Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Performance Evaluation of Trajectory Queries on Multiprocessor and Cluster
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
2016 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In this study, we evaluate the performance of trajectory queries that are handled by Cassandra, MongoDB,  and  PostgreSQL.  The  evaluation  is  conducted  on  a  multiprocessor  and  a  cluster. Telecommunication companies collect a lot of data from their mobile users. These data must be analysed in order to support business decisions, such  as  infrastructure  planning.  The  optimal choice of hardware platform and database can be different from a query to another. We use data collected  from  Telenor  Sverige,  a  telecommunication  company  that  operates  in  Sweden.  These data are collected every five minutes for an entire  week  in  a  medium  sized  city.  The  execution time  results  show  that  Cassandra  performs  much  better  than  MongoDB  and  PostgreSQL  for queries  that  do  not  have  spatial  features.  Statio’s  Cassandra  Lucene  index  incorporates  a geospatial  index  into  Cassandra,  thus  making  Cassandra  to  perform  similarly  as  MongoDB  to handle  spatial  queries.  In  four  use  cases,  namely, distance  query,  k-nearest  neigbhor  query, range   query,   and   region   query,   Cassandra   performs   much   better   than   MongoDB   and PostgreSQL for two cases, namely range query and region query. The scalability is also good for these two use cases.

sted, utgiver, år, opplag, sider
2016. Vol. 6
Emneord [en]
Databases evaluation, Trajectory queries, Multiprocessor and cluster, NoSQL database, Cassandra, MongoDB, PostgreSQL
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-15757OAI: oai:DiVA.org:bth-15757DiVA, id: diva2:1173850
Konferanse
Third International Conference on Data Mining and Database (DMDB 2016), vienna, austria
Forskningsfinansiär
Knowledge Foundation, 20140032Tilgjengelig fra: 2018-01-14 Laget: 2018-01-14 Sist oppdatert: 2018-01-19bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 26 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf