Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Bagging likelihood-based belief decision trees
University of Jinan, CHI.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för kreativa teknologier.ORCID-id: 0000-0001-5824-425X
University of Science and Technology of China, CHI.
2017 (Engelska)Ingår i: 20th International Conference on Information Fusion, Fusion 2017: Proceedings, Institute of Electrical and Electronics Engineers (IEEE), 2017, s. 321-326, artikel-id 8009664Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

To embed ensemble techniques into belief decision trees for performance improvement, the bagging algorithm is explored. Simple belief decision trees based on entropy intervals extracted from evidential likelihood are constructed as the base classifiers, and a combination of individual trees promises to lead to a better classification accuracy. Requiring no extra querying cost, bagging belief decision trees can obtain good classification performance by simple belief tree combination, making it an alternative to single belief tree with querying. Experiments on UCI datasets verify the effectiveness of bagging approach. In various uncertain cases, the bagging method outperforms single belief tree without querying, and is comparable in accuracy to single tree with querying. © 2017 International Society of Information Fusion (ISIF).

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2017. s. 321-326, artikel-id 8009664
Nyckelord [en]
bagging, belief function theory, decision trees, evidential likelihood, Decision theory, Forestry, Information fusion, Uncertainty analysis, Bagging algorithms, Bagging approach, Classification accuracy, Classification performance, Ensemble techniques, Trees (mathematics)
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:bth-15216DOI: 10.23919/ICIF.2017.8009664ISI: 000410938300047Scopus ID: 2-s2.0-85029439190ISBN: 9780996452700 (tryckt)OAI: oai:DiVA.org:bth-15216DiVA, id: diva2:1145526
Konferens
20th International Conference on Information Fusion, Fusion, Xian
Tillgänglig från: 2017-09-29 Skapad: 2017-09-29 Senast uppdaterad: 2018-01-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Sun, Bin

Sök vidare i DiVA

Av författaren/redaktören
Sun, Bin
Av organisationen
Institutionen för kreativa teknologier
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 101 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf