Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Impacts of traffic conditions on the performance of road freight transport
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
2015 (engelsk)Inngår i: 2015 IEEE 18TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, 2015, s. 2947-2952Konferansepaper, Publicerat paper (Fagfellevurdert)
Resurstyp
Text
Abstract [en]

The efficiency of road transport is typically influenced by factors such as, weather, choice of road, and time of day, and day of the week. Knowledge about interactions between different traffic-and transport related factors and their influence on the execution of transport is important in transport planning. The purpose of this paper is to study the impact of different factors on the performance of road transport. We aim to contribute to improved transport planning by analysing traffic and transport data obtained from different sources in order to support data driven decision making. Through a review of existing literature and discussions with a Swedish road transport operator, we identified factors that could be relevant to consider when planning a transport, e.g., related to weather, location of roads where the transport will take place, and planned time of the transport. As a result of variation in size, type and volume of the data representing these factors, suitable machine learning algorithms were selected, such as Decision Stump, M5 model tree, M5 regression tree, RepTree, M5 rules, and linear regression in order to study the data. Our experimental results illustrate the complexity associated to the performance of road transport systems mainly because of the dependency between the choices of influencing factors and geographic location of the road segment.

sted, utgiver, år, opplag, sider
2015. s. 2947-2952
Serie
IEEE International Conference on Intelligent Transportation Systems-ITSC, ISSN 2153-0009
Emneord [en]
TRAVEL-TIME PREDICTION; FREEWAYS
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-12770DOI: 10.1109/ITSC.2015.472ISI: 000376668803006ISBN: 978-1-4673-6596-3 (tryckt)OAI: oai:DiVA.org:bth-12770DiVA, id: diva2:944838
Konferanse
18th IEEE International Conference on Intelligent Transportation Systems, SEP 15-18, 2015, SPAIN
Tilgjengelig fra: 2016-06-30 Laget: 2016-06-30 Sist oppdatert: 2018-01-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Sigakova, KseniaMbiydzenyuy, GideonHolmgren, Johan

Søk i DiVA

Av forfatter/redaktør
Sigakova, KseniaMbiydzenyuy, GideonHolmgren, Johan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 105 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf