Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
FINGERPRINT IMAGE ENHANCEMENT, SEGMENTATION AND MINUTIAE DETECTION
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för tillämpad signalbehandling.
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Prior to 1960's, the fingerprint analysis was carried out manually by human experts and for forensic purposes only. Automated fingerprint identification systems (AFIS) have been developed during the last 50 years. The success of AFIS resulted in that its use expanded beyond forensic applications and became common also in civilian applications. Mobile phones and computers equipped with fingerprint sensing devices for fingerprint-based user identification are common today.

Despite the intense development efforts, a major problem in automatic fingerprint identification is to acquire reliable matching features from fingerprint images with poor quality. Images where the fingerprint pattern is heavily degraded usually inhibit the performance of an AFIS system. The performance of AFIS systems is also reduced when matching fingerprints of individuals with large age variations.

This doctoral thesis presents contributions within the field of fingerprint image enhancement, segmentation and minutiae detection. The reliability of the extracted fingerprint features is highly dependent on the quality of the obtained fingerprints. Unfortunately, it is not always possible to have access to high quality fingerprints. Therefore, prior to the feature extraction, an enhancement of the quality of fingerprints and a segmentation are performed. The segmentation separates the fingerprint pattern from the background and thus limits possible sources of error due to, for instance, feature outliers. Most enhancement and segmentation techniques are data-driven and therefore based on certain features extracted from the low quality fingerprints at hand. Hence, different types of processing, such as directional filtering, are employed for the enhancement. This thesis contributes by proposing new research both for improving fingerprint matching and for the required pre-processing that improves the extraction of features to be used in fingerprint matching systems.

In particular, the majority of enhancement and segmentation methods proposed herein are adaptive to the characteristics of each fingerprint image. Thus, the methods are insensitive towards sensor and fingerprint variability. Furthermore, introduction of the higher order statistics (kurtosis) for fingerprint segmentation is presented. Segmentation of the fingerprint image reduces the computational load by excluding background regions of the fingerprint image from being further processed. Also using a neural network to obtain a more robust minutiae detector with a patch rejection mechanism for speeding up the minutiae detection is presented in this thesis.

Ort, förlag, år, upplaga, sidor
Karlskrona: Blekinge Tekniska Högskola, 2016. , s. 168
Serie
Blekinge Institute of Technology Doctoral Dissertation Series, ISSN 1653-2090 ; 2016:01
Nyckelord [en]
adaptive fingerprint image enhancement, fingerprint segmentation, gray-scale image normalization, minutiae features, neural networks, frequency analysis, kurtosis
Nationell ämneskategori
Teknik och teknologier Signalbehandling
Identifikatorer
URN: urn:nbn:se:bth-11149ISBN: 978-91-7295-321-5 (tryckt)OAI: oai:DiVA.org:bth-11149DiVA, id: diva2:881313
Disputation
2016-02-18, J1620, Karlskrona, 13:00 (Engelska)
Handledare
Tillgänglig från: 2015-12-11 Skapad: 2015-12-10 Senast uppdaterad: 2016-04-13Bibliografiskt granskad
Delarbeten
1. Adaptive Fingerprint Binarization by Frequency Domain Analysis
Öppna denna publikation i ny flik eller fönster >>Adaptive Fingerprint Binarization by Frequency Domain Analysis
2006 (Engelska)Konferensbidrag, Publicerat paper (Övrigt vetenskapligt) Published
Alternativ titel[sv]
Adaptiv Fingeravtryck Binarization av Frekvens Domän Analys
Abstract [en]

This paper presents a new approach for fingerprint enhancement by using directional filters and binarization. A straightforward method for automatically tuning the size of local area is obtained by analyzing entire fingerprint image in the frequency domain. Hence, the algorithm will adjust adaptively to the local area of the fingerprint image, independent on the characteristics of the fingerprint sensor or the physical appearance of the fingerprints. Frequency analysis is carried out in the local areas to design directional filters. Experimental results are presented.

Ort, förlag, år, upplaga, sidor
Pacific Grove: , 2006
Nyckelord
biometrics, fingerprint, binarization
Nationell ämneskategori
Signalbehandling
Identifikatorer
urn:nbn:se:bth-8963 (URN)000246925201033 ()oai:bth.se:forskinfoBB66330D02D2801CC125733E008178D6 (Lokalt ID)oai:bth.se:forskinfoBB66330D02D2801CC125733E008178D6 (Arkivnummer)oai:bth.se:forskinfoBB66330D02D2801CC125733E008178D6 (OAI)
Konferens
Fortieth Asilomar Conference on Signals, Systems and Computers
Anmärkning
Copyright © 19xx/20xx IEEE. Reprinted from (all relevant publication info). This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of BTH's products or services Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by sending a blank email message to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.Tillgänglig från: 2012-09-18 Skapad: 2007-08-22 Senast uppdaterad: 2015-12-11Bibliografiskt granskad
2. Improved Adaptive Fingerprint Binarization
Öppna denna publikation i ny flik eller fönster >>Improved Adaptive Fingerprint Binarization
2008 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat) Published
Abstract [en]

In this paper improvements to a previous work are presented. Removing the redundant artifacts in the fingerprint mask is introduced enhancing the final result. The proposed method is entirely adaptive process adjusting to each fingerprint without any further supervision of the user. Hence, the algorithm is insensitive to the characteristics of the fingerprint sensor and the various physical appearances of the fingerprints. Further, a detailed description of fingerprint mask generation not fully described in the previous work is presented. The improved experimental results are presented.

Ort, förlag, år, upplaga, sidor
Sanya, China: IEEE, 2008
Nationell ämneskategori
Signalbehandling
Identifikatorer
urn:nbn:se:bth-8315 (URN)000258873900156 ()oai:bth.se:forskinfo83728357C8048F5BC125751900393345 (Lokalt ID)oai:bth.se:forskinfo83728357C8048F5BC125751900393345 (Arkivnummer)oai:bth.se:forskinfo83728357C8048F5BC125751900393345 (OAI)
Konferens
CISP
Tillgänglig från: 2012-09-18 Skapad: 2008-12-08 Senast uppdaterad: 2015-12-11Bibliografiskt granskad
3. Adaptive Fingerprint Image Enhancement With Emphasis on Preprocessing of Data
Öppna denna publikation i ny flik eller fönster >>Adaptive Fingerprint Image Enhancement With Emphasis on Preprocessing of Data
2013 (Engelska)Ingår i: IEEE Transactions on Image Processing, ISSN 1057-7149, E-ISSN 1941-0042, Vol. 22, nr 2, s. 644-656Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This article proposes several improvements to an adaptive fingerprint enhancement method that is based on contextual filtering. The term adaptive implies that parameters of the method are automatically adjusted based on the input fingerprint image. Five processing blocks comprise the adaptive fingerprint enhancement method, where four of these blocks are updated in our proposed system. Hence, the proposed overall system is novel. The four updated processing blocks are: 1) preprocessing; 2) global analysis; 3) local analysis; and 4) matched filtering. In the preprocessing and local analysis blocks, a nonlinear dynamic range adjustment method is used. In the global analysis and matched filtering blocks, different forms of order statistical filters are applied. These processing blocks yield an improved and new adaptive fingerprint image processing method. The performance of the updated processing blocks is presented in the evaluation part of this paper. The algorithm is evaluated toward the NIST developed NBIS software for fingerprint recognition on FVC databases.

Ort, förlag, år, upplaga, sidor
IEEE, 2013
Nyckelord
Directional filtering, Fourier transform, image processing, spectral feature estimation, successive mean quantization transform
Nationell ämneskategori
Signalbehandling
Identifikatorer
urn:nbn:se:bth-7002 (URN)10.1109/TIP.2012.2220373 (DOI)000314717800019 ()oai:bth.se:forskinfoB04EDCB08DEC540DC1257B2F003ADC77 (Lokalt ID)oai:bth.se:forskinfoB04EDCB08DEC540DC1257B2F003ADC77 (Arkivnummer)oai:bth.se:forskinfoB04EDCB08DEC540DC1257B2F003ADC77 (OAI)
Externt samarbete:
Tillgänglig från: 2013-03-18 Skapad: 2013-03-15 Senast uppdaterad: 2017-12-04Bibliografiskt granskad
4. Neural Network based Minutiae Extraction from Skeletonized Fingerprints
Öppna denna publikation i ny flik eller fönster >>Neural Network based Minutiae Extraction from Skeletonized Fingerprints
2006 (Engelska)Konferensbidrag, Publicerat paper (Övrigt vetenskapligt) Published
Alternativ titel[sv]
Neurala Nät baserad Minutiae Extraktion från Skeletoniserade Fingeravtryck
Abstract [en]

Human fingerprints are rich in details denoted minutiae. In this paper a method of minutiae extraction from fingerprint skeletons is described. To identify the different shapes and types of minutiae a neural network is trained to work as a classifier. The proposed neural network is applied throughout the fingerprint skeleton to locate various minutiae. A scheme to speed up the process is also presented. Extracted minutiae can then be used as identification marks for automatic fingerprint matching.

Ort, förlag, år, upplaga, sidor
Hong Kong: , 2006
Nyckelord
biometrics, fingerprint, minutiae, neural networks
Nationell ämneskategori
Signalbehandling
Identifikatorer
urn:nbn:se:bth-8962 (URN)000246127500098 ()oai:bth.se:forskinfoD7E0C5D38A2002DBC125733E0082E5EF (Lokalt ID)oai:bth.se:forskinfoD7E0C5D38A2002DBC125733E0082E5EF (Arkivnummer)oai:bth.se:forskinfoD7E0C5D38A2002DBC125733E0082E5EF (OAI)
Konferens
TENCON 2006 IEEE Region 10 Conference
Anmärkning
Copyright © 19xx/20xx IEEE. Reprinted from (all relevant publication info). This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of BTH's products or services Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by sending a blank email message to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.Tillgänglig från: 2012-09-18 Skapad: 2007-08-22 Senast uppdaterad: 2015-12-11Bibliografiskt granskad

Open Access i DiVA

fulltext(465 kB)309 nedladdningar
Filinformation
Filnamn FULLTEXT06.pdfFilstorlek 465 kBChecksumma SHA-512
c6ba813c99c3d0edec962348f00eb600e4e2be61db64d5dbc26b54aee53c9097ea2a42904bfbbe21a896a834dcf5f69fab441e5b2fed0f4d705875427b11f40f
Typ fulltextMimetyp application/pdf

Personposter BETA

Ström Bartunek, Josef

Sök vidare i DiVA

Av författaren/redaktören
Ström Bartunek, Josef
Av organisationen
Institutionen för tillämpad signalbehandling
Teknik och teknologierSignalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 455 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 3514 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf