Future Work
	6.7.1 Threats to Validity
	6.7.2 Future Work

	6.8 Conclusions

	References

