Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Performance Metrics Analysis of GamingAnywhere with GPU accelerated NVIDIA CUDA
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik. (Telecommunication)
2018 (engelsk)Independent thesis Advanced level (degree of Master (One Year)), 20 poäng / 30 hpOppgave
Abstract [en]

The modern world has opened the gates to a lot of advancements in cloud computing, particularly in the field of Cloud Gaming. The most recent development made in this area is the open-source cloud gaming system called GamingAnywhere.

The relationship between the CPU and GPU is what is the main object of our concentration in this thesis paper. The Graphical Processing Unit (GPU) performance plays a vital role in analyzing the playing experience and enhancement of GamingAnywhere. In this paper, the virtualization of the GPU has been concentrated on and is suggested that the acceleration of this unit using NVIDIA CUDA, is the key for better performance while using GamingAnywhere. After vast research, the technique employed for NVIDIA CUDA has been chosen as gVirtuS.

There is an experimental study conducted to evaluate the feasibility and performance of GPU solutions by VMware in cloud gaming scenarios given by GamingAnywhere. Performance is measured in terms of bitrate, packet loss, jitter and frame rate. Different resolutions of the game are considered in our empirical research and our results show that the frame rate and bitrate have increased with different resolutions, and the usage of NVIDIA CUDA enhanced GPU.

sted, utgiver, år, opplag, sider
2018. , s. 39
Emneord [en]
Cloud Computing, Cloud Gaming, GPU Acceleration, NVIDIA CUDA, GamingAnywhere.
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-17232OAI: oai:DiVA.org:bth-17232DiVA, id: diva2:1261108
Fag / kurs
ET2580 Master's Thesis (120 credits) in Electrical Engineering with emphasis on Telecommunication Systems
Utdanningsprogram
ETATX Master of Science Programme in Electrical Engineering with emphasis on Telecommunication Systems
Presentation
2018-10-01, Lärosal C237, Blekinge Institute of Technology, Hyderabad, 13:00 (engelsk)
Veileder
Examiner
Tilgjengelig fra: 2018-11-12 Laget: 2018-11-06 Sist oppdatert: 2018-11-12bibliografisk kontrollert

Open Access i DiVA

BTH2018Byreddy(1347 kB)83 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 1347 kBChecksum SHA-512
d7d8a7054924462d83e41ddef52cc56e0664215e9f755f5707bc35bfc2618a02abc888ff1bfea10d3ef18be437c4f368bc39d8ccdcb99757664a8ed8e4f10566
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Sreenibha Reddy, Byreddy
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 83 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 76 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf