Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Quantifying the Impact of Learning Algorithm Parameter Tuning (short version)
2005 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert) Published
Abstract [en]

The impact of learning algorithm optimization by means of parameter tuning is studied. To do this, two quality attributes, sensitivity and classification performance, are investigated, and two metrics for quantifying each of these attributes are suggested. Using these metrics, a systematic comparison has been performed between four induction algorithms on eight data sets. The results indicate that parameter tuning is often more important than the choice of algorithm and there does not seem to be a trade-off between the two quality attributes. Moreover, the study provides quantitative support to the assertion that some algorithms are more robust than others with respect to parameter configuration. Finally, it is briefly described how the quality attributes and their metrics could be used for algorithm selection in a systematic way.

sted, utgiver, år, opplag, sider
Västerås: Mälardalen University , 2005.
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-8859Lokal ID: oai:bth.se:forskinfoB9B94BB478C340C3C12573B9005D92DEOAI: oai:DiVA.org:bth-8859DiVA, id: diva2:836615
Konferanse
3rd Joint SAIS/SLSS Workshop
Tilgjengelig fra: 2012-09-18 Laget: 2007-12-22 Sist oppdatert: 2018-01-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 37 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf