Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Educational Data Mining and Learning Analytics in Programming: Literature Review and Case Studies
Vise andre og tillknytning
2016 (engelsk)Inngår i: Proceedings of the 2015 ITiCSE on Working Group Reports, ACM Digital Library, 2016, s. 41-63Konferansepaper, Publicerat paper (Fagfellevurdert)
Resurstyp
Text
Abstract [en]

Educational data mining and learning analytics promise better understanding of student behavior and knowledge, as well as new information on the tacit factors that contribute to student actions. This knowledge can be used to inform decisions related to course and tool design and pedagogy, and to further engage students and guide those at risk of failure. This working group report provides an overview of the body of knowledge regarding the use of educational data mining and learning analytics focused on the teaching and learning of programming. In a literature survey on mining students' programming processes for 2005-2015, we observe a significant increase in work related to the field. However, the majority of the studies focus on simplistic metric analysis and are conducted within a single institution and a single course. This indicates the existence of further avenues of research and a critical need for validation and replication to better understand the various contributing factors and the reasons why certain results occur. We introduce a novel taxonomy to analyse replicating studies and discuss the importance of replicating and reproducing previous work. We describe what is the state of the art in collecting and sharing programming data. To better understand the challenges involved in replicating or reproducing existing studies, we report our experiences from three case studies using programming data. Finally, we present a discussion of future directions for the education and research community.

sted, utgiver, år, opplag, sider
ACM Digital Library, 2016. s. 41-63
Serie
ITICSE-WGR ’15
Emneord [en]
Educational data mining, learning analytics, literature review, programming, replication
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-11728DOI: 10.1145/2858796.2858798ISI: 000389809400002OAI: oai:DiVA.org:bth-11728DiVA, id: diva2:912327
Konferanse
20th Annual Conference on Innovation and Technology in Computer Science Education, Vilnius
Tilgjengelig fra: 2016-03-16 Laget: 2016-03-16 Sist oppdatert: 2018-01-16bibliografisk kontrollert

Open Access i DiVA

fulltext(955 kB)502 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 955 kBChecksum SHA-512
e188e3a3cdb053d912132835557cb85ee1c20dc429b5b0907958b5354f526952a5bdaa1a5cb4ceda19580477cd14b643d97006ccc29377794e4f331ec5a6b2a8
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fullteksthttp://doi.acm.org/10.1145/2858796.2858798

Personposter BETA

Börstler, Jürgen

Søk i DiVA

Av forfatter/redaktør
Börstler, Jürgen
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 502 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 840 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf