RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Unsupervised Text Binarization in Handwritten Historical Documents Using k-Means Clustering
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik. Blekinge Inst Technol, Dept Comp Sci & Engn, S-37141 Karlskrona, Sweden..ORCID-id: 0000-0001-7536-3349
2018 (engelsk)Inngår i: PROCEEDINGS OF SAI INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS) 2016, VOL 2 / [ed] Bi, Y Kapoor, S Bhatia, R, SPRINGER INTERNATIONAL PUBLISHING AG , 2018, s. 23-32Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In this paper, we propose a novel technique for unsupervised text binarization in handwritten historical documents using k-means clustering. In the text binarization problem, there are many challenges such as noise, faint characters and bleed-through and it is necessary to overcome these tasks to increase the correct detection rate. To overcome these problems, preprocessing strategy is first used to enhance the contrast to improve faint characters and Gaussian Mixture Model (GMM) is used to ignore the noise and other artifacts in the handwritten historical documents. After that, the enhanced image is normalized which will be used in the postprocessing part of the proposed method. The handwritten binarization image is achieved by partitioning the normalized pixel values of the handwritten image into two clusters using k-means clustering with k = 2 and then assigning each normalized pixel to the one of the two clusters by using the minimum Euclidean distance between the normalized pixels intensity and mean normalized pixel value of the clusters. Experimental results verify the effectiveness of the proposed approach.

sted, utgiver, år, opplag, sider
SPRINGER INTERNATIONAL PUBLISHING AG , 2018. s. 23-32
Serie
Lecture Notes in Networks and Systems, ISSN 2367-3370 ; 16
Emneord [en]
Handwritten text binarization, Image processing, k-means clustering, Document images
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-17280DOI: 10.1007/978-3-319-56991-8_3ISI: 000448662500003ISBN: 978-3-319-56991-8 (tryckt)OAI: oai:DiVA.org:bth-17280DiVA, id: diva2:1263360
Konferanse
SAI Annual Conference on Areas of Intelligent Systems and Artificial Intelligence and their Applications to the Real World (IntelliSys), SEP 21-22, 2016, London, ENGLAND
Tilgjengelig fra: 2018-11-15 Laget: 2018-11-15 Sist oppdatert: 2019-04-05

Open Access i DiVA

fulltext(2623 kB)51 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2623 kBChecksum SHA-512
2a7e3b9cb9a7fdad1c4eb30b8b537f85242a9b86b21cfa294eeb061b71b5fa5f63b61876515547f3904fb19a1ae4ba0d37d26ed9dfd07b83fb029da44dc76149
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Kusetogullari, Hüseyin

Søk i DiVA

Av forfatter/redaktør
Kusetogullari, Hüseyin
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 51 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 75 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf