Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Engagement Recognition in an E-learning Environment Using Convolutional Neural Network
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datavetenskap.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datavetenskap.
2021 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Background. Under the current situation, distance education has rapidly become popular among students and teachers. This educational situation has changed the traditional way of teaching in the classroom. Under this kind of circumstance, students will be required to learn independently. But at the same time, it also brings some drawbacks, and teachers cannot obtain the feedback of students’ engagement in real-time. This thesis explores the feasibility of applying a lightweight model to recognize student engagement and the practicality of the model in a distance education environment.

Objectives. This thesis aims to develop and apply a lightweight model based on Convolutional Neural Network(CNN) with acceptable performance to recognize the engagement of students in the environment of distance learning. Evaluate and compare the optimized model with selected original and other models in different performance metrics.

Methods. This thesis uses experiments and literature review as research methods. The literature review is conducted to select effective CNN-based models for engagement recognition and feasible strategies for optimizing chosen models. These selected and optimized models are trained, tested, evaluated and compared as independent variables in the experiments. The performance of different models is used as the dependent variable. Results. Based on the literature review results, ShuffleNet v2 is selected as the most suitable CNN architecture for solving the task of engagement recognition. Inception v3 and ResNet are used as the classic CNN architecture for comparison. The attention mechanism and replace activation function are used as optimization methods for ShuffleNet v2. The pre-experiment results show that ShuffleNet v2 using the Leaky ReLU function has the highest accuracy compared with other activation functions. The experimental results show that the optimized model performs better in engagement recognition tasks than the baseline ShuffleNet v2 model, ResNet v2 and Inception v3 models.

Conclusions. Through the analysis of the experiment results, the optimized ShuffleNet v2 has the best performance and is the most suitable model for real-world applications and deployments on mobile platforms.

Ort, förlag, år, upplaga, sidor
2021.
Nyckelord [en]
Object recognition, Deep Learning, Distance learning
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:bth-22273OAI: oai:DiVA.org:bth-22273DiVA, id: diva2:1608439
Ämne / kurs
DV2572 Masterarbete i Datavetenskap
Utbildningsprogram
DVADA Plan för kvalifikation till masterexamen inom datavetenskap
Handledare
Examinatorer
Tillgänglig från: 2021-11-12 Skapad: 2021-11-03 Senast uppdaterad: 2021-11-12Bibliografiskt granskad

Open Access i DiVA

Engagement Recognition in an E-learning Environment Using Convolutional Neural Network(1334 kB)1049 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 1334 kBChecksumma SHA-512
0fa4f9465585e62afa12ca4f865338e80d495fbfe7c78e54b16c5449dc00c4e99c96e0e92b3e35a2e192649caded745dec96ac4ef4879910c57c98ac2f2a982c
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för datavetenskap
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 1049 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 686 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf