Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A novel methodology for the interoperability evaluation of an iris segmentation algorithm
Blekinge Tekniska Högskola, Sektionen för teknik, Avdelningen för signalbehandling.
Blekinge Tekniska Högskola, Sektionen för teknik, Avdelningen för signalbehandling.
Blekinge Tekniska Högskola, Sektionen för teknik, Avdelningen för signalbehandling.
2013 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The performance of an iris recognition system depends greatly on how well the iris segmentation part of the system performs its task. The performance of an iris segmentation algorithm can be evaluated using different criteria and methods. Some of the methods evaluate the performance of the segmentation algorithm based on the performance of the whole iris recognition system. Other methods evaluate the performance of an iris segmentation subsystem independent of the performance of the system's other subsystems. To our knowledge there do not exist a generally accepted method or criteria for the evaluation of the standalone iris segmentation subsystem. This paper proposes a novel methodology to compare the performance of different iris segmentation algorithms, applied to different image datasets in a consistent way. The methodology employs the F1 score and an empirical cumulative distribution function. The implementation of the F1 score estimation, adapted to the iris segmentation task is described. Finally the application of the proposed methodology is demonstrated and discussed.

sted, utgiver, år, opplag, sider
Washington D.C.: IEEE , 2013.
Emneord [en]
Empirical cumulative distribution functions, Image datasets, Iris recognition systems, Iris segmentation, Novel methodology, Segmentation algorithms
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-6685DOI: 10.1109/BTAS.2013.6712698ISI: 000336080600013Lokal ID: oai:bth.se:forskinfo7E7A7DC4F3134E42C1257CA600338446ISBN: 9781479905270 (tryckt)OAI: oai:DiVA.org:bth-6685DiVA, id: diva2:834209
Konferanse
IEEE International Conference on Biometrics: Theory, Applications and Systems, BTAS
Tilgjengelig fra: 2014-07-17 Laget: 2014-03-25 Sist oppdatert: 2017-03-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Gertsovich, IrinaBartuněk, Josef StrömHåkansson, Lars

Søk i DiVA

Av forfatter/redaktør
Gertsovich, IrinaBartuněk, Josef StrömHåkansson, Lars
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 119 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf