Ändra sökning
Länk till posten
Permanent länk

Direktlänk
BETA
Alternativa namn
Publikationer (2 of 2) Visa alla publikationer
Nystedt, P., Öinert, J. & Pinedo, H. (2018). Epsilon-strongly graded rings, separability and semisimplicity. Journal of Algebra, 514(Nov.), 1-24
Öppna denna publikation i ny flik eller fönster >>Epsilon-strongly graded rings, separability and semisimplicity
2018 (Engelska)Ingår i: Journal of Algebra, ISSN 0021-8693, E-ISSN 1090-266X, Vol. 514, nr Nov., s. 1-24Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We introduce the class of epsilon-strongly graded rings and show that it properly contains both the collection of strongly graded rings and the family of unital partial crossed products. We determine when epsilon-strongly graded rings are separable over their principal components. Thereby, we simultaneously generalize a result for strongly group-graded rings by Nastasescu, Van den Bergh and Van Oystaeyen, and a result for unital partial crossed products by Bagio, Lazzarin and Paques. We also show that the family of unital partial crossed products appear in the class of epsilon-strongly graded rings in a fashion similar to how the classical crossed products present themselves in the family of strongly graded rings. Thereby, we obtain, in the special case of unital partial crossed products, a short proof of a general result by Dokuchaev, Exel and Simon concerning when graded rings can be presented as partial crossed products.

Ort, förlag, år, upplaga, sidor
Academic Press, 2018
Nyckelord
group graded ring, partial crossed product, separable, semisimple, Frobenius
Nationell ämneskategori
Algebra och logik
Identifikatorer
urn:nbn:se:bth-12922 (URN)10.1016/j.jalgebra.2018.08.002 (DOI)000445848900001 ()
Tillgänglig från: 2016-08-18 Skapad: 2016-08-18 Senast uppdaterad: 2018-10-11Bibliografiskt granskad
Nystedt, P. & Öinert, J.Simple graded rings, non-associative crossed products and Cayley-Dickson doublings.
Öppna denna publikation i ny flik eller fönster >>Simple graded rings, non-associative crossed products and Cayley-Dickson doublings
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

We show that if a non-associative unital ring is graded by a hypercentral group, then the ring is simple if and only if it is graded simple and the center of the ring is a field. Thereby, we extend a result by Jespers from the associative case to the non-associative situation. By applying this result to non-associative crossed products, we obtain non-associative analogues of results by Bell, Jordan and Voskoglou. We also apply this result to Cayley-Dickson doublings, thereby obtaining a new proof of a classical result by McCrimmon.

Nyckelord
non-associative ring, group graded ring, simplicity, non-associative crossed product, Cayley algebra
Nationell ämneskategori
Algebra och logik
Identifikatorer
urn:nbn:se:bth-13259 (URN)
Tillgänglig från: 2016-10-17 Skapad: 2016-10-17 Senast uppdaterad: 2016-11-08Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0001-6594-7041

Sök vidare i DiVA

Visa alla publikationer