Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Classifying environmental sounds using image recognition networks
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Sony Mobile Communications AB, SWE.
Sony Mobile Communications AB, SWE.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
2017 (Engelska)Ingår i: Procedia Computer Science / [ed] Toro C.,Hicks Y.,Howlett R.J.,Zanni-Merk C.,Toro C.,Frydman C.,Jain L.C.,Jain L.C., Elsevier B.V. , 2017, Vol. 112, s. 2048-2056Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Automatic classification of environmental sounds, such as dog barking and glass breaking, is becoming increasingly interesting, especially for mobile devices. Most mobile devices contain both cameras and microphones, and companies that develop mobile devices would like to provide functionality for classifying both videos/images and sounds. In order to reduce the development costs one would like to use the same technology for both of these classification tasks. One way of achieving this is to represent environmental sounds as images, and use an image classification neural network when classifying images as well as sounds. In this paper we consider the classification accuracy for different image representations (Spectrogram, MFCC, and CRP) of environmental sounds. We evaluate the accuracy for environmental sounds in three publicly available datasets, using two well-known convolutional deep neural networks for image recognition (AlexNet and GoogLeNet). Our experiments show that we obtain good classification accuracy for the three datasets. © 2017 The Author(s).

Ort, förlag, år, upplaga, sidor
Elsevier B.V. , 2017. Vol. 112, s. 2048-2056
Nyckelord [en]
Convolutional Neural Networks, Deep Learning, Environmental Sound Classification, GPU Processing, Image Classification, Classification (of information), Convolution, Deep neural networks, Image recognition, Knowledge based systems, Neural networks, Automatic classification, Classification accuracy, Classification tasks, Convolutional neural network, Environmental sound classifications, Environmental sounds, Image representations
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:bth-15478DOI: 10.1016/j.procs.2017.08.250ISI: 000418466000216Scopus ID: 2-s2.0-85032359938OAI: oai:DiVA.org:bth-15478DiVA, id: diva2:1156090
Konferens
21st International Conference on Knowledge - Based and Intelligent Information and Engineering Systems, (KES), Marseille
Tillgänglig från: 2017-11-10 Skapad: 2017-11-10 Senast uppdaterad: 2018-01-18Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Lundberg, Lars

Sök vidare i DiVA

Av författaren/redaktören
Boddapati, VenkateshLundberg, Lars
Av organisationen
Institutionen för datalogi och datorsystemteknik
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 156 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf