Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Monitoring of Video Streaming Quality from Encrypted Network Traffic: The Case of YouTube Streaming
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för kommunikationssystem.
2016 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

The video streaming applications contribute to a major share of the Internet traffic. Consequently, monitoring and management of video streaming quality has gained a significant importance in the recent years. The disturbances in the video, such as, amount of buffering and bitrate adaptations affect user Quality of Experience (QoE). Network operators usually monitor such events from network traffic with the help of Deep Packet Inspection (DPI). However, it is becoming difficult to monitor such events due to the traffic encryption. To address this challenge, this thesis work makes two key contributions. First, it presents a test-bed, which performs automated video streaming tests under controlled time-varying network conditions and measures performance at network and application level. Second, it develops and evaluates machine learning models for the detection of video buffering and bitrate adaptation events, which rely on the information extracted from packets headers. The findings of this work suggest that buffering and bitrate adaptation events within 60 second intervals can be detected using Random Forest model with an accuracy of about 70%. Moreover, the results show that the features based on time-varying patterns of downlink throughput and packet inter-arrival times play a distinctive role in the detection of such events.

sted, utgiver, år, opplag, sider
2016. , s. 64
Emneord [en]
Quality of Experience, Machine Learning, Encrypted video traffic classification, Video Streaming Quality
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-13336OAI: oai:DiVA.org:bth-13336DiVA, id: diva2:1044774
Eksternt samarbeid
Ericsson
Fag / kurs
ET2580 Master's Thesis (120 credits) in Electrical Engineering with emphasis on Telecommunication Systems
Utdanningsprogram
ETATE Master of Science Programme in Electrical Engineering with emphasis on Telecommunication Systems
Veileder
Examiner
Tilgjengelig fra: 2016-11-15 Laget: 2016-11-06 Sist oppdatert: 2016-11-15bibliografisk kontrollert

Open Access i DiVA

fulltext(2643 kB)484 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 2643 kBChecksum SHA-512
6db70610ea441be3642277b90e4436ed4965a0dac43fdf7063f7edbd7da63c01d506360f8678c3838f1f345fafb86bbb5b91aa5112f5710e44b6ed44faaaffe4
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 484 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 7543 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf