Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Mapping Drainage Ditches in Forested Landscapes Using Deep Learning and Aerial Laser Scanning
Swedish University of Agricultural Sciences.
Swedish University of Agricultural Sciences.
Jonkoping University.
Umea University.
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: Journal of irrigation and drainage engineering, ISSN 0733-9437, E-ISSN 1943-4774, Vol. 149, nr 3, artikel-id 04022051Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Extensive use of drainage ditches in European boreal forests and in some parts of North America has resulted in a major change in wetland and soil hydrology and impacted the overall ecosystem functions of these regions. An increasing understanding of the environmental risks associated with forest ditches makes mapping these ditches a priority for sustainable forest and land use management. Here, we present the first rigorous deep learning-based methodology to map forest ditches at regional scale. A deep neural network was trained on airborne laser scanning data (ALS) and 1,607 km of manually digitized ditch channels from 10 regions spread across Sweden. The model correctly mapped 86% of all ditch channels in the test data, with a Matthews correlation coefficient of 0.78. Further, the model proved to be accurate when evaluated on ALS data from other heavily ditched countries in the Baltic Sea Region. This study leads the way in using deep learning and airborne laser scanning for mapping fine-resolution drainage ditches over large areas. This technique requires only one topographical index, which makes it possible to implement on national scales with limited computational resources. It thus provides a significant contribution to the assessment of regional hydrology and ecosystem dynamics in forested landscapes.

Ort, förlag, år, upplaga, sidor
American Society of Civil Engineers (ASCE), 2023. Vol. 149, nr 3, artikel-id 04022051
Nyckelord [en]
Ditches, Channel, airborne laser scanning, Deep learning, Semantic segmentation
Nationell ämneskategori
Skogsvetenskap Fjärranalysteknik
Identifikatorer
URN: urn:nbn:se:bth-24303DOI: 10.1061/JIDEDH.IRENG-9796ISI: 000922209100003OAI: oai:DiVA.org:bth-24303DiVA, id: diva2:1739175
Forskningsfinansiär
Vinnova, 2014-03319Forskningsrådet Formas, 2019-00173Forskningsrådet Formas, 2021-00115Tillgänglig från: 2023-02-24 Skapad: 2023-02-24 Senast uppdaterad: 2023-02-24Bibliografiskt granskad

Open Access i DiVA

fulltext(3694 kB)92 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3694 kBChecksumma SHA-512
73c48fcc2ceddb432f2e201bc17d197d2a76581ef81e95caf0a12cd4410a33bd3e4c258f21940ad75290094b40217e942f1b7b06a828adeb02ef2a3e5e7de5e8
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Person

Lavesson, Niklas

Sök vidare i DiVA

Av författaren/redaktören
Lavesson, Niklas
Av organisationen
Institutionen för programvaruteknik
I samma tidskrift
Journal of irrigation and drainage engineering
SkogsvetenskapFjärranalysteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 93 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 237 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf