Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Birth Density Modeling in Multi-target Tracking Using the Gaussian Mixture PHD Filter
Blekinge Tekniska Högskola, Sektionen för teknik, Avdelningen för signalbehandling.
Blekinge Tekniska Högskola, Sektionen för teknik, Avdelningen för signalbehandling.
2008 (engelsk)Independent thesis Advanced level (degree of Master (Two Years))Oppgave
Abstract [en]

A recently established method for multi-target tracking which both estimates the time-varying number of targets and their states from a sequence of observation sets in the presence of data association uncertainty, detection uncertainty, noise and false alarms is the probability hypothesis density (PHD) recursion. The approach involves modeling the respective collections of targets and measurements as random finite sets and to propagate the posterior intensity, which is a first order statistic of the random finite set of targets, in time. A closed form solution to the PHD filter recursion for multi-target tracking is provided by the Gaussian Mixture Probability Hypothesis Density filter (GM-PHD filter), whose posterior intensity function is estimated by a sum of weighted Gaussian components, including means, weights and covariances that can be propagated analytically in time. Besides the GM-PHD filter algorithm implementation, choose the probability density function for representing target births in GM-PHD recursion and true target trajectory generation to get best tracking performance is a challenge and is the purpose of this thesis work. One reference to judge the performance of the algorithm is the target detection time, as given in this thesis.

sted, utgiver, år, opplag, sider
2008. , s. 74
Emneord [en]
tracking, Gaussian Mixture PHD filter, birth density
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-2091Lokal ID: oai:bth.se:arkivexB925275B9DDE9438C12574AA00435CB4OAI: oai:DiVA.org:bth-2091DiVA, id: diva2:829356
Uppsök
Technology
Veileder
Tilgjengelig fra: 2015-04-22 Laget: 2008-08-19 Sist oppdatert: 2015-06-30bibliografisk kontrollert

Open Access i DiVA

fulltekst(637 kB)177 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 637 kBChecksum SHA-512
53fb4dda7232d8b128d233db0aeec7e675bd4b2769fac5977a48a5cdcb45a5e53656e5bf1470033087929e594deacd94df9b215378cd37c2a771746132622ae3
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 177 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 145 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf