This is the accepted version of a paper presented at *Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Limassol, CYPRUS*.

Citation for the original published paper:

Bayesian Synthesis for Knowledge Translation in Software Engineering: Method and Illustration
In: *2016 42th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)* IEEE
2016 42th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)
https://doi.org/10.1109/SEAA.2016.45

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-11771
Bayesian Synthesis for Knowledge Translation in Software Engineering: Method and Illustration

Deepika Badampudi
Department of Software Engineering
Blekinge Institute of Technology
Karlskrona, Sweden
Email: deepika.badampudi@bth.se

Claes Wohlin
Department of Software Engineering
Blekinge Institute of Technology
Karlskrona, Sweden
Email: claes.wohlin@bth.se

Abstract—Systematic literature reviews in software engineering are necessary to synthesize evidence from multiple studies to provide knowledge and decision support. However, synthesis methods are underutilized in software engineering research. Moreover, translation of synthesized data (outcomes of a systematic review) to provide recommendations for practitioners is seldom practiced. The objective of this paper is to introduce the use of Bayesian synthesis in software engineering research, in particular to translate research evidence into practice by providing the possibility to combine contextualized expert opinions with research evidence. We adopted the Bayesian synthesis method from health research and customized it to be used in software engineering research. The proposed method is described and illustrated using an example from the literature. Bayesian synthesis provides a systematic approach to incorporate subjective opinions in the synthesis process thereby making the synthesis results more suitable to the context in which they will be applied. Thereby, facilitating the interpretation and translation of knowledge to action/application. None of the synthesis methods used in software engineering allows for the integration of subjective opinions, hence using Bayesian synthesis can add a new dimension to the synthesis process in software engineering research.

I. INTRODUCTION

The outcome (knowledge) of systematic literature reviews (SLR) should be useful for practitioners [1], [2]. It should be translated into recommendations that can enable and support evidence-informed decision-making in software engineering (SE) practice [2]. The fourth step of the five-step process for adapting the practices of Evidence-based software engineering (EBSE) is referred as knowledge translation (KT) [1], [2].

Greenhalgh and Wieringa [4] argue that “objective, impersonal research findings” are unhelpful. Therefore KT should not be viewed as just supplying the outcomes of an SLR to professionals. Instead, it should be considered as a research activity involving researchers, subjective opinions of practitioners and policy-makers/decision-makers to make evidence-informed decisions [1].

KT in SE is defined as “the exchange, synthesis and ethically sound application of knowledge - within a complex system of interactions between researchers and users - to accelerate the capture of the benefits of research through better quality software and software development processes” [1].

Budgen et al. [2] state that KT in SE is done in an ad-hoc manner and lacks adequate documentation. In addition, highlights that “KT should itself be systematic and repeatable as possible, and it should also reflect the needs and mores of practitioners as well as of the different forms of organizational context within which they work” [1], [2].

The need to develop guidelines for undertaking KT in SE has been identified [2]. The aim of this paper is to adopt/adapt Bayesian approaches to synthesis used in health research to provide guidelines to KT. Though Bayesian approaches are referred as synthesis methods [5], they are essentially synthesis methods extended to support KT. They synthesize data and provide interpretation of the outcome in the application context by incorporating knowledge and experience of intended users (therefore supporting KT). As mentioned earlier, synthesis is not a separate activity as per the definition of KT in SE. The focus of this paper is on synthesis process that facilitates KT rather that the KT activity itself.

In health research, Bayesian synthesis has been used to provide decision support by incorporating both subjective opinions of decision-makers and evidence/knowledge [7]. Bayesian synthesis is particularly useful when there is not enough evidence to confirm its suitability and the decisions need to be taken nevertheless in a reasonable and informed way [7]. Another advantage of Bayesian synthesis is that it takes the potential user of the analysis i.e. the practitioners’ or decision-makers’ and policy-makers’ perspective into consideration [7]. It is more flexible and efficient in using evidence from all available sources [8] and can synthesize findings from methodologically diverse studies [9]. Hence, the Bayesian approach is an attractive method to synthesize evidence and support KT as it provides interpretations of what evidence mean in a particular context by incorporating subjective opinions of the potential users of synthesized data.

Bayesian synthesis starts with a subjective opinion, and these opinions are updated based on the evidence available. Although conceptually it seems straightforward, it is not easy to implement, and some of the methodological issues remain unresolved [5]. Bayesian synthesis have been used in health research to synthesize [10]. However, it has not been implemented in SE research.

In this paper, we show how Bayesian approaches can be used to synthesize evidence and make use of the knowledge in practice. We also demonstrate the working of Bayesian
approaches to synthesize and KT through examples in SE research.

The remainder of the paper is structured as follows. Section II describes related work and Bayesian approaches. We then provide the method description of Bayesian to synthesize and KT in the context of SE in Section III. The Bayesian synthesis is illustrated in Section IV. Finally in Section V we compare our method with the alternatives and conclude in Section VI.

II. BACKGROUND AND RELATED WORK

We begin by providing a brief overview of the working of Bayesian principles in Section II-A then, in Section II-B, we describe how Bayesian synthesis has been implemented in health research so far. In Section II-C, we discuss how synthesis is done in SE research. Although Bayesian methods are not used for synthesis in SE, it has been used in other ways which is discussed in Section II-D.

A. Overview of Bayesian synthesis

It is important to get an overview of how Bayesian theory applies to synthesis to understand the working of Bayesian synthesis. The basic idea of Bayesian synthesis is described in health research [7], [8]. A brief summary of the method is provided below:

1) **Prior probability** - State a subjective opinion based on personal experience, excluding evidence.
2) **Likelihood** - Evaluate the evidence obtained from primary studies.
3) **Posterior probability** - Combine the prior probability and likelihood to produce a final opinion.

B. Bayesian synthesis in health research

Bayesian meta-analysis is a Bayesian approach used in health research that suits the EBSE requirement of incorporating prior knowledge and experience into the synthesis [5]. Roberts et al. use Bayesian meta-analysis to synthesize evidence from eleven qualitative and thirty two quantitative primary studies [10]. The study also incorporated subjective opinions of five experts. The subjective opinions and data collected from qualitative studies were used to form the prior probability. The range of prior probabilities is known through qualitative data. Hence, it is called as an informative prior probability where the range of probabilities (uncertainties) is narrow. However, we believe that the prior probability should be purely subjective based on personal experience and elicited before acquiring additional information. This allows tracking of how subjective opinions differ from collected data and how the subjective opinions are altered/refined based on the collected data. The prior probability is then updated through data collected from quantitative studies.

Two approaches called “quantitizing” [11] and “qualitizing” [9] have been proposed in health research. However, these approaches do not address the EBSE recommendation of incorporating subjective opinion into the synthesis hence, not discussed further.

In summary, the Bayesian meta-analysis method allows to incorporate subjective opinions. Although, it seems suitable to be used in SE it must be adapted so that the subjective opinion is unbiased.

C. Synthesis and KT in SE

A study was conducted to evaluate how evidence is synthesized in SE research [12]. The findings of the study show that limited attention is paid to the synthesis of evidence in SLRs. While 41% of studies did not report following any synthesis methods, among the studies that reported using synthesis methods thematic analysis (22.6%) and narrative synthesis (16.1%) were most used [12].

KT is not widely practised in SE. According to a tertiary study [3], among the 143 SLRs reviewed, only few provided recommendations [2]. However, the recommendation were produced by experts and not by incorporating the subjective opinions of potential users [2].

D. Bayesian in SE

Even though Bayesian theory is not yet used for synthesizing evidence in SE research, Bayesian networks have been applied to address various SE research problems. Approximately 72% of Bayesian networks applications are in the software quality (46.15%) and SE management (26.5%) areas [14]. The use of Bayesian networks for evidence-based decision-making in SE has been discussed in [14]. Three Bayesian network models are proposed to predict software reliability [14]. The study also claims that the use of Bayesian networks is not well recognized in SE research as compared to other disciplines such as health research [14]. Even though Bayesian networks are used for decision-making in SE, it has been used to analyze data from single studies. For example, Bayesian networks are used to represent the software life cycle phases by incorporating expert judgement (collected from qualitative surveys) into quantitative data collected from software repositories [14]. The use of Bayesian synthesis to synthesize evidence from multiple studies has not been implemented yet.

III. BAYESIAN SYNTHESIS FOR KT - METHOD DESCRIPTION

In this section, we describe how Bayesian synthesis can be used for synthesizing evidence and KT. The Bayesian synthesis proposed in this paper is adopted from health research. It consists of three main steps as depicted in Figure 1.

![Fig. 1. Three steps of Bayesian synthesis](image-url)
The Bayesian synthesis starts with prior probability which consists of subjective opinions based on personal experiences on a particular topic. Thereafter, the data is extracted from the studies to understand what is known or what is already been studied about the topic. Likelihood is the probability that the extracted data is true. Now that the prior probability and likelihood are known, the posterior probability is formulated by refining the prior probability given the likelihood. The steps involved in Bayesian synthesis are described in following sections.

A. Step 1: The prior probability
 This step includes the following two sub steps:
 1) Selecting individuals: Sampling of individuals
 2) Eliciting opinions: Capturing subjective opinions.

 The advantage of Bayesian synthesis is that it allows incorporating subjective opinions and beliefs into the synthesis. In this way, the synthesis is not limited to the observed or collected data. Before collecting the data, the subjective opinions are captured.

 Selecting individuals: In SE, the subjective beliefs of practitioners, decision-makers/policy-makers are relevant. The selection of individuals who will be the users’ of the knowledge is important. For example, if a decision needs to be made in a software project then, all the practitioner roles that should be involved in making the decision should be selected to elicit their subjective opinions.

 Eliciting opinions: Opinions are elicited to collect prior probability. Prior probability can be captured in terms of percentage ranging from 0 to 100 % or in terms of absence/presence (0/1) of a parameter value. One of the advantages of Bayesian synthesis is that it is flexible. Hence, the prior probability can be formulated in a way that suits the research objective. Spiegelhalter et al. [8] state that there is no “correct” prior and that Bayesian synthesis should be seen as a means of transforming prior into posterior opinions, rather than producing the posterior probabilities. The subjective opinions form the prior probabilities is represented as P(parameters).

B. Step 2: The likelihood
 Likelihood is the representation of what is known. In other words, it is the summary of all the research studies within a specific research objective. For example likelihood is the outcome of a SLR.

 This step includes the following two sub steps:
 1) Data extraction: Extract relevant data from the primary studies
 2) Likelihood calculation: Calculate the likelihood of the data for the given parameters

Data extraction: The extracted data can be summarized in a table format where, each extracted parameter is the column name and each row represents the results (parameter value) from a single primary study. The parameter values entered in the table depends on the research objective and the available data. For example, if the research objective is to find factors that affect the decision. Then, the factors from the primary studies should be extracted. The studies that report the factor can be represented as 1 and the studies that do not report the factor can be represented as 0. However, if the research objective is to identify the factors that affect the decision positively and the factors that affect negatively or have no effect. Then the positive effect can be represented as 1, negative as 0 and no effect as 0.5. The extraction also depends on the data that is available. If the primary studies include statistical analysis such as odds ratio of the factors then odds ratios are extracted that provide the magnitude of the factors and not just the presence or absence of the effect. Similarly for quantitative (experimental) studies, the effect sizes must be extracted.

 The extracted data can be organized based on the evidence provided to support the results or based on the data type. The division of extracted data depends on what is extracted from the primary studies. If the extracted data is of different data types, then it is recommended to divide the likelihood based on the data type i.e qualitative and quantitative. It will allow to aggregate similar data together. However, if the extracted data from all studies is of same data type then it is recommended to divide the likelihood based on the evidence supporting the results. This will allow to interpret the likelihood based on the evidence provided in the primary studies.

 The difference between empirical and non-empirical studies might be more relevant to analyse in SE. Empirical studies might have more importance as they are based on empirical evidence. Thus, we suggest dividing studies into non-empirical and empirical studies in SE instead of qualitative and quantitative studies. However, as Bayesian synthesis is flexible, it allows to separate the likelihood based on qualitative and quantitative studies or empirical and non-empirical studies as illustrated in Figure 2.

 The extracted data can be organized based on the evidence provided to support the results or based on the data type. The division of extracted data depends on what is extracted from the primary studies. If the extracted data is of different data types, then it is recommended to divide the likelihood based on the data type i.e qualitative and quantitative. It will allow to aggregate similar data together. However, if the extracted data from all studies is of same data type then it is recommended to divide the likelihood based on the evidence supporting the results. This will allow to interpret the likelihood based on the evidence provided in the primary studies.

 The difference between empirical and non-empirical studies might be more relevant to analyse in SE. Empirical studies might have more importance as they are based on empirical evidence. Thus, we suggest dividing studies into non-empirical and empirical studies in SE instead of qualitative and quantitative studies. However, as Bayesian synthesis is flexible, it allows to separate the likelihood based on qualitative and quantitative studies or empirical and non-empirical studies as illustrated in Figure 2.

 Data extraction: The extracted data can be summarized in a table format where, each extracted parameter is the column name and each row represents the results (parameter value) from a single primary study. The parameter values entered in the table depends on the research objective and the available data. For example, if the research objective is to find factors that affect the decision. Then, the factors from the primary studies should be extracted. The studies that report the factor can be represented as 1 and the studies that do not report the factor can be represented as 0. However, if the research objective is to identify the factors that affect the decision positively and the factors that affect negatively or have no effect. Then the positive effect can be represented as 1, negative as 0 and no effect as 0.5. The extraction also depends on the data that is available. If the primary studies include statistical analysis such as odds ratio of the factors then odds ratios are extracted that provide the magnitude of the factors and not just the presence or absence of the effect. Similarly for quantitative (experimental) studies, the effect sizes must be extracted.

 The extracted data can be organized based on the evidence provided to support the results or based on the data type. The division of extracted data depends on what is extracted from the primary studies. If the extracted data is of different data types, then it is recommended to divide the likelihood based on the data type i.e qualitative and quantitative. It will allow to aggregate similar data together. However, if the extracted data from all studies is of same data type then it is recommended to divide the likelihood based on the evidence supporting the results. This will allow to interpret the likelihood based on the evidence provided in the primary studies.

 The difference between empirical and non-empirical studies might be more relevant to analyse in SE. Empirical studies might have more importance as they are based on empirical evidence. Thus, we suggest dividing studies into non-empirical and empirical studies in SE instead of qualitative and quantitative studies. However, as Bayesian synthesis is flexible, it allows to separate the likelihood based on qualitative and quantitative studies or empirical and non-empirical studies as illustrated in Figure 2.

 Likelihood calculation: The likelihood is written as the function of the observed data for the given parameters represented as P(data—parameters). In other words, the proportion of studies reporting the parameter to be true. For example,
if 5 out of 10 studies report the parameter then, it is 50% ((5/10)*100) likely that the observed data is true to the population. Higher values of likelihood indicates that the observed data is more likely to occur.

The likelihood calculation can be divided for better interpretation and analysis of the observed data as shown in Figure 2. Based on how the extracted data is divided, the likelihood can be calculated for each division. There is further diversity in the results with respect to the context and the quality in the way the study has been conducted. The importance of reporting context details in SE research has been identified [6], [15]. Hence, it is advisable to use the context information and separate the likelihood based on the context and quality assessment. Such representation of likelihood provides a detailed analysis of the collected data and provides a richer input to the next step which is discussed in Section III-C.

C. Step 3: The posterior probabilities - refining prior probabilities

Posterior probability is the refinement of the prior probability given the likelihood. The equation of posterior probability is stated in [9] as shown in Equation 1.

\[
P(\text{parameters} | \text{data}) = \frac{P(\text{data} | \text{parameters}) P(\text{parameters})}{P(\text{data})}
\]

Where,
P(data—parameters) is the likelihood and P(parameters) is the prior probabilities.

However in our approach we do not follow a mathematical approach in the calculation of posterior probability as it may ignore some of the interpretations. For example, practitioners might want to refine the probabilities according to the context and the quality assessment of the primary studies and their individual opinions. Therefore, the practitioners who state the prior probability will refine their probabilities based on their interpretation of the observed data and likelihood calculation.

The posterior probability is the combination of prior probability and likelihood. The posterior probabilities are formulated step-wise by refining the prior given the likelihood. The step-wise formulation is based on how the likelihood calculation is separated. In the first step, the prior probability is refined when the likelihood of first division of papers is available and in the next step, when the likelihood of second division of papers is available. This final probability is regarded as the posterior probability. The prior probability and likelihood can be combined independently by each individual or collectively by discussing the differences in prior probability and a common interpretation of likelihood.

If the posterior probability is to be formulated with a common prior probability and common understanding of likelihood then, internal and external conflicts should be resolved. Internal conflicts refer to the conflicts between the individual opinions and external conflicts refer to the conflicts in interpretation of likelihood.

Discussing internal conflicts: Once the prior probability of each individual is known, the individuals discuss the differences in the probabilities and try to resolve conflicts. The differences in the probabilities could be due to the differences in the individual roles. In some cases it is important to resolve the differences rather than proceeding with the different probabilities. For example, a developer might not see the same factors to be important in the decision as the architect. The developer might not be aware or might not have encountered similar experience as the architect. The differences in the probabilities are discussed until they reach consensus. If the differences are due to lack of knowledge then the individual probabilities should be refined.

Spiegelhalter et al. have summarized the different strategies to refine probabilities from different individuals [8]:

1) Elicit a consensus: The diverse probabilities of all the individuals are brought into consensus using either informal or formal Delphi methods. During the process of eliciting consensus all individuals should be given equal importance. This way the dominant individuals’ influence will not impact opinions of others. Once the prior probabilities are refined and are similar, an average of the probabilities is taken.

2) Calculate a pooled prior: A simple average of all individual priors is taken. In this case the individual prior probabilities are not similar before taking the average. If the prior probabilities represent the absence or presence of a factor then the proportions of the practitioners mentioning the presence or absence is calculated. For example if 3/6 practitioners mention that the presence of factor X affects adherence then the combined probability is 50%.

Discussing external conflicts: The individuals who assigned the prior probabilities discuss how to interpret the extracted data and likelihood calculation. Particularly, how much importance should they give to the extracted data and likelihood calculation and how they should refine their probabilities. The context and quality are also taken into consideration. For example, the individuals might decide to only consider the high quality studies from a particular domain. In this way the external conflicts based on the interpretation of likelihood are resolved.

We propose four approaches to discuss internal and external conflicts as follows:

1) Discuss internal and external conflicts
2) Discuss only internal conflicts
3) Discuss only external conflicts
4) Discuss only at the end

The working of the four approaches is depicted in Figure 3.

Approach 1: **Discuss internal and external conflicts:** In this approach, both the prior probabilities and likelihood are discussed. The individual prior probabilities are combined by either eliciting consensus or calculating pooled prior probability. The common prior probability will be updated based on common understanding of the likelihood.

Approach 2: **Discuss only internal conflicts:** In this approach the prior probabilities are combined by either elic-
Fig. 3. Four different approaches to refine prior probabilities

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Select individuals</td>
</tr>
<tr>
<td>1.1</td>
<td>Elicit opinions</td>
</tr>
<tr>
<td>1.2</td>
<td>Retain individual prior probabilities</td>
</tr>
<tr>
<td>2</td>
<td>Discuss opinions and calculate pooled prior probability</td>
</tr>
<tr>
<td>2.1</td>
<td>Retain individual prior probabilities</td>
</tr>
<tr>
<td>2.2</td>
<td>Calculate likelihood</td>
</tr>
<tr>
<td>3</td>
<td>Formulate posterior probability</td>
</tr>
<tr>
<td>4</td>
<td>Elicit opinions or calculate pooled posterior probability</td>
</tr>
</tbody>
</table>

IV. ILLUSTRATION

In this section we present an example to show the working of Bayesian synthesis for KT. In this example, the posterior probabilities are computed using approach 1 (described in Section III-C). The research problem is the decision to choose between in-house development and acquiring OSS components for building software systems. The objective is to identify the factors that impact the decision.

A. Step 1: Prior probability

Selecting individuals: As the research problem is related to decision-making in SE practice, we decided to use the decision-makers’ experiences and opinions to formulate prior probability. Note, in this particular example the values are assigned by the authors of this paper for illustration purpose.

Eliciting opinions: The decision-makers provide the factors that they think impacts the decision to choose between in-house development and OSS. Table I represents the probabilities assigned by the practitioners. The probabilities assigned by the decision-makers are independent and are solely based on their personal experience and opinion without any information from the scientific research. If the decision-makers state that the factor is important in the decision, then, the value 1 is assigned. The value 0 indicates that the decision-maker has not mentioned the factor being important. Since the decision-makers only indicate if they think a factor is important of not, the values are in binary form i.e. either 1 or 0. Depending on the role (practitioner’s perspective) some of the factors may or may not be considered as important factors.

<table>
<thead>
<tr>
<th>Role</th>
<th>Time</th>
<th>Cost</th>
<th>Effort</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manager</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Developer</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Architect</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Integrator</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tester</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

B. Step 2: Likelihood

Likelihood is the representation of what is known i.e the representation of the evidence from the literature. The primary studies mentioned in this example are a sub-set of the primary studies considered in a SLR on a related topic [16]. Note that the outcome of the SLR reported in [16] is not translated

Step 6: Elicit opinions or calculate pooled posterior probability

Step 5: Formulate posterior probability

Step 4: Discuss opinions and likelihood calculation

Step 3: Select individuals

Step 2.2: Retain individual prior probabilities

Step 2.1: Elicit opinions

Step 1: Select individuals
in recommendations. However, it is regarded as future work to translate knowledge in recommendations for practitioners using Bayesian synthesis for KT.

Data Extraction: The factors that impact the adoption decision are extracted from primary studies as shown in Table II. The primary studies consist of empirical and non-empirical papers. The non-empirical papers are mostly opinion, experience or philosophical papers (based on classification proposed by Wieringa et al. [17]). Personal opinions, views or experience is more focused on individual or is project specific. Whereas empirical studies such as case studies and surveys are more generalized and are based on stronger evidence. The value “1” in Table II represents that the factor has been mentioned in a primary study, value “0” represents absence of the factor. Since the data extracted from all the studies is of same data type, we organized the extracted data based on empirical and non-empirical research types. In the empirical papers we found that some of the factors were mentioned but the conclusion was that the factor did not have any significant effect. We still record this evidence as the factor has been mentioned as they are validating a possible myth. Hence this is important to be considered in the synthesis. Such factors that are mentioned as not having any effect are assigned the value 0.5. Three new factors are identified by the papers which were not identified in the prior probabilities.

Likelihood calculation based on empirical and non-empirical papers: The likelihood is the proportions of the primary studies reporting the factor being important for the decision. The context and quality of the primary studies are as mentioned in Table III. The likelihood for each factor is calculated by considering the percentage of primary studies that have mentioned the factor as an important factor in making adoption decisions. For example, four primary studies have indicated that the technical support (TS) factor is an important factor. Hence, the likelihood for technical factor (TS) equates to 67% \((4/6)*100\). As seen in Table IV, the first row represents the total likelihood and the likelihood is separately calculated for empirical and non-empirical papers which is represented in the following two rows. The total likelihood of cost (C), technical support (TS) and license (L) is the same. However, when the likelihood is separated based on evidence, we see that all the empirical studies report cost being important and all the non-empirical studies report technical support and license being important. Based on this separate calculation the total likelihood of 67% may be interpreted differently based on the evidence supporting the factors.

It is recommended that the likelihood is further divided based on the context and quality. However as seen in Table III, at the most one paper is supporting the same domain hence, the likelihood is not divided further based on context. Also, since the quality of all empirical studies is high and non-empirical studies is low, the likelihood calculation would be same as mentioned in Table IV.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>T</th>
<th>C</th>
<th>E</th>
<th>Q</th>
<th>TS</th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[18]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>[19]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>[20]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>[21]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[22]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[23]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Context</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>[18]</td>
<td>Mission-critical domain</td>
<td>Low</td>
</tr>
<tr>
<td>[19]</td>
<td>Not mentioned</td>
<td>Low</td>
</tr>
<tr>
<td>[20]</td>
<td>Not mentioned</td>
<td>Low</td>
</tr>
<tr>
<td>[21]</td>
<td>Telecommunication domain</td>
<td>High</td>
</tr>
<tr>
<td>[22]</td>
<td>Not mentioned</td>
<td>High</td>
</tr>
<tr>
<td>[23]</td>
<td>Multi domain</td>
<td>High</td>
</tr>
</tbody>
</table>

TABLE II

DATA EXTRACTION FROM NON-EMPirical AND EMPirical RESEARCH PAPERS

TABLE III

CONTEXT AND QUALITY OF PRIMARY STUDIES

TABLE IV

LIKELIHOOD BASED ON EMPirical AND NON-EMPirical RESEARCH PAPERS

C. **Step 3: Posterior probability - Refining prior probability**

We have the probabilities of the decision-makers as shown in Table I. Since the differences in opinion could be due to differences in roles, such differences are not important to be captured and should be resolved before continuing. Hence, a pooled prior is calculated by considering the percentage of practitioners that have mentioned the factor as an important factor in making adoption decisions. For example, three decision-makers have indicated that time is an important factor. Hence, the prior probability for time (T) equates to 60% \((3/5)*100\). The first row in Table V represents the pooled prior opinions which is the prior probability.

We have the probabilities of the decision-makers and likelihood from the non-empirical papers and empirical papers. The likelihood of empirical and non-empirical papers (Table IV) is provided to the decision-makers along with the context and quality of the papers (Table III). Once the practitioners receive the information about context and quality, they either decide to update their prior probability or stay with their original.
prior probability. The prior probabilities are updated stepwise, once after data from non-empirical studies is available and later when data from empirical studies is available. It depends on how the practitioners react based on the additional information provided. Not all decision-makers will have the same interpretation of the synthesized data. Any conflicting interpretations should be resolved until consensus is achieved. For example, one of the decision-maker might decide to lower the probability of effort since only 1/3 studies (paper [21]) has reported this factor. However, other decision-makers might not change the probability as they decide to give more importance to paper [21] as it is in the same domain as the practitioners. Hence, the practitioners discuss if they should consider the overall likelihood of effort factor (E) or only focus on the studies that are within the same domain. The knowledge and experience of decision-makers should facilitate in the interpretation of the data. If consensus is not achieved, the average of the probability should be considered. The refined probabilities are as shown in Table V. The arrows indicate the change from prior probabilities, i.e. either the prior probability is increased or decreased.

TABLE V

<table>
<thead>
<tr>
<th>Prior probability</th>
<th>T</th>
<th>C</th>
<th>E</th>
<th>Q</th>
<th>TS</th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood (Non-empirical)</td>
<td>60%</td>
<td>80%</td>
<td>40%</td>
<td>60%</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Likelihood (Empirical)</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>60%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refined probability</td>
<td>50%</td>
<td>80%</td>
<td>40%</td>
<td>50%</td>
<td>60%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood (Empirical)</td>
<td>16%</td>
<td>100%</td>
<td>33%</td>
<td>33%</td>
<td>33%</td>
<td>33%</td>
<td>60%</td>
</tr>
<tr>
<td>Posterior probability</td>
<td>20%</td>
<td>90%</td>
<td>40%</td>
<td>30%</td>
<td>75%</td>
<td>75%</td>
<td>60%</td>
</tr>
</tbody>
</table>

T: Time, C: Cost, E: Effort, Q: Quality
TS: Technical support, L: License, R: Requirements

Table V highlights the importance of including non-empirical papers in the synthesis. If non-empirical papers were not included then the factors: technical support (TS), license (L) and requirements (R) would not have been considered as important in the decision-making process. If the decision-makers took the decision without considering the evidence then they would have only considered four out of seven factors. And only one among the four factors: i.e. cost (C) has high probability. The three new factors have high probability which means that if they were ignored it would have a significant impact on the decision. The non-empirical studies have the most impact on the high probabilities, hence, it indicates the importance of non-empirical studies. Non-empirical studies are criticized as they lack rigor and relevance. However, since decision-makers themselves are involved in the synthesis they can validate the information from the non-empirical studies. Involving the decisions-makers in the synthesis allows to interpret the synthesized data (SLR outcomes) in the application context and facilitates in providing recommendations for adapting the outcomes in practice. The examples of recommendations that can be provided to the decision-makers as as below:

- Time is not as important as it is perceived by decision-makers. As likelihood suggests [21] that the time saved in developing in-house might not result in overall reduction in time as the selection and integration of OSS consumes the time saved by not developing in-house. The decision-makers accept and agree to the likelihood hence, we can say that time is not an important criteria for the decision.
- External factors such as technical support provided and license obligations are important decision criteria. Initially the decision-makers do not mention external factors as they might be overseen. However, once they receive the likelihood, they agree that external factors could potentially influence the decision.

Depending on the quality of the primary studies supporting the evidence, the recommendation can be regarded as strong or weak.

V. DISCUSSION

Bayesian synthesis takes into account a wide range of evidence, including subjective opinions into the synthesis. None of the synthesis methods used in SE research allows to incorporate subjective opinions. Bayesian synthesis is flexible and works well with other synthesis methods such as thematic analysis. The novelty of Bayesian synthesis is in the extension of traditional synthesis methods to support KT.

Bayesian synthesis gives the probabilities of the data being true as compared to inferential statistics that provides the probability of the calculation of the result being true. In real life we are more close to Bayesian thinking. For example, we think about the probability of an event to be true instead of the probability of the computation being true.

Bayesian meta-analysis has been implemented in health research [10]. The Bayesian synthesis method proposed in this paper is inspired from the Bayesian meta-analysis approach. The Bayesian meta-analysis method considers the subjective opinions and qualitative evidence together in the prior probabilities. In order words, the individuals know the information from qualitative studies before assigning prior probabilities. However, as we want unbiased opinions, we separate the qualitative evidence from the prior probability. The previous methods implemented in health research do not differentiate between the types of evidence [9]–[11]. It leaves it up to the researchers/practitioners to decide how they want to evaluate the evidence. However, we recommend providing detailed description in terms of summaries, context and quality information. This guides the researchers/practitioners to make informed decisions. Unlike previous Bayesian methods, no mathematical equations are used to compute the posterior probability. Instead, the individuals themselves refine the probabilities based on their experience. The four approaches for formulating posterior probabilities of SE research is also another novel contribution of the Bayesian synthesis proposed in this paper.
VI. Conclusions

We conclude by discussing the contributions and limitations of Bayesian synthesis. The synthesis methods analyze the results from multiple studies and supports KT. Bayesian synthesis goes beyond synthesis of only research evidence by actually guiding how the results can be applied or used in a particular context.

SLR is one of the research methods where multiple studies are synthesized. Often SLRs follow a rigorous approach to search, select and extract information from the primary studies. However, if the primary studies are weak or lack necessary descriptions then, it is difficult to make conclusions on a phenomenon and provide recommendations based on the outcome of an SLR. However, Bayesian synthesis, due to its ability to incorporate subjective opinions, is particularly useful when the data from primary studies is insufficient to draw generally valid conclusions [7]. Bayesian synthesis can be regarded as a KT process to interpret and translate outcomes of SLRs, particularly when there are few primary studies or when there are differences in findings in the primary studies.

Limitations: Capturing subjective opinions in the analysis allows better synthesis. However, it is a known fact that people are not good probability accessors, validity threats in eliciting opinions have been summarized by Kandane and Wolfsen [24]:

1) Availability: Recent or easily recalled events might be given higher probability, and vice versa.
2) Adjustment and anchoring: The opinions are anchored at some starting point and tend to exert an inertia. The subsequent opinions might not be adjusted sufficiently and might be too close to the first probability.
3) Conjunction fallacy: A higher probability might be assigned to a parameter that is a subset of a parameter that has lower probability.
4) Hindsight bias: The opinion might be biased if the data is available before elicitation of the opinions.

These validity threats can be mitigated by using elicitation techniques such as interactive feedback with a structured interview. In case of any issues such as a conjunction fallacy, the person providing the probability can be asked to reflect more on the probability. Also by eliciting priors before providing evidence from qualitative and quantitative studies, unbiased probabilities can be obtained.

In this paper, we have described the use of Bayesian synthesis for KT in SE. The use of Bayesian synthesis is illustrated using an example to illustrate the working and flexible use of the Bayesian synthesis for KT.

REFERENCES