Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Social Simulation of Commercial and Financial Behaviour for Fraud Detection Research
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.ORCID-id: 0000-0002-9158-3488
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
2014 (Engelska)Ingår i: Advances in Computational Social Science and Social Simulation / [ed] Miguel, Amblard, Barceló & Madella, Barcelona, 2014Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

We present a social simulation model that covers three main financialservices: Banks, Retail Stores, and Payments systems. Our aim is toaddress the problem of a lack of public data sets for fraud detectionresearch in each of these domains, and provide a variety of fraudscenarios such as money laundering, sales fraud (based on refunds anddiscounts), and credit card fraud. Currently, there is a general lackof public research concerning fraud detection in the financial domainsin general and these three in particular. One reason for this is thesecrecy and sensitivity of the customers data that is needed toperform research. We present PaySim, RetSim, and BankSim asthree case studies of social simulations for financial transactionsusing agent-based modelling. These simulators enable us to generatesynthetic transaction data of normal behaviour of customers, and alsoknown fraudulent behaviour. This synthetic data can be used to furtheradvance fraud detection research, without leaking sensitiveinformation about the underlying data. Using statistics and socialnetwork analysis (SNA) on real data we can calibrate the relationsbetween staff and customers, and generate realistic synthetic datasets. The generated data represents real world scenarios that arefound in the original data with the added benefit that this data canbe shared with other researchers for testing similar detection methodswithout concerns for privacy and other restrictions present when usingthe original data.

Ort, förlag, år, upplaga, sidor
Barcelona, 2014.
Nyckelord [en]
Privacy; Anonymization; Multi-Agent-Based Simulation; MABS; ABS; Retail Store; Fraud Detection; Synthetic Data
Nationell ämneskategori
Datorsystem
Identifikatorer
URN: urn:nbn:se:bth-12931OAI: oai:DiVA.org:bth-12931DiVA, id: diva2:954146
Konferens
Social Simulation Conference. Bellaterra, Cerdanyola del Valles, 1a : 2014
Tillgänglig från: 2016-08-20 Skapad: 2016-08-20 Senast uppdaterad: 2017-01-31Bibliografiskt granskad
Ingår i avhandling
1. Applying Simulation to the Problem of Detecting Financial Fraud
Öppna denna publikation i ny flik eller fönster >>Applying Simulation to the Problem of Detecting Financial Fraud
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis introduces a financial simulation model covering two related financial domains: Mobile Payments and Retail Stores systems.

 

The problem we address in these domains is different types of fraud. We limit ourselves to isolated cases of relatively straightforward fraud. However, in this thesis the ultimate aim is to introduce our approach towards the use of computer simulation for fraud detection and its applications in financial domains. Fraud is an important problem that impact the whole economy. Currently, there is a lack of public research into the detection of fraud. One important reason is the lack of transaction data which is often sensitive. To address this problem we present a mobile money Payment Simulator (PaySim) and Retail Store Simulator (RetSim), which allow us to generate synthetic transactional data that contains both: normal customer behaviour and fraudulent behaviour. 

 

These simulations are Multi Agent-Based Simulations (MABS) and were calibrated using real data from financial transactions. We developed agents that represent the clients and merchants in PaySim and customers and salesmen in RetSim. The normal behaviour was based on behaviour observed in data from the field, and is codified in the agents as rules of transactions and interaction between clients and merchants, or customers and salesmen. Some of these agents were intentionally designed to act fraudulently, based on observed patterns of real fraud. We introduced known signatures of fraud in our model and simulations to test and evaluate our fraud detection methods. The resulting behaviour of the agents generate a synthetic log of all transactions as a result of the simulation. This synthetic data can be used to further advance fraud detection research, without leaking sensitive information about the underlying data or breaking any non-disclose agreements.

 

Using statistics and social network analysis (SNA) on real data we calibrated the relations between our agents and generate realistic synthetic data sets that were verified against the domain and validated statistically against the original source.

 

We then used the simulation tools to model common fraud scenarios to ascertain exactly how effective are fraud techniques such as the simplest form of statistical threshold detection, which is perhaps the most common in use. The preliminary results show that threshold detection is effective enough at keeping fraud losses at a set level. This means that there seems to be little economic room for improved fraud detection techniques.

 

We also implemented other applications for the simulator tools such as the set up of a triage model and the measure of cost of fraud. This showed to be an important help for managers that aim to prioritise the fraud detection and want to know how much they should invest in fraud to keep the loses below a desired limit according to different experimented and expected scenarios of fraud.

Ort, förlag, år, upplaga, sidor
Karlskrona: Blekinge Tekniska Högskola, 2016
Serie
Blekinge Institute of Technology Doctoral Dissertation Series, ISSN 1653-2090 ; 6
Nyckelord
security, privacy, anonymisation, multi-agent-based simulation, MABS, ABS, retail store, fraud detection, synthetic data, mobile money
Nationell ämneskategori
Datorsystem
Identifikatorer
urn:nbn:se:bth-12932 (URN)978-91-7295-329-1 (ISBN)
Disputation
2016-10-28, J1650, Blekinge Institute of Technology, Campus Gräsvik, Karlskrona, 10:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
KK-stiftelsen, 20140032
Tillgänglig från: 2016-08-30 Skapad: 2016-08-20 Senast uppdaterad: 2017-04-19Bibliografiskt granskad

Open Access i DiVA

fulltext(171 kB)360 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 171 kBChecksumma SHA-512
a710241af94d762c951fb861284d0e0ec9822a48e74122f326007e0c52a63d3e600f5bccb7b37e1c9f722aed1469445acf27e74e0b4b9360cd15547e79876b98
Typ fulltextMimetyp application/pdf

Övriga länkar

http://ddd.uab.cat/pub/poncom/2014/128517/ssc14_a2014a86iENG.pdf

Personposter BETA

Lopez-Rojas, Edgar AlonsoAxelsson, Stefan

Sök vidare i DiVA

Av författaren/redaktören
Lopez-Rojas, Edgar AlonsoAxelsson, Stefan
Av organisationen
Institutionen för datalogi och datorsystemteknik
Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 360 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 866 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf