Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Strong nonlinearity, anisotropy, and solitons in a lattice with holonomic constraints
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för maskinteknik.
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för maskinteknik.ORCID-id: 0000-0001-8739-4492
2019 (Engelska)Ingår i: Wave motion, ISSN 0165-2125, E-ISSN 1878-433X, Vol. 89, s. 104-115Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The nonlinear dynamics of a crystal lattice where the atoms are positioned along parallel rods is studied. They may move only in one direction and this constraint leads to the appearance of nonlinearity even the forces between the atoms obey the linear Hooke's law. This nonlinearity turns out to be strong. The equations of motion of the individual lattice atoms are written, and. in the continuum limit when the lattice period is small in comparison with the wavelength, a new strongly nonlinear partial differential equation is derived. The waves traveling in the direction orthogonal to the rods are purely transverse slow waves, governed by an equation of the Heisenberg type. In the direction along the rods, a fast purely longitudinal wave can propagate. In general, when the wave travels at an arbitrary angle, it is neither purely longitudinal nor transverse and the periodic structure exhibits anisotropic properties. Their velocity depends strongly on the direction of propagation and the structure exhibits properties similar to a skeletal muscle with stretched fibers. Special attention is paid to the soliton solutions of this equation and their behavior is studied. For non-stationary quasi-longitudinal waves, a new evolution equation, rich in symmetries, is derived. One of the solutions with a fixed transverse structure is described by elliptic integrals and evolves in accordance with a cubic nonlinear equation of the Klein–Gordon type. © 2019 Elsevier B.V.

Ort, förlag, år, upplaga, sidor
Elsevier B.V. , 2019. Vol. 89, s. 104-115
Nyckelord [en]
Anisotropy, Atoms, Equations of motion, Nonlinear equations, Partial differential equations, Solitons, Anisotropic property, Elliptic integrals, Evolution equations, Holonomic constraints, Longitudinal waves, Soliton solutions, Strong nonlinearity, Strongly nonlinear, Control nonlinearities
Nationell ämneskategori
Annan maskinteknik
Identifikatorer
URN: urn:nbn:se:bth-17777DOI: 10.1016/j.wavemoti.2019.01.001ISI: 000474675800009OAI: oai:DiVA.org:bth-17777DiVA, id: diva2:1302715
Tillgänglig från: 2019-04-05 Skapad: 2019-04-05 Senast uppdaterad: 2019-09-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Rudenko, OlegHedberg, Claes

Sök vidare i DiVA

Av författaren/redaktören
Rudenko, OlegHedberg, Claes
Av organisationen
Institutionen för maskinteknik
I samma tidskrift
Wave motion
Annan maskinteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 39 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf