Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
GNSS Radio Occultation Simulation Using MultiplePhase Screen Orbit Sampling
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för matematik och naturvetenskap.ORCID-id: 0000-0002-7769-8641
Molflow, SwWE.
RUAG Space AB, SWE.
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för matematik och naturvetenskap.ORCID-id: 0000-0002-6643-312x
Vise andre og tillknytning
2019 (engelsk)Inngår i: IEEE Geoscience and Remote Sensing Letters, ISSN 1545-598X, E-ISSN 1558-0571Artikkel i tidsskrift (Fagfellevurdert) Epub ahead of print
Abstract [en]

Wave optics propagators (WOPs) are commonlyused to describe the propagation of radio signals through earth’satmosphere. In radio occultation (RO) context, multiple phasescreen (MPS) method has been used to model the effects of theatmosphere in Global Navigation Satellite System (GNSS) signalsduring an occultation event. WOP implementation includes,in addition to MPS, a diffraction integral as the final step tocalculate the radio signal measured in the low-earth orbit (LEO)satellite. This approach considers vacuum as the propagationmedium at high altitudes, which is not always the case when theionosphere is taken into account in simulations. An alternativeapproach is using MPS all the way to LEO in order to samplethe GNSS signal in orbit. This approach, named MPS orbitsampling (MPS-OS), is evaluated in this letter. Different scenariosof setting occultation assuming a short segment of the LEO orbithave been simulated using MPS and MPS-OS. Results have beencompared to Abel transform references. Furthermore, a longsegment scenario has been evaluated as well. A comparison ofbending angle (BA) and residual ionospheric error (RIE) showsthe equivalence between MPS and MPS-OS results. The mainapplication of MPS-OS should be in occultation events with longsegments of orbit and including ionosphere, in which a standardWOP may not be appropriate.

sted, utgiver, år, opplag, sider
2019.
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-18897DOI: 10.1109/LGRS.2019.2944537OAI: oai:DiVA.org:bth-18897DiVA, id: diva2:1369322
Prosjekter
National Space Engineering Program (NRFP-3), grant 241/15, Swedish National Space Agency (Rymdstyrelsen)
Forskningsfinansiär
Swedish National Space BoardTilgjengelig fra: 2019-11-11 Laget: 2019-11-11 Sist oppdatert: 2019-11-18bibliografisk kontrollert
Inngår i avhandling
1. Effects of Small-Scale Ionospheric Irregularities on GNSS Radio Occultation Signals: Evaluations Using Multiple Phase Screen Simulator
Åpne denne publikasjonen i ny fane eller vindu >>Effects of Small-Scale Ionospheric Irregularities on GNSS Radio Occultation Signals: Evaluations Using Multiple Phase Screen Simulator
2019 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Radio Occultation (RO) is a remote sensing technique which uses Global Navigation Satellite System (GNSS) signals tracked by a Low-Earth Orbit (LEO) satellite to sound the earth's atmosphere both in low (troposphere, stratosphere) and high (ionosphere) altitudes. GNSS-RO provides global coverage and SI traceable measurements of atmospheric data with high-vertical resolution. Refractivity, dry temperature, pressure and water vapour profiles retrieved from RO measurements have a relevant contribution in Numerical Weather Prediction (NWP) systems and in climate-monitoring.

Due to the partial propagation through the ionosphere, a systematic bias is added to the lower atmospheric data product. Most of this contribution is removed by a linear combination of data for two frequencies. In climatology studies, one can apply a second-order correction - so called κ-correction - which relies on a priori information on the conditions in the ionosphere. However, both approaches do not remove high-order terms in the error due to horizontal gradient and earth's geomagnetic fields. The remaining residual ionospheric error (RIE) and its systematic bias in RO atmospheric data is a well-known issue and its mitigation is an open research topic.

In this licentiate dissertation, the residual ionospheric error after the standard correction is evaluated with computational simulations using a wave optics propagator (WOP). Multiple Phase Screen (MPS) method is used to simulate occultation events in different ionospheric scenarios, e.g. quiet and disturbed conditions. Electron density profiles (EDP) assumed in simulations are either defined by analytical equations or measurements. The disturbed cases are modelled as small-scale irregularities within F-region in two different ways: as sinusoidal fluctuations; and by using a more complex approach, where the irregularities follow a single-slope power-law that yields moderate to strong scintillation in the signal amplitude. Possible errors in MPS simulations assuming long segment of orbit and ionosphere are also evaluated.

The results obtained with the sinusoidal disturbances show minor influence in the RIE after the standard correction, with the major part of the error due to the F-region peak. The implementation of the single-slope power-law is validated and the fluctuations obtained in simulation show good agreement to the ones observed in RO measurements. Finally, an alternative to overcome limitations in MPS simulations considering occultations with long segment of orbit and ionosphere is introduced and validated.

The small-scale irregularities modelled in F-region with the power-law can be added in simulations of a large dataset subjected to κ-correction, in order to evaluate the RIE bending angle and the consequences in atmospheric parameters, e.g. temperature.

sted, utgiver, år, opplag, sider
Karlskrona: Blekinge Tekniska Högskola, 2019
Serie
Blekinge Institute of Technology Licentiate Dissertation Series, ISSN 1650-2140 ; 16
Emneord
GNSS Radio Occultation (GNSS-RO); Ionosphere; Scintillation
HSV kategori
Identifikatorer
urn:nbn:se:bth-18907 (URN)978-91-7295-392-5 (ISBN)
Presentation
2019-12-12, 08:30 (engelsk)
Opponent
Veileder
Prosjekter
NRPF-3, Rymdstyrelsen, 241/15
Forskningsfinansiär
Swedish National Space Board
Tilgjengelig fra: 2019-11-15 Laget: 2019-11-14 Sist oppdatert: 2019-12-18bibliografisk kontrollert

Open Access i DiVA

fulltext(1960 kB)28 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1960 kBChecksum SHA-512
48777749e57dd93b9780996271b3cd0d3adacb0aabff8809b499f2e1e8cf1752f5b8902d6e9b8d6cd36a4de5548d1b3e2fae1c31ae2245c0eae749324d5aef5a
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Ludwig Barbosa, ViníciusPettersson, MatsVu, Viet Thuy

Søk i DiVA

Av forfatter/redaktør
Ludwig Barbosa, ViníciusPettersson, MatsVu, Viet Thuy
Av organisasjonen
I samme tidsskrift
IEEE Geoscience and Remote Sensing Letters

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 28 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 43 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf