Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Raspberry Pi Based Vision System for Foreign Object Debris (FOD) Detection
Blekinge Tekniska Högskola.
Blekinge Tekniska Högskola.
2020 (Engelska)Självständigt arbete på grundnivå (kandidatexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)
Abstract [en]

Background: The main purpose of this research is to design and develop a cost-effective system for detection of Foreign Object Debris (FOD), dedicated to airports. FOD detection has been a significant problem at airports as it can cause damage to aircraft. Developing such a device to detect FOD may require complicated hardware and software structures. The proposed solution is based on a computer vision system, which comprises of flexible off the shelf components such as a Raspberry Pi and Camera Module, allowing the simplistic and efficient way to detect FOD.

Methods: The solution to this research is achieved through User-centered design, which implies to design a system solution suitably and efficiently. The system solution specifications, objectives and limitations are derived from this User-centered design. The possible technologies are concluded from the required functionalities and constraints to obtain a real-time efficient FOD detection system.

Results: The results are obtained using background subtraction for FOD detection and implementation of SSD (single-shot multi-box detector) model for FOD classification. The performance evaluation of the system is analysed by testing the system to detect FOD of different size for different distances. The web design is also implemented to notify the user in real-time when there is an occurrence of FOD.

Conclusions: We concluded that the background subtraction and SSD model are the most suitable algorithms for the solution design with Raspberry Pi to detect FOD in a real-time system. The system performs in real-time, giving the efficiency of 84% for detecting medium-sized FOD such as persons at a distance of 75 meters and 72% efficiency for detecting large-sized FOD such as cars at a distance of 125 meters, and the average frame per second (fps) that is the system ’s performance in recording and processing frames of the area required to detect FOD is 0.95.

Ort, förlag, år, upplaga, sidor
2020. , s. 76
Nyckelord [en]
Airports, Computer vision, Performance evaluation, Real-time systems, User Centered Design, Web design.
Nationell ämneskategori
Telekommunikation
Identifikatorer
URN: urn:nbn:se:bth-20198OAI: oai:DiVA.org:bth-20198DiVA, id: diva2:1453665
Externt samarbete
Bioseco Sp. z o. o.
Ämne / kurs
ET1464 Kandidatarbete i Elektroteknik
Utbildningsprogram
ETGDB Plan för kvalifikation till kandidatexamen inom elektroteknik 60,0 hp
Handledare
Examinatorer
Tillgänglig från: 2020-07-21 Skapad: 2020-07-10 Senast uppdaterad: 2020-07-21Bibliografiskt granskad

Open Access i DiVA

Raspberry Pi Based Vision System for Foreign Object Debris (FOD) Detection(5241 kB)3584 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 5241 kBChecksumma SHA-512
a33adc1dd4a5331bc66f6326525b14dd1b8afbf846049dafc7a94c20241faa1f0532a02937ae02d4b481c9a2ae54a3eade4845d8c8938396727a067a635be1ba
Typ fulltextMimetyp application/pdf

Av organisationen
Blekinge Tekniska Högskola
Telekommunikation

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 3586 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 888 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf