Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Minimum Spanning Tree Clustering Approach for Outlier Detection in Event Sequences
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: 2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA) / [ed] Wani M.A.,Sayed-Mouchaweh M.,Lughofer E.,Gama J.,Kantardzic M., IEEE, 2018, s. 1123-1130, artikel-id 8614207Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Outlier detection has been studied in many domains. Outliers arise due to different reasons such as mechanical issues, fraudulent behavior, and human error. In this paper, we propose an unsupervised approach for outlier detection in a sequence dataset. The proposed approach combines sequential pattern mining, cluster analysis, and a minimum spanning tree algorithm in order to identify clusters of outliers. Initially, the sequential pattern mining is used to extract frequent sequential patterns. Next, the extracted patterns are clustered into groups of similar patterns. Finally, the minimum spanning tree algorithm is used to find groups of outliers. The proposed approach has been evaluated on two different real datasets, i.e., smart meter data and video session data. The obtained results have shown that our approach can be applied to narrow down the space of events to a set of potential outliers and facilitate domain experts in further analysis and identification of system level issues.

Ort, förlag, år, upplaga, sidor
IEEE, 2018. s. 1123-1130, artikel-id 8614207
Nyckelord [en]
Clustering, Minimum spanning tree, Outlier detection, Sequential pattern mining
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:bth-17100DOI: 10.1109/ICMLA.2018.00182ISI: 000463034400174ISBN: 9781538668047 (tryckt)OAI: oai:DiVA.org:bth-17100DiVA, id: diva2:1254669
Konferens
17th IEEE International Conference on Machine Learning and Applications, ICMLA 2018; Orlando; United States; 17 December 2018 through 20 December
Forskningsfinansiär
KK-stiftelsen, 20140032Tillgänglig från: 2018-10-09 Skapad: 2018-10-09 Senast uppdaterad: 2019-06-28Bibliografiskt granskad
Ingår i avhandling
1. Data Modeling for Outlier Detection
Öppna denna publikation i ny flik eller fönster >>Data Modeling for Outlier Detection
2018 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis explores the data modeling for outlier detection techniques in three different application domains: maritime surveillance, district heating, and online media and sequence datasets. The proposed models are evaluated and validated under different experimental scenarios, taking into account specific characteristics and setups of the different domains.

Outlier detection has been studied and applied in many domains. Outliers arise due to different reasons such as fraudulent activities, structural defects, health problems, and mechanical issues. The detection of outliers is a challenging task that can reveal system faults, fraud, and save people's lives. Outlier detection techniques are often domain-specific. The main challenge in outlier detection relates to modeling the normal behavior in order to identify abnormalities. The choice of model is important, i.e., an incorrect choice of data model can lead to poor results. This requires a good understanding and interpretation of the data, the constraints, and the requirements of the problem domain. Outlier detection is largely an unsupervised problem due to unavailability of labeled data and the fact that labeled data is expensive.

We have studied and applied a combination of both machine learning and data mining techniques to build data-driven and domain-oriented outlier detection models. We have shown the importance of data preprocessing as well as feature selection in building suitable methods for data modeling. We have taken advantage of both supervised and unsupervised techniques to create hybrid methods. For example, we have proposed a rule-based outlier detection system based on open data for the maritime surveillance domain. Furthermore, we have combined cluster analysis and regression to identify manual changes in the heating systems at the building level. Sequential pattern mining for identifying contextual and collective outliers in online media data have also been exploited. In addition, we have proposed a minimum spanning tree clustering technique for detection of groups of outliers in online media and sequence data. The proposed models have been shown to be capable of explaining the underlying properties of the detected outliers. This can facilitate domain experts in narrowing down the scope of analysis and understanding the reasons of such anomalous behaviors. We have also investigated the reproducibility of the proposed models in similar application domains.

Ort, förlag, år, upplaga, sidor
Karlskrona: Blekinge Tekniska Högskola, 2018
Serie
Blekinge Institute of Technology Licentiate Dissertation Series, ISSN 1650-2140 ; 4
Nyckelord
data modeling, cluster analysis, stream data, outlier detection
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:bth-16580 (URN)978-91-7295-358-1 (ISBN)
Presentation
2018-11-09, Blekinge Tekniska Högskola, Karlskrona, 10:00 (Engelska)
Opponent
Handledare
Projekt
Scalable resource-efficient systems for big data analytics
Forskningsfinansiär
KK-stiftelsen, 20140032
Tillgänglig från: 2018-10-25 Skapad: 2018-10-12 Senast uppdaterad: 2018-12-04Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Abghari, ShahroozBoeva, VeselkaLavesson, NiklasGrahn, Håkan
Av organisationen
Institutionen för datalogi och datorsystemteknik
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 569 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf