Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A study on performance measures for auto-scaling CPU-intensive containerized applications
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.ORCID-id: 0000-0002-3118-5058
2019 (Engelska)Ingår i: Cluster Computing, ISSN 1386-7857, E-ISSN 1573-7543Artikel i tidskrift (Refereegranskat) Epub ahead of print
Abstract [en]

Autoscaling of containers can leverage performance measures from the different layers of the computational stack. This paper investigate the problem of selecting the most appropriate performance measure to activate auto-scaling actions aiming at guaranteeing QoS constraints. First, the correlation between absolute and relative usage measures and how a resource allocation decision can be influenced by them is analyzed in different workload scenarios. Absolute and relative measures could assume quite different values. The former account for the actual utilization of resources in the host system, while the latter account for the share that each container has of the resources used. Then, the performance of a variant of Kubernetes’ auto-scaling algorithm, that transparently uses the absolute usage measures to scale-in/out containers, is evaluated through a wide set of experiments. Finally, a detailed analysis of the state-of-the-art is presented.

Ort, förlag, år, upplaga, sidor
Springer New York LLC , 2019.
Nyckelord [en]
Auto-scaling, Autonomic computing, Container, Correlation, Docker, Kubernetes, Performance evaluation, Computer networks, Correlation methods, Software engineering, Performance evaluations, Containers
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:bth-17534DOI: 10.1007/s10586-018-02890-1Scopus ID: 2-s2.0-85059669161OAI: oai:DiVA.org:bth-17534DiVA, id: diva2:1282968
Tillgänglig från: 2019-01-28 Skapad: 2019-01-28 Senast uppdaterad: 2019-01-28Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Casalicchio, Emiliano

Sök vidare i DiVA

Av författaren/redaktören
Casalicchio, Emiliano
Av organisationen
Institutionen för datalogi och datorsystemteknik
I samma tidskrift
Cluster Computing
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 240 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf