Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evaluation of selected data mining algorithms implemented in Medical Decision Support Systems
Blekinge Tekniska Högskola, Sektionen för teknik, Avdelningen för programvarusystem.
2007 (Engelska)Självständigt arbete på avancerad nivå (magisterexamen)Studentuppsats (Examensarbete)
Abstract [en]

The goal of this master’s thesis is to identify and evaluate data mining algorithms which are commonly implemented in modern Medical Decision Support Systems (MDSS). They are used in various healthcare units all over the world. These institutions store large amounts of medical data. This data may contain relevant medical information hidden in various patterns buried among the records. Within the research several popular MDSS’s are analyzed in order to determine the most common data mining algorithms utilized by them. Three algorithms have been identified: Naïve Bayes, Multilayer Perceptron and C4.5. Prior to the very analyses the algorithms are calibrated. Several testing configurations are tested in order to determine the best setting for the algorithms. Afterwards, an ultimate comparison of the algorithms orders them with respect to their performance. The evaluation is based on a set of performance metrics. The analyses are conducted in WEKA on five UCI medical datasets: breast cancer, hepatitis, heart disease, dermatology disease, diabetes. The analyses have shown that it is very difficult to name a single data mining algorithm to be the most suitable for the medical data. The results gained for the algorithms were very similar. However, the final evaluation of the outcomes allowed singling out the Naïve Bayes to be the best classifier for the given domain. It was followed by the Multilayer Perceptron and the C4.5.

Ort, förlag, år, upplaga, sidor
2007. , s. 81
Nyckelord [en]
Naïve Bayes, Multilayer Perceptron, C4.5, medical data mining, medical decision support
Nationell ämneskategori
Datavetenskap (datalogi) Programvaruteknik
Identifikatorer
URN: urn:nbn:se:bth-6194Lokalt ID: oai:bth.se:arkivex06EE332670EA55D3C125736E00417C3AOAI: oai:DiVA.org:bth-6194DiVA, id: diva2:833624
Uppsök
teknik
Handledare
Tillgänglig från: 2015-04-22 Skapad: 2007-10-08 Senast uppdaterad: 2018-01-11Bibliografiskt granskad

Open Access i DiVA

fulltext(1760 kB)792 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1760 kBChecksumma SHA-512
c0dcc3a48799fc38ab31cc0658ed868d02f31344466ca83b486c359fab4fe102d43bf0582c40231f61416486f6c6e60ad1148b4b0e1ce92d2e128a0b4f318c3e
Typ fulltextMimetyp application/pdf

Av organisationen
Avdelningen för programvarusystem
Datavetenskap (datalogi)Programvaruteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 792 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 1817 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf