Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A split-merge evolutionary clustering algorithm
Technical University Sofia Branch Plovdiv, BUL.
Sirris, Brussels, BEL.
2019 (Engelska)Ingår i: ICAART 2019 - Proceedings of the 11th International Conference on Agents and Artificial Intelligence, SciTePress , 2019, Vol. 2, s. 337-346Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In this article we propose a bipartite correlation clustering technique that can be used to adapt the existing clustering solution to a clustering of newly collected data elements. The proposed technique is supposed to provide the flexibility to compute clusters on a new portion of data collected over a defined time period and to update the existing clustering solution by the computed new one. Such an updating clustering should better reflect the current characteristics of the data by being able to examine clusters occurring in the considered time period and eventually capture interesting trends in the area. For example, some clusters will be updated by merging with ones from newly constructed clustering while others will be transformed by splitting their elements among several new clusters. The proposed clustering algorithm, entitled Split-Merge Evolutionary Clustering, is evaluated and compared to another bipartite correlation clustering technique (PivotBiCluster) on two different case studies: expertise retrieval and patient profiling in healthcare. Copyright © 2019 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved

Ort, förlag, år, upplaga, sidor
SciTePress , 2019. Vol. 2, s. 337-346
Nyckelord [en]
Bipartite Clustering, Data Mining, Evolutionary Clustering, PubMed Data, Unsupervised Learning, Artificial intelligence, Cluster analysis, Evolutionary algorithms, Bipartite correlation clustering, Case-studies, Clustering solutions, Current characteristic, Data elements, Clustering algorithms
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:bth-17896Scopus ID: 2-s2.0-85064827857ISBN: 9789897583506 (tryckt)OAI: oai:DiVA.org:bth-17896DiVA, id: diva2:1316776
Konferens
11th International Conference on Agents and Artificial Intelligence, ICAART; Prague, 19 February 2019 through 21 February 2019
Tillgänglig från: 2019-05-21 Skapad: 2019-05-21 Senast uppdaterad: 2019-05-21Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Scopus

Personposter BETA

Boeva, Veselka

Sök vidare i DiVA

Av författaren/redaktören
Boeva, Veselka
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 138 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf