Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Adaptive Fingerprint Binarization by Frequency Domain Analysis
Ansvarig organisation
2006 (Engelska)Konferensbidrag, Publicerat paper (Övrigt vetenskapligt) PublishedAlternativ titel
Adaptiv Fingeravtryck Binarization av Frekvens Domän Analys (Svenska)
Abstract [en]

This paper presents a new approach for fingerprint enhancement by using directional filters and binarization. A straightforward method for automatically tuning the size of local area is obtained by analyzing entire fingerprint image in the frequency domain. Hence, the algorithm will adjust adaptively to the local area of the fingerprint image, independent on the characteristics of the fingerprint sensor or the physical appearance of the fingerprints. Frequency analysis is carried out in the local areas to design directional filters. Experimental results are presented.

Ort, förlag, år, upplaga, sidor
Pacific Grove, 2006.
Nyckelord [en]
biometrics, fingerprint, binarization
Nationell ämneskategori
Signalbehandling
Identifikatorer
URN: urn:nbn:se:bth-8963ISI: 000246925201033Lokalt ID: oai:bth.se:forskinfoBB66330D02D2801CC125733E008178D6OAI: oai:DiVA.org:bth-8963DiVA, id: diva2:836739
Konferens
Fortieth Asilomar Conference on Signals, Systems and Computers
Anmärkning
Copyright © 19xx/20xx IEEE. Reprinted from (all relevant publication info). This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of BTH's products or services Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by sending a blank email message to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.Tillgänglig från: 2012-09-18 Skapad: 2007-08-22 Senast uppdaterad: 2015-12-11Bibliografiskt granskad
Ingår i avhandling
1. FINGERPRINT IMAGE ENHANCEMENT, SEGMENTATION AND MINUTIAE DETECTION
Öppna denna publikation i ny flik eller fönster >>FINGERPRINT IMAGE ENHANCEMENT, SEGMENTATION AND MINUTIAE DETECTION
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Prior to 1960's, the fingerprint analysis was carried out manually by human experts and for forensic purposes only. Automated fingerprint identification systems (AFIS) have been developed during the last 50 years. The success of AFIS resulted in that its use expanded beyond forensic applications and became common also in civilian applications. Mobile phones and computers equipped with fingerprint sensing devices for fingerprint-based user identification are common today.

Despite the intense development efforts, a major problem in automatic fingerprint identification is to acquire reliable matching features from fingerprint images with poor quality. Images where the fingerprint pattern is heavily degraded usually inhibit the performance of an AFIS system. The performance of AFIS systems is also reduced when matching fingerprints of individuals with large age variations.

This doctoral thesis presents contributions within the field of fingerprint image enhancement, segmentation and minutiae detection. The reliability of the extracted fingerprint features is highly dependent on the quality of the obtained fingerprints. Unfortunately, it is not always possible to have access to high quality fingerprints. Therefore, prior to the feature extraction, an enhancement of the quality of fingerprints and a segmentation are performed. The segmentation separates the fingerprint pattern from the background and thus limits possible sources of error due to, for instance, feature outliers. Most enhancement and segmentation techniques are data-driven and therefore based on certain features extracted from the low quality fingerprints at hand. Hence, different types of processing, such as directional filtering, are employed for the enhancement. This thesis contributes by proposing new research both for improving fingerprint matching and for the required pre-processing that improves the extraction of features to be used in fingerprint matching systems.

In particular, the majority of enhancement and segmentation methods proposed herein are adaptive to the characteristics of each fingerprint image. Thus, the methods are insensitive towards sensor and fingerprint variability. Furthermore, introduction of the higher order statistics (kurtosis) for fingerprint segmentation is presented. Segmentation of the fingerprint image reduces the computational load by excluding background regions of the fingerprint image from being further processed. Also using a neural network to obtain a more robust minutiae detector with a patch rejection mechanism for speeding up the minutiae detection is presented in this thesis.

Ort, förlag, år, upplaga, sidor
Karlskrona: Blekinge Tekniska Högskola, 2016. s. 168
Serie
Blekinge Institute of Technology Doctoral Dissertation Series, ISSN 1653-2090 ; 2016:01
Nyckelord
adaptive fingerprint image enhancement, fingerprint segmentation, gray-scale image normalization, minutiae features, neural networks, frequency analysis, kurtosis
Nationell ämneskategori
Teknik och teknologier Signalbehandling
Identifikatorer
urn:nbn:se:bth-11149 (URN)978-91-7295-321-5 (ISBN)
Disputation
2016-02-18, J1620, Karlskrona, 13:00 (Engelska)
Handledare
Tillgänglig från: 2015-12-11 Skapad: 2015-12-10 Senast uppdaterad: 2016-04-13Bibliografiskt granskad

Open Access i DiVA

fulltext(1465 kB)342 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1465 kBChecksumma SHA-512
9e7e496bef6972f9ee4a95449ded53a499b85b35c4b1d41a279de1afa6238436c65aec1e96168e4667587d5f738ec06ec470a5a59a0ea45f35e2cdcd7e21cf17
Typ fulltextMimetyp application/pdf

Personposter BETA

Nilsson, MikaelClaesson, Ingvar

Sök vidare i DiVA

Av författaren/redaktören
Nilsson, MikaelClaesson, Ingvar
Signalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 342 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 411 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf