Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Image Enhancement & Automatic Detection of Exudates in Diabetic Retinopathy
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för tillämpad signalbehandling.
2019 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

Diabetic retinopathy (DR) is becoming a global health concern, which causes the loss of vision of most patients with the disease. Due to the vast prevalence of the disease, the automated detection of the DR is needed for quick diagnoses where the progress of the disease is monitored by detection of exudates changes and their classifications in the fundus retina images. Today in the automated system of the disease diagnoses, several image enhancement methods are used on original Fundus images. The primary goal of this thesis is to make a comparison of three of popular enhancement methods of the Mahalanobis Distance (MD), the Histogram Equalization (HE) and the Contrast Limited Adaptive Histogram Equalization (CLAHE). By quantifying the comparison in the aspect of the ability to detect and classify exudates, the best of the three enhancement methods is implemented to detect and classify soft and hard exudates. A graphical user interface is also adopted, with the help of MATLAB. The results showed that the MD enhancement method yielded better results in enhancement of the digital images compared to the HE and the CLAHE. The technique also enabled this study to successfully classify exudates into hard and soft exudates classification. Generally, the research concluded that the method that was suggested yielded the best results regarding the detection of the exudates; its classification and management can be suggested to the doctors and the ophthalmologists.

sted, utgiver, år, opplag, sider
2019. , s. 54
Emneord [en]
Exudates, Diabetic Retinopathy, Mahalanobis Distance, Histogram Equalization, Contrast Limited Adaptive Histogram Equalization.
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-18109OAI: oai:DiVA.org:bth-18109DiVA, id: diva2:1327151
Fag / kurs
ET2566 Master's Thesis (120 credits) in Electrical Engineering with emphasis on Signal processing
Utdanningsprogram
ETASX Master of Science Programme in Electrical Engineering with emphasis on Signal Processing
Examiner
Tilgjengelig fra: 2019-06-19 Laget: 2019-06-19 Sist oppdatert: 2020-01-07bibliografisk kontrollert

Open Access i DiVA

BTH2019Mallampati2(6110 kB)7 nedlastinger
Filinformasjon
Fil FULLTEXT04.pdfFilstørrelse 6110 kBChecksum SHA-512
c62c238ad53713b64d2cf3fa8ef3cf5cec4ac0dcbc5ca00302f99ac2cfaeeca98c74f9940232037d772cf4d20d2751b7ae47edc2db905547af94ada492e00d7f
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 7 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 99 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf