Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Short-Term Traffic Forecasting Using Self-Adjusting k-Nearest Neighbours
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för kreativa teknologier.ORCID-id: 0000-0001-5824-425X
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för kreativa teknologier.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för kreativa teknologier.ORCID-id: 0000-0003-0891-2859
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för kreativa teknologier.
2018 (engelsk)Inngår i: IET Intelligent Transport Systems, ISSN 1751-956X, E-ISSN 1751-9578, Vol. 12, nr 1, s. 41-48Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Short-term traffic forecasting is becoming more important in intelligent transportation systems. The k-nearest neighbours (kNN) method is widely used for short-term traffic forecasting.However, kNN parameters self-adjustment has been a problem due to dynamic traffic characteristics. This paper proposes a fully automatic dynamic procedure kNN (DP-kNN) that makes the kNN parameters self-adjustable and robust without predefined models or training. We used realworld data with more than one-year traffic records to conduct experiments. The results show that DP-kNN can perform better than manually adjusted kNN and other benchmarking methods with regards to accuracy on average. This study also discusses the difference between holiday and workday traffic prediction as well as the usage of neighbour distance measurement.

sted, utgiver, år, opplag, sider
Institution of Engineering and Technology, 2018. Vol. 12, nr 1, s. 41-48
Emneord [en]
intelligent transportation systems; short-term traffic forecasting; road traffic; DP-kNN; dynamic procedure kNN; self-adjusting k-nearest neighbours
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-15727DOI: 10.1049/iet-its.2016.0263ISI: 000426045200006OAI: oai:DiVA.org:bth-15727DiVA, id: diva2:1172050
Tilgjengelig fra: 2018-01-09 Laget: 2018-01-09 Sist oppdatert: 2018-11-01bibliografisk kontrollert
Inngår i avhandling
1. Automated Traffic Time Series Prediction
Åpne denne publikasjonen i ny fane eller vindu >>Automated Traffic Time Series Prediction
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Intelligent transportation systems (ITS) are becoming more and more effective. Robust and accurate short-term traffic prediction plays a key role in modern ITS and demands continuous improvement. Benefiting from better data collection and storage strategies, a huge amount of traffic data is archived which can be used for this purpose especially by using machine learning.

For the data preprocessing stage, despite the amount of data available, missing data records and their messy labels are two problems that prevent many prediction algorithms in ITS from working effectively and smoothly. For the prediction stage, though there are many prediction algorithms, higher accuracy and more automated procedures are needed.

Considering both preprocessing and prediction studies, one widely used algorithm is k-nearest neighbours (kNN) which has shown high accuracy and efficiency. However, the general kNN is designed for matrix instead of time series which lacks the use of time series characteristics. Choosing the right parameter values for kNN is problematic due to dynamic traffic characteristics. This thesis analyses kNN based algorithms and improves the prediction accuracy with better parameter handling using time series characteristics.

Specifically, for the data preprocessing stage, this work introduces gap-sensitive windowed kNN (GSW-kNN) imputation. Besides, a Mahalanobis distance-based algorithm is improved to support correcting and complementing label information. Later, several automated and dynamic procedures are proposed and different strategies for making use of data and parameters are also compared.

Two real-world datasets are used to conduct experiments in different papers. The results show that GSW-kNN imputation is 34% on average more accurate than benchmarking methods, and it is still robust even if the missing ratio increases to 90%. The Mahalanobis distance-based models efficiently correct and complement label information which is then used to fairly compare performance of algorithms. The proposed dynamic procedure (DP) performs better than manually adjusted kNN and other benchmarking methods in terms of accuracy on average. What is better, weighted parameter tuples (WPT) gives more accurate results than any human tuned parameters which cannot be achieved manually in practice. The experiments indicate that the relations among parameters are compound and the flow-aware strategy performs better than the time-aware one. Thus, it is suggested to consider all parameter strategies simultaneously as ensemble strategies especially by including window in flow-aware strategies.

In summary, this thesis improves the accuracy and automation level of short-term traffic prediction with proposed high-speed algorithms.

sted, utgiver, år, opplag, sider
Karlskrona: Blekinge Tekniska Högskola, 2018
Serie
Blekinge Institute of Technology Doctoral Dissertation Series, ISSN 1653-2090 ; 10
Emneord
Machine Learning, Time Series, Traffic Engineering
HSV kategori
Identifikatorer
urn:nbn:se:bth-17210 (URN)978-91-7295-360-4 (ISBN)
Disputas
2018-11-30, J1650, Valhallav. 1, Karlskrona, 13:30 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2018-11-02 Laget: 2018-11-01 Sist oppdatert: 2018-12-14bibliografisk kontrollert

Open Access i DiVA

fulltext(1071 kB)166 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1071 kBChecksum SHA-512
174150bb92f7bba4dd81105ec91f53f5a4405f0cb5a9437a5b1f27d37629f52d2ae94f4d9bc7f4072f44f246dd50b5873f2c8c5824abfb66bb448e0190f863e6
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Sun, BinCheng, WeiGoswami, PrashantBai, Guohua

Søk i DiVA

Av forfatter/redaktør
Sun, BinCheng, WeiGoswami, PrashantBai, Guohua
Av organisasjonen
I samme tidsskrift
IET Intelligent Transport Systems

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 166 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 321 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf