Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A statistical method for detecting significant temporal hotspots using LISA statistics
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.ORCID-id: 0000-0002-9316-4842
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.ORCID-id: 0000-0002-8929-7220
2017 (engelsk)Inngår i: Proceedings - 2017 European Intelligence and Security Informatics Conference, EISIC 2017, IEEE Computer Society, 2017, s. 123-126Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This work presents a method for detecting statisticallysignificant temporal hotspots, i.e. the date and time of events,which is useful for improved planning of response activities.Temporal hotspots are calculated using Local Indicators ofSpatial Association (LISA) statistics. The temporal data is ina 7x24 matrix that represents a temporal resolution of weekdaysand hours-in-the-day. Swedish residential burglary events areused in this work for testing the temporal hotspot detectionapproach. Although, the presented method is also useful forother events as long as they contain temporal information, e.g.attack attempts recorded by intrusion detection systems. Byusing the method for detecting significant temporal hotspotsit is possible for domain-experts to gain knowledge about thetemporal distribution of the events, and also to learn at whichtimes mitigating actions could be implemented.

sted, utgiver, år, opplag, sider
IEEE Computer Society, 2017. s. 123-126
Serie
European Intelligence and Security Informatics Conference, ISSN 2572-3723
Emneord [en]
Temporal analysis, temporal hotspot, computational criminology, LISA statistics, local indicators of spatial association.
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-15166ISI: 000425928200016ISBN: 978-1-5386-2385-5 (digital)OAI: oai:DiVA.org:bth-15166DiVA, id: diva2:1143020
Konferanse
European Intelligence and Security Informatics Conference (EISIC), Athens
Tilgjengelig fra: 2017-09-20 Laget: 2017-09-20 Sist oppdatert: 2018-05-18bibliografisk kontrollert

Open Access i DiVA

fulltext(379 kB)509 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 379 kBChecksum SHA-512
52af68ca6c08f471cf3eeebded7038d87b308e71c45e157bb54e17ac5f583ba4b3bfcc9f3c3d6c1f56672d80e73309d4bf370315139d1861f1f06c532c0eaf21
Type fulltextMimetype application/pdf

Personposter BETA

Borg, Anton

Søk i DiVA

Av forfatter/redaktør
Boldt, MartinBorg, Anton
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 509 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 699 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf