Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Search-based prediction of fault count data
Ansvarlig organisasjon
2009 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert) Published
Abstract [en]

Symbolic regression, an application domain of genetic programming (GP), aims to find a function whose output has some desired property, like matching target values of a particular data set. While typical regression involves finding the coefficients of a pre-defined function, symbolic regression finds a general function, with coefficients, fitting the given set of data points. The concepts of symbolic regression using genetic programming can be used to evolve a model for fault count predictions. Such a model has the advantages that the evolution is not dependent on a particular structure of the model and is also independent of any assumptions, which are common in traditional time-domain parametric software reliability growth models. This research aims at applying experiments targeting fault predictions using genetic programming and comparing the results with traditional approaches to compare efficiency gains.

sted, utgiver, år, opplag, sider
Windsor: IEEE Computer Society , 2009.
Emneord [en]
search-based, fault prediciton
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-8089ISI: 000268319000004Lokal ID: oai:bth.se:forskinfo248E919B72CE2D82C12575C7002931EBISBN: 978-0-7695-3675-0 (tryckt)OAI: oai:DiVA.org:bth-8089DiVA, id: diva2:835776
Konferanse
1st Internation Symposium on Search Based Software Engineering
Tilgjengelig fra: 2012-09-18 Laget: 2009-05-31 Sist oppdatert: 2018-01-11bibliografisk kontrollert

Open Access i DiVA

fulltekst(78 kB)829 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 78 kBChecksum SHA-512
c4715aee989e8754a78f84b5017d33ee8b303e7857e206f6545dd038fcc3d7afc1defd45692d670b1b119095f1b3e450a25c0e7505c81501a41c1e3d7e692db6
Type fulltextMimetype application/pdf

Personposter BETA

Torkar, RichardFeldt, Robert

Søk i DiVA

Av forfatter/redaktør
Torkar, RichardFeldt, Robert

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 829 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 1019 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf