Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Comparison of Machine Learning Algorithms for Anomaly Detection in Train’s Real-Time Ethernet using an Intrusion Detection System
2022 (Engelska)Självständigt arbete på grundnivå (kandidatexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)
Abstract [en]

Background: The train communication network is vulnerable to intrusion assaultsbecause of the openness of the ethernet communication protocol. Therefore, an intru-sion detection system must be incorporated into the train communication network.There are many algorithms available in Machine Learning(ML) to develop the Intru-sion Detection System(IDS). Majorly, depending on the accuracy and execution timeof the algorithm, it is decided as the best. Performance metrics like F1 score, preci-sion, recall, and support are compared to see how well the algorithm fits the modelwhile training. The following thesis will detect the anomalies in the Train ControlManagement System(TCMS) and then the comparison of various algorithms will beheld in order to declare the accurate algorithm.

Objectives: In this thesis work, we aim to research anomaly detection in a train’sreal-time ethernet using an IDS. The main objectives of this thesis include per-forming Principal Component Analysis(PCA) and feature selection using RandomForest(RF) for simplifying the complexity of the dataset by reducing dimensionalityand extracting significant features. Followed by, choosing the most consistent algo-rithm for anomaly detection from the selected algorithms by evaluating performanceparameters, especially accuracy and execution time after training the models usingML algorithms.

Method: This thesis necessitates one research methodology which is experimen-tation, to answer our research questions. For RQ1, experimentation will help usgain better insights into the dataset to extract valuable and essential features as apart of feature selection using RF and dimensionality reduction using PCA. RQ2also uses experimentation because it provides better accuracy and reliability. Afterpre-processing, the data will be used to train the algorithms and will be evaluatedusing various methods.

Results: In this study, we have analysed data using EDA, reduced dimensionalityand feature selection using PCA and RF algorithm respectively. We used five su-pervised machine learning methods namely, Support Vector Machine(SVM), NaiveBayes, Decision Tree, K-nearest Neighbor(KNN), and Random Forest(RF). Aftertesting and utilizing the "KDDCup 1999" pre-processed dataset from the Universityof California Irvine(UCI) ML repository, Decision Tree model has been concludedas the best-performing algorithm with an accuracy of 98.89% in 0.098 seconds, incomparison to other models.

Conclusions: Five models have been trained using the five ML techniques foranomaly detection using an IDS. We concluded that the decision tree trained modelhas optimal performance with an accuracy of 98.89% and time of 0.098 seconds

Ort, förlag, år, upplaga, sidor
2022. , s. 41
Nyckelord [en]
Anomaly detection, Computing methodologies, Machine learning, Real-time Ethernet, Supervised learning
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:bth-23802OAI: oai:DiVA.org:bth-23802DiVA, id: diva2:1707593
Ämne / kurs
DV1478 Kandidatarbete i datavetenskap
Utbildningsprogram
DVGDT Plan för kvalifikation till kandidatexamen inom datavetenskap 60,0 hp
Presentation
2022-09-23, Blekinge Institute of Technology, Karlskrona, 10:35 (Engelska)
Handledare
Examinatorer
Tillgänglig från: 2022-11-01 Skapad: 2022-11-01 Senast uppdaterad: 2022-11-01Bibliografiskt granskad

Open Access i DiVA

fulltext(3323 kB)907 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3323 kBChecksumma SHA-512
62ea315e321447279f99f0f8ed506f911897366430924d5423b44386e7a7fbb4c609ff3351a3d1c225a5b847a9aef8f317e3424df4765fef3ee4ebc900e0213e
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Chaganti, TrayiRohith, Tadi
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 907 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 325 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf