Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Training Instance Random Sampling Based Evidential Classification Forest Algorithms
University of Jinan, CHN .
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för kreativa teknologier.ORCID-id: 0000-0001-5824-425X
University of Jinan, CHN .
2018 (Engelska)Ingår i: 2018 21st International Conference on Information Fusion, FUSION 2018, Institute of Electrical and Electronics Engineers Inc. , 2018, s. 883-888Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Modelling and handling epistemic uncertainty with belief function theory, different ways to learn classification forests from evidential training data are explored. In this paper, multiple base classifiers are learned on uncertain training subsets generated by training instance random sampling approach. For base classifier learning, with the tool of evidential likelihood function, gini impurity intervals of uncertain datasets are calculated for attribute splitting and consonant mass functions of labels are generated for leaf node prediction. The construction of gini impurity based belief binary classification tree is proposed and then compared with C4.5 belief classification tree. For base classifier combination strategy, both evidence combination method for consonant mass function outputs and majority voting method for precise label outputs are discussed. The performances of different proposed algorithms are compared and analysed with experiments on VCI Balance scale dataset. © 2018 ISIF

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers Inc. , 2018. s. 883-888
Nyckelord [en]
Binary trees, Forestry, Functions, Information fusion, Linguistics, Uncertainty analysis, Belief function theory, Binary classification, Classification trees, Epistemic uncertainties, Evidence combination, Likelihood functions, Multiple base classifiers, Training subsets, Classification (of information)
Nationell ämneskategori
Annan data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:bth-17105DOI: 10.23919/ICIF.2018.8455427Scopus ID: 2-s2.0-85054089356ISBN: 9780996452762 (tryckt)OAI: oai:DiVA.org:bth-17105DiVA, id: diva2:1255147
Konferens
21st International Conference on Information Fusion, FUSION,Cambridge
Tillgänglig från: 2018-10-11 Skapad: 2018-10-11 Senast uppdaterad: 2018-10-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Sun, Bin

Sök vidare i DiVA

Av författaren/redaktören
Sun, Bin
Av organisationen
Institutionen för kreativa teknologier
Annan data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 46 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf