Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Comparision of Machine Learning Algorithms on Identifying Autism Spectrum Disorder
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datavetenskap.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datavetenskap.
2023 (Engelska)Självständigt arbete på grundnivå (kandidatexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)
Abstract [en]

Background: Autism Spectrum Disorder (ASD) is a complex neurodevelopmen-tal disorder that affects social communication, behavior, and cognitive development.Patients with autism have a variety of difficulties, such as sensory impairments, at-tention issues, learning disabilities, mental health issues like anxiety and depression,as well as motor and learning issues. The World Health Organization (WHO) es-timates that one in 100 children have ASD. Although ASD cannot be completelytreated, early identification of its symptoms might lessen its impact. Early identifi-cation of ASD can significantly improve the outcome of interventions and therapies.So, it is important to identify the disorder early. Machine learning algorithms canhelp in predicting ASD. In this thesis, Support Vector Machine (SVM) and RandomForest (RF) are the algorithms used to predict ASD.

Objectives: The main objective of this thesis is to build and train the models usingmachine learning(ML) algorithms with the default parameters and with the hyper-parameter tuning and find out the most accurate model based on the comparison oftwo experiments to predict whether a person is suffering from ASD or not.

Methods: Experimentation is the method chosen to answer the research questions.Experimentation helped in finding out the most accurate model to predict ASD. Ex-perimentation is followed by data preparation with splitting of data and by applyingfeature selection to the dataset. After the experimentation followed by two exper-iments, the models were trained to find the performance metrics with the defaultparameters, and the models were trained to find the performance with the hyper-parameter tuning. Based on the comparison, the most accurate model was appliedto predict ASD.

Results: In this thesis, we have chosen two algorithms SVM and RF algorithms totrain the models. Upon experimentation and training of the models using algorithmswith hyperparameter tuning. SVM obtained the highest accuracy score and f1 scoresfor test data are 96% and 97% compared to other model RF which helps in predictingASD.

Conclusions: The models were trained using two ML algorithms SVM and RF andconducted two experiments, in experiment-1 the models were trained using defaultparameters and obtained accuracy, f1 scores for the test data, and in experiment-2the models were trained using hyper-parameter tuning and obtained the performancemetrics such as accuracy and f1 score for the test data. By comparing the perfor-mance metrics, we came to the conclusion that SVM is the most accurate algorithmfor predicting ASD.

Ort, förlag, år, upplaga, sidor
2023. , s. 46
Nyckelord [en]
Autism Spectrum Disorder(ASD), Classification, Data pre-processing, Feature selection, Machine learning algorithms, Random Forest Classifier, Support Vector Classifier.
Nationell ämneskategori
Datorteknik Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:bth-25796OAI: oai:DiVA.org:bth-25796DiVA, id: diva2:1820765
Ämne / kurs
DV1478 Kandidatarbete i datavetenskap
Utbildningsprogram
DVGDT Plan för kvalifikation till kandidatexamen inom datavetenskap 60,0 hp
Presentation
2023-09-27, Zoom meeting, Campus Grasvik, Karlskrona, 08:15 (Engelska)
Handledare
Examinatorer
Tillgänglig från: 2023-12-28 Skapad: 2023-12-18 Senast uppdaterad: 2023-12-28Bibliografiskt granskad

Open Access i DiVA

Comparison of Machine Learning Algorithms on Identifying Autism Spectrum Disorder(481 kB)93 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 481 kBChecksumma SHA-512
4af97c2f862fda8cb19f401d6c90348ffa7fd6ec2f577ddc3e22b8dd5d33f386058da17d4c95c3010248f05fd3c51dc3c669c538e9015e50373d0125b960f660
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för datavetenskap
DatorteknikDatavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 93 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 335 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf