Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Introduction to group analysis and invariant solutions of integro-differential equations
Ansvarig organisation
2010 (Engelska)Ingår i: Lecture Notes in Physics, ISSN 0075-8450, Vol. 806, s. 57-111Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In this chapter an introduction into applications of group analysis to equations with nonlocal operators, in particular, to integro-differential equations is given. The most known integro-differential equations are kinetic equations which form a mathematical basis in the kinetic theories of rarefied gases, plasma, radiation transfer, coagulation. Since these equations are directly associated with fundamental physical laws, there is special interest in studies of their solutions. The first section of this chapter contains a retrospective survey of different methods for constructing symmetries and finding invariant solutions of such equations. The presentation of the methods is carried out using simple model equations of small dimensionality, allowing the reader to follow the calculations in detail. In the next section, the classical scheme of the construction of determining equations of an admitted Lie group is generalized for equations with nonlocal operators. In the concluding sections of this chapter, the developed regular method of obtaining admitted Lie groups is illustrated by applications to some known integro-differential equations.

Ort, förlag, år, upplaga, sidor
Springer , 2010. Vol. 806, s. 57-111
Nationell ämneskategori
Matematik
Identifikatorer
URN: urn:nbn:se:bth-7604DOI: 10.1007/978-90-481-3797-8_2Lokalt ID: oai:bth.se:forskinfo0661B821FCB069E0C1257811004942B7OAI: oai:DiVA.org:bth-7604DiVA, id: diva2:835247
Tillgänglig från: 2012-09-18 Skapad: 2011-01-07 Senast uppdaterad: 2015-06-30Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext
Matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 123 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf