Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Tailored cGAN SAR Synthetic Data Augmentation Method for ATR Application
Aeronautics Institute of Technology, Brazil.
Aeronautics Institute of Technology, Brazil.
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för matematik och naturvetenskap.ORCID-id: 0000-0002-6643-312X
2023 (Engelska)Ingår i: Proceedings of the IEEE Radar Conference, Institute of Electrical and Electronics Engineers (IEEE), 2023, Vol. 2023Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This article proposes a method to simulate Synthetic Aperture Radar (SAR) targets for specific incidence and azimuth angles. Images synthesized by Electromagnetic Computing (EMC) are used to train a Conditional Generative Adversarial Network (cGAN). Two synthetic image chips of the same class and incidence angle, separated by two degrees in azimuth, are used as input to the cGAN. The cGAN predicts the image of the same class and incidence angle whose azimuth angle corresponds to the bisector of the two input chips. An evaluation using the SAMPLE dataset was performed to verify the quality of the image prediction. Running through a total of 100 training epochs, the cGAN converges, reaching the best Mean Squared Error (MSE) after 77 epochs. The results demonstrate that the proposed method is promising for Automatic Target Recognition (ATR) applications. © 2023 IEEE.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2023. Vol. 2023
Serie
IEEE International Conference on Radar (RADAR), ISSN 1097-5764, E-ISSN 2640-7736
Nyckelord [en]
Automatic Target Recognition, Conditional Generative Adversarial Network, Data Augmentation, Image Translation, Synthetic Aperture Radar, Generative adversarial networks, Mean square error, Radar imaging, Radar target recognition, Augmentation methods, Azimuth angles, Electromagnetics, Incidence angles, Radar target, Synthesised, Synthetic data
Nationell ämneskategori
Signalbehandling
Identifikatorer
URN: urn:nbn:se:bth-25216DOI: 10.1109/RadarConf2351548.2023.10149587ISI: 001031599600049Scopus ID: 2-s2.0-85163791888ISBN: 9781665436694 (tryckt)OAI: oai:DiVA.org:bth-25216DiVA, id: diva2:1786008
Konferens
2023 IEEE Radar Conference, RadarConf23, San Antonia, 1 May 2023 5 May 2023
Tillgänglig från: 2023-08-07 Skapad: 2023-08-07 Senast uppdaterad: 2023-08-24Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Pettersson, Mats

Sök vidare i DiVA

Av författaren/redaktören
Pettersson, Mats
Av organisationen
Institutionen för matematik och naturvetenskap
Signalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 400 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf