Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On Image Compression using Curve Fitting
Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation.
Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation.
2010 (engelsk)Independent thesis Advanced level (degree of Master (Two Years))Oppgave
Abstract [en]

Context: Uncompressed Images contain redundancy of image data which can be reduced by image compression in order to store or transmit image data in an economic way. There are many techniques being used for this purpose but the rapid growth in digital media requires more research to make more efficient use of resources. Objectives: In this study we implement Polynomial curve fitting using 1st and 2nd curve orders with non-overlapping 4x4 and 8x8 block sizes. We investigate a selective quantization where each parameter is assigned a priority. The 1st parameter is assigned high priority compared to the other parameters. At the end Huffman coding is applied. Three standard grayscale images of LENA, PEPPER and BOAT are used in our experiment. Methods: We did a literature review, where we selected articles from known libraries i.e. IEEE, ACM Digital Library, ScienceDirect and SpringerLink etc. We have also performed two experiments, one experiment with 1st curve order using 4x4 and 8x8 block sizes and second experiment with 2nd curve order using same block sizes. Results: A comparison using 4x4 and 8x8 block sizes at 1st and 2nd curve orders shows that there is a large difference in compression ratio for the same value of Mean Square Error. Using 4x4 block size gives better quality of an image as compare to 8x8 block size at same curve order but less compression. JPEG gives higher value of PSNR at low and high compression. Conclusions: A selective quantization is good idea to use to get better subjective quality of an image. A comparison shows that to get good compression ratio, 8x8 block size at 1st curve order should be used but for good objective and subjective quality of an image 4x4 block size at 2nd order should be used. JPEG involves a lot of research and it outperforms in PSNR and CR as compare to our proposed scheme at low and high compression ratio. Our proposed scheme gives comparable objective quality (PSNR) of an image at high compression ratio as compare to the previous curve fitting techniques implemented by Salah and Ameer but we are unable to achieve subjective quality of an image.

sted, utgiver, år, opplag, sider
2010. , s. 43
Emneord [en]
Image compression, Multiplication limited and division free, Surface fitting
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-3144Lokal ID: oai:bth.se:arkivexED50D979491A14DDC1257831006F01F9OAI: oai:DiVA.org:bth-3144DiVA, id: diva2:830444
Uppsök
Technology
Veileder
Tilgjengelig fra: 2015-04-22 Laget: 2011-02-08 Sist oppdatert: 2018-01-11bibliografisk kontrollert

Open Access i DiVA

fulltekst(1318 kB)2699 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1318 kBChecksum SHA-512
137b44ac2e3e2398a49a83c1f8a1b7326322d9f29fc22bbed89c48c682d8c2ce79bf071259813428b961b2bf720598643b93e3840a45ba919ab62896257efc13
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 2704 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 281 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf