Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The role of Machine Learning in Predicting CABG Surgery Duration
Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation.
Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation.
2011 (Engelska)Självständigt arbete på avancerad nivå (masterexamen)Studentuppsats (Examensarbete)
Abstract [en]

Context. Operating room (OR) is one of the most expensive resources of a hospital. Its mismanagement is associated with high costs and revenues. There are various factors which may cause OR mismanagement, one of them is wrong estimation of surgery duration. The surgeons underestimate or overestimate surgery duration which causes underutilization or overutilization of OR and medical staff. Resolving the issue of wrong estimate can result improvement of the overall OR planning. Objectives. In this study we investigate two different techniques of feature selection, compare different regression based modeling techniques for surgery duration prediction. One of these techniques (with lowest mean absolute) is used for building a model. We further propose a framework for implementation of this model in the real world setup. Results. In our case the selected technique (correlation based feature selection with best first search in backward direction) for feature selection could not produce better results than the expert’s opinion based approach for feature selection. Linear regression outperformed on both the data sets. Comparatively the mean absolute error of linear regression on experts’ opinion based data set was the lowest. Conclusions. We have concluded that patterns exist for the relationship of the resultant prediction (surgery duration) and other important features related to patient characteristics. Thus, machine learning tools can be used for predicting surgery duration. We have also concluded that the proposed framework may be used as a decision support tool for facilitation in surgery duration prediction which can improve the planning of ORs and their resources.

Ort, förlag, år, upplaga, sidor
2011. , s. 56
Nyckelord [en]
Machine learning, surgery duration prediction, operating room planning, data mining
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:bth-6074Lokalt ID: oai:bth.se:arkivex0A61803AA6E79117C125792E003527A6OAI: oai:DiVA.org:bth-6074DiVA, id: diva2:833493
Uppsök
teknik
Handledare
Anmärkning
Zahoor Ali 00923339474002 Muhammad Qummer ul Arfeen 0046760652203Tillgänglig från: 2015-04-22 Skapad: 2011-10-19 Senast uppdaterad: 2018-01-11Bibliografiskt granskad

Open Access i DiVA

fulltext(1338 kB)460 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1338 kBChecksumma SHA-512
6ae4c931c116ba70fcc6b7bd2a2613cd6477ab369a2e3c855210eabe94a0c876581083cc2905bf2e7c024bc45539cbdc60072e493211bee5df6760016472ae93
Typ fulltextMimetyp application/pdf

Av organisationen
Sektionen för datavetenskap och kommunikation
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 460 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 584 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf