Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Micro-doppler classification with boosting in perimeter protection
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för matematik och naturvetenskap.ORCID-id: 0000-0003-0701-706x
Totalforsvarets forskningsinstitut, SWE.
2017 (engelsk)Inngår i: IET Conference Publications, Institution of Engineering and Technology , 2017, nr CP728Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In security surveillance at the perimeter of critical infrastructure, such as airports and power plants, approaching objects have to be detected and classified. Especially important is to distinguish between humans, animals and vehicles. In this paper, micro-Doppler data (from movement of internal parts of the target) have been collected with a small radar. From time-velocity diagrams of the data, physical features have been extracted and used in a Boosting classifier to distinguish between the classes "human", "animal" and "man-made object". This type of classifier has received much attention lately, but not in radar micro-Doppler classification. The classification result on the current data reaches 90% correct classification with this classifier. The ability to distinguish between humans and animals is good on this data. This classifier type gives insight into the classifier and the utilized features, and is easy to use. A comparison with a SVM (Support Vector Machine) classifier, which is common for micro-Doppler, has also been performed. © 2017 Institution of Engineering and Technology. All rights reserved.

sted, utgiver, år, opplag, sider
Institution of Engineering and Technology , 2017. nr CP728
Emneord [en]
Boosting, Classification, Micro-doppler, Radar, Airport security, Animals, Object detection, Radar systems, Support vector machines, Boosting classifiers, Classification results, Perimeter protection, Physical features, Security surveillance, SVM(support vector machine), Classification (of information)
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-16646Scopus ID: 2-s2.0-85048690177OAI: oai:DiVA.org:bth-16646DiVA, id: diva2:1228518
Konferanse
2017 International Conference on Radar Systems, Radar 2017, Belfast
Tilgjengelig fra: 2018-06-28 Laget: 2018-06-28 Sist oppdatert: 2018-06-29bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Scopus

Personposter BETA

Björklund, Svante

Søk i DiVA

Av forfatter/redaktør
Björklund, Svante
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 49 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf