Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evaluation of selected data mining algorithms implemented in Medical Decision Support Systems
Blekinge Tekniska Högskola, Sektionen för teknik, Avdelningen för programvarusystem.
2007 (engelsk)Independent thesis Advanced level (degree of Master (One Year))Oppgave
Abstract [en]

The goal of this master’s thesis is to identify and evaluate data mining algorithms which are commonly implemented in modern Medical Decision Support Systems (MDSS). They are used in various healthcare units all over the world. These institutions store large amounts of medical data. This data may contain relevant medical information hidden in various patterns buried among the records. Within the research several popular MDSS’s are analyzed in order to determine the most common data mining algorithms utilized by them. Three algorithms have been identified: Naïve Bayes, Multilayer Perceptron and C4.5. Prior to the very analyses the algorithms are calibrated. Several testing configurations are tested in order to determine the best setting for the algorithms. Afterwards, an ultimate comparison of the algorithms orders them with respect to their performance. The evaluation is based on a set of performance metrics. The analyses are conducted in WEKA on five UCI medical datasets: breast cancer, hepatitis, heart disease, dermatology disease, diabetes. The analyses have shown that it is very difficult to name a single data mining algorithm to be the most suitable for the medical data. The results gained for the algorithms were very similar. However, the final evaluation of the outcomes allowed singling out the Naïve Bayes to be the best classifier for the given domain. It was followed by the Multilayer Perceptron and the C4.5.

sted, utgiver, år, opplag, sider
2007. , s. 81
Emneord [en]
Naïve Bayes, Multilayer Perceptron, C4.5, medical data mining, medical decision support
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-6194Lokal ID: oai:bth.se:arkivex06EE332670EA55D3C125736E00417C3AOAI: oai:DiVA.org:bth-6194DiVA, id: diva2:833624
Uppsök
Technology
Veileder
Tilgjengelig fra: 2015-04-22 Laget: 2007-10-08 Sist oppdatert: 2018-01-11bibliografisk kontrollert

Open Access i DiVA

fulltekst(1760 kB)791 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1760 kBChecksum SHA-512
c0dcc3a48799fc38ab31cc0658ed868d02f31344466ca83b486c359fab4fe102d43bf0582c40231f61416486f6c6e60ad1148b4b0e1ce92d2e128a0b4f318c3e
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 791 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 1817 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf