Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Assessment of Machine Learning Techniques for Oil Rig Classification in C-Band SAR Images
Aeronautics Institute of Technology (ITA), BRA.
Aeronautics Institute of Technology (ITA), BRA.
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för matematik och naturvetenskap.ORCID-id: 0000-0003-0423-9927
Aeronautics Institute of Technology (ITA), BRA.
2022 (engelsk)Inngår i: Remote Sensing, E-ISSN 2072-4292, Vol. 14, nr 13, artikkel-id 2966Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This article aims at performing maritime target classification in SAR images using machine learning (ML) and deep learning (DL) techniques. In particular, the targets of interest are oil platforms and ships located in the Campos Basin, Brazil. Two convolutional neural networks (CNNs), VGG-16 and VGG-19, were used for attribute extraction. The logistic regression (LR), random forest (RF), support vector machine (SVM), k-nearest neighbours (kNN), decision tree (DT), naive Bayes (NB), neural networks (NET), and AdaBoost (ADBST) schemes were considered for classification. The target classification methods were evaluated using polarimetric images obtained from the C-band synthetic aperture radar (SAR) system Sentinel-1. Classifiers are assessed by the accuracy indicator. The LR, SVM, NET, and stacking results indicate better performance, with accuracy ranging from 84.1% to 85.5%. The Kruskal–Wallis test shows a significant difference with the tested classifier, indicating that some classifiers present different accuracy results. The optimizations provide results with more significant accuracy gains, making them competitive with those shown in the literature. There is no exact combination of methods for SAR image classification that will always guarantee the best accuracy. The optimizations performed in this article were for the specific data set of the Campos Basin, and results may change depending on the data set format and the number of images. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

sted, utgiver, år, opplag, sider
MDPI , 2022. Vol. 14, nr 13, artikkel-id 2966
Emneord [en]
classification algorithms, deep learning, machine learning, oil rig classification, SAR, ship classification, Adaptive boosting, Classification (of information), Convolutional neural networks, Decision trees, Image classification, Learning systems, Nearest neighbor search, Radar imaging, Ships, Support vector machines, C-bands, Campos Basin, Classification algorithm, Machine-learning, Oil-rigs, Synthetic aperture radar images, Target Classification, Synthetic aperture radar
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-23505DOI: 10.3390/rs14132966ISI: 000825692700001Scopus ID: 2-s2.0-85132981546OAI: oai:DiVA.org:bth-23505DiVA, id: diva2:1686807
Merknad

open access

Tilgjengelig fra: 2022-08-11 Laget: 2022-08-11 Sist oppdatert: 2023-08-28bibliografisk kontrollert

Open Access i DiVA

fulltext(9761 kB)202 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 9761 kBChecksum SHA-512
f81d79d0cc142c2160c8de42f32755fca7ba556723775e8bbdc24f94190ed291dde35e051101b1b93df7b831522bfc46447eb62ff6de2d74bdbac8e981dc4150
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Palm, Bruna

Søk i DiVA

Av forfatter/redaktør
Palm, Bruna
Av organisasjonen
I samme tidsskrift
Remote Sensing

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 202 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 172 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf