Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Machine Learning - Managerial Perspective: A Study to define concepts and highlight challenges in a product-based IT Organization
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för industriell ekonomi.
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för industriell ekonomi.
2019 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 10 poäng / 15 hpOppgave
Abstract [en]

The purpose of this research is to understand the main managerial challenges that arise in the context of Machine Learning. This research aims to explore the core concepts of Machine Learning and provide the same conceptual foundation to managers to overcome possible obstacles while implementing Machine Learning. Therefore, the main research question is: 

What are the phases and the main challenges while managing Machine Learning project in a product based IT organization? 

 The focus is on the main concepts of Machine Learning and identifying challenges during each phase through literature review and qualitative data collected from interviews conducted with professionals. The research aims to position itself in the field of research which looks for inputs from consultants and management professionals either associated with Machine Learning or they are planning to start such initiatives. In this research paper we introduce ACDDT (Agile-Customer-Data-Domain-Technology) model framework for managers. This framework is centered on the main challenges in Machine Learning project phases while dealing with customer, data, domain and technology. In addition, the frame work also provides key inputs to managers for managing those challenges and possibly overcome them.

sted, utgiver, år, opplag, sider
2019. , s. 73
Emneord [en]
Machine Learning, Management Challenges, Model Management, Team, Decision Making, Technology, Domain Expert, Customer, ACDDT Model
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-18835OAI: oai:DiVA.org:bth-18835DiVA, id: diva2:1367105
Fag / kurs
IY2594 Magisterarbete MBA
Utdanningsprogram
IYABA MBA programme
Presentation
2019-05-28, Virtual, skype meeting, Malmo, 15:16 (engelsk)
Veileder
Examiner
Tilgjengelig fra: 2019-11-26 Laget: 2019-10-31 Sist oppdatert: 2019-11-26bibliografisk kontrollert

Open Access i DiVA

Machine Learning(1447 kB)17 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1447 kBChecksum SHA-512
c712952d10458e9fd2acfe53acc16f0f630765767275b3232c67fefca82d8f7c37acc2e44c98ab002331e10e5fe516f1929a921d598853656249e100ad61e4c7
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Bangabash, Subhasish
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 17 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 55 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf