Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Specification-driven predictive business process monitoring
University of Innsbruck, AUT.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för programvaruteknik.ORCID-id: 0000-0003-3818-4442
2019 (engelsk)Inngår i: Software and Systems Modeling, ISSN 1619-1366, E-ISSN 1619-1374Artikkel i tidsskrift (Fagfellevurdert) Epub ahead of print
Abstract [en]

Predictive analysis in business process monitoring aims at forecasting the future information of a running business process. The prediction is typically made based on the model extracted from historical process execution logs (event logs). In practice, different business domains might require different kinds of predictions. Hence, it is important to have a means for properly specifying the desired prediction tasks, and a mechanism to deal with these various prediction tasks. Although there have been many studies in this area, they mostly focus on a specific prediction task. This work introduces a language for specifying the desired prediction tasks, and this language allows us to express various kinds of prediction tasks. This work also presents a mechanism for automatically creating the corresponding prediction model based on the given specification. Differently from previous studies, instead of focusing on a particular prediction task, we present an approach to deal with various prediction tasks based on the given specification of the desired prediction tasks. We also provide an implementation of the approach which is used to conduct experiments using real-life event logs. © 2019, The Author(s).

sted, utgiver, år, opplag, sider
Springer Verlag , 2019.
Emneord [en]
Automatic prediction model creation, Machine learning-based prediction, Prediction task specification language, Predictive business process monitoring, Process control, Process monitoring, Specification languages, Specifications, Automatic prediction, Business domain, Business Process, Business process monitoring, Historical process, Life events, Prediction model, Prediction tasks, Forecasting
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-18939DOI: 10.1007/s10270-019-00761-wISI: 000493704500001Scopus ID: 2-s2.0-85074869416OAI: oai:DiVA.org:bth-18939DiVA, id: diva2:1371896
Merknad

open access

Tilgjengelig fra: 2019-11-21 Laget: 2019-11-21 Sist oppdatert: 2019-12-18bibliografisk kontrollert

Open Access i DiVA

Specification-driven predictive business process monitoring(1124 kB)21 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1124 kBChecksum SHA-512
be0a048aa95732d693a487be5f07df4e8c37671c1d0e179311e4233283f51bd3b66acadd6c7a386677bd2de62c94ebb7ab47274cd5c816dba5cf206890359b80
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Felderer, Michael

Søk i DiVA

Av forfatter/redaktør
Felderer, Michael
Av organisasjonen
I samme tidsskrift
Software and Systems Modeling

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 21 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 27 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf